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Abstract  

There is much current interest in the evolution of 
social networks, especially, the Web graph, through 
time. "Preferential at tachment" and the "copying 
model" are well-known models which explain the ob- 
served degree distribution of the Web graph reason- 
ably closely. We claim that  the presence of highly 
popular search engines like Google substantially me- 
diate the act of hyperlink creation by limiting the 
author 's  attention to a small set of "celebrity" URLs. 
Page authors (who are also Web surfers) frequently 
(with probability p) locate pages using a search en- 
gine. Then they link to popular pages among those 
they visit. We initiate an analysis of this more realis- 
tic process, and show that the celebrity nodes eventu- 
ally accumulate a constant fraction of all links created 
whp ,  and that  the degrees of the other nodes still 
follow a power-law distribution, but  with a steeper 
power: Pr(degree = k) c< k-0+2/(1-p)) whp .  Our 
analysis adds evidence to the recent concern that  
search engines offer new Web pages a steep, self- 
sustaining barrier to entry to well-connected, en- 
trenched Web commtmities. 

1 I n t r o d u c t i o n  

The evolution of the Web graph through time has 
been subject to intense modeling, measurements, 
and analysis in recent years. Early measurements 
on the graph of Web pages (nodes) and hyperlinks 
(edges) showed that  degrees of nodes were distributed 
according to a power law. Barabasi and Albert [1] 
were among the first to propose a generative model of 
the Web, called preferential attachment, which leads 
to a distribution Pr(degree  -- k) oc k -3. 

Kleinberg et al. [7] were the first to propose a copying 
model in which the author of a newborn page u picks 
a random reference page v from the Web, and with 
some probability, copies out-links from v to u. Kumar 
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et al. [8] analyzed the copying process to show that  it, 
too, leads to a power law degree distribution with a 
power of approximately 2, which is close to empirical 
observations. 

Both these generative models hint that  the author of 
a new page is potentially influenced by all existing 
pages: she is either influenced by their current 
degrees, or she can sample a reference page uniformly. 
Kumar et al. also consider a geometric copying model 
in which the Web grows so rapidly that  the author 
of a new page can be influenced only by a fraction 
of the pages that  will have been created by the end 
of the current time-step. But in absolute terms, this 
can still translate to billions of pages. 

In reality, the evolution of the Web graph has been 
influenced permanently and pervasively by the exis- 
tence of search engines. Responses from search en- 
gines significantly influence where authors are likely 
to link. This in turn influences degree and Pager- 
ank, which are used by most search engines to rank 
their results. Thus, search engines, which started out 
observing social linkage phenomena on the Web, are 
now influencing the outcome. 

Consider the uniform "teleport" jump in the 
well-known random surfer model at the heart 
of Pagerank (which powers Google). According 
to Neilsen/NetRatings 1, an estimated 319 million 
searches are answered by 10 major search engines 
each day. Therefore, it seems more likely that  with 
some significant probability, teleports take the surfer 
to a search engine (instead of a uniformly random des- 
tination), whence the surfer is taken to highly popu- 
lar pages. Therefore, the teleport has become highly 
biased, and the original model is in question. 

The virtuous cycle of limelight can be brutal to new 
pages and sites: Cho and Roy [2] estimate that  the 
time taken for a page to reach prominence can be 
delayed by a factor of over 60 if a search engine 
diverts clicks to entrenched pages. Drinea et al. 
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[4] analyze balls-and-bins processes with a related 
feedback mechanism, and show that  positive feedback 
leads to a rapid landslide victory for the winning bin. 
In a world where copious content jostles for scarce 
attention, tiffs is not new. Similar effects result from, 
e.g., the New York Times bestsellers list. 

Having some empirical understanding of the effect of 
search engines on the evolution of page populari ty 
for search applications, we are interested in directly 
modeling the evolution of the Web graph under the 
influence of a search engine. 

1.1 O u r  m o d e l  We wish to model how the Web 
graph evolves if authors use search engines to decide 
on links that  they insert in new pages. In particular,  
we are interested in the degree distribution, and 
whether and how this distribution deviates from 
those derived by Barabasi,  Kleinberg, Kumar,  and 
co-workers. 

For simplicity, like Barabasi  et al., we model the Web 
graph as undirected. Following Cho and Roy, we also 
make the simplifying assumption that  the query to 
the search engine is fixed and the search engine, like a 
bestseller list, returns some fixed number of response 
URLs (nodes in the Web graph), ordered according 
to their degree at  the end of the previous time-step. 
We can also interpret such a list as a per-topic listing 
provided by a directory like Yahoo! or DMoz, and 
limit our analysis to one topic at  a time, without loss 
of generality. 

The growth process we seek to analyze generates a 
sequence of graphs Gt,t  = 1,2, . . . .  At t ime t, the 
graph Gt = (Vt,Et) has t vertices and mt edges. 
The process has only two important  parameters  p 
(a probability) and N (the max imum number  of 
"celebrity" nodes listed by the search engine). 

We introduce some notation: 

degt (x) denotes the degree of vertex x in Gt 

Dr(U) is ~ = c v  degt(x) 

St denotes the set of at  most  N vertices with the 
largest degrees in Gt. (If t < N we let St = Vt.) 

dk (t) denotes the number  of vertices of degree k at  
t ime t in the set Vt - St. 

dk(t) is defined as E[dk(t)] ,  the expectat ion being 
over the random hyperlinking choices made by 
nodes (described next) 

The graph sequence is constructed as follows: 

T i m e  s t e p  1: The process is initialized with graph 
G1 which consists of an isolated vertex x~ and m 
loops. 

T i m e  s t e p  t > 1: We add a vertex xt to Gt-1. We 
then add m random edges (xt,yi), i -- 1 , 2 , . . . , m  
incident with xt, where Yi are nodes in Gt-1. For 
each i: 

• With  probabili ty p we choose Yi E St-l. 

• With  probabili ty q = 1 - p we choose Yi E Yt-l. 

In both  cases Yi is selected by preferential a t tachment  
within the target  subset of old nodes, i.e. for x G U 

P r ( y i  = x )  - d e g t _ , ( x )  
Dt-I(U) ' 

where U = St-1 or U = V~-a as the case may  be. 
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Figure 1: The presence of a search engine in our 
model makes the power in the degree power law 
more negative, and, with increasing p, separates out 
the celebrities completely from the non-celebrities 
( N  = 100, n = 10000, and m = 5). 

As Figure 1 shows, the simulated behavior of our 
proposed process is quite different from standard 
preferential a t tachment .  With  increasing p, the 
celebrities swing out far from the power-law straight 
line in log-log plots. 

Furthermore,  as Figure 2 shows, the total  degree 
(as a fraction of twice the total  number  of edges 
added) over the celebrities goes to zero as n --~ oo for 
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Figure 2: The total degree of the celebrities as a 
fraction of (twice) the number of edges added to 
the graph differs significantly in behavior between 
preferential at tachment vs. our model. 
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Figure 3: The celebrity Hst becomes effectively fixed 
very early on in the graph evolution process and 
the cumulative number of celebrity shuffles levels out 
faster with large p. 

preferential attachment,  but in a simulation of our 
proposed model, the celebrities command a constant 
fraction of the total degree over all nodes, and this 
fraction grows with p. In Figure 3 we plot the 
cumulative number of nodes leaving or entering the 
celebrity list from each timestep to the next. We see 
that  as p increases, the celebrity list is determined 
more and more quickly. 

As we shall see, the observations above lend much 
intuition to the analysis of our proposed graph evo- 
lution process. 

1.2 O u r  r e su l t s  a n d  t h e i r  i m p l i c a t i o n s  We will 
prove the following, where all asymptotic notation is 
with respect to n: 

THEOREM 1.1. 

(a) For every i _< N , E  [degn(xi)  ] = a i n  + 0 (n 1/2) 
for some constant ai > O. Le., each celebrity 
commands a constant fraction of all edges ever 
generated in the graph. 

(b) There is an absolute constant A1 such that for 
every k > m,3k(n) = (1 + o(1)) k~A~:,q. 

Our analysis involves a coupled sequence of graphs, 
G~, t = 1 , 2 , . . . ,  obtained by the analogous process 
to the one above, where in each step St is replaced 
by S~ = S* = { x l , . . . ,  XN}. (If t < N take S~ = Vt.) 
I.e., instead of taking the N largest-degree vertices, 
we take the N oldest vertices. 

Our model differs from reality in many obvious ways: 
edges are undirected, outlinks are not modified after 
creation, pages do not die, and there is no topic-based 
clustering. Yet, our results lend support to recent 
articles by political scientists [6] in the popular press 
expressing apprehension about the extent to which 
search engines concentrate the collective attention of 
Web surfers to "mainstream" Web sites. 

2 C o u p l i n g  Gt and G~ 

Let mt be the degree of the lowest degree vertex in 
St and Mt the degree of the highest degree vertex 
in Vt \ St. We are going to prove that  after a short 
time w h p  there is a significant gap between mt and 
Mt and then from this time on St the set of the N 
highest degree vertices remains fixed. In this sense 
the graph Gt is very similar to the graph G~ where 
the top N is fixed from the beginning (the top is fixed 
by age not by degree). We define m~ and M~ for G~ 
in an analogous way to mt and Mr. 

LEMMA 2.1. Conditional on St = S and Dr(St) = 
D, the distribution of degrees Vt \ S is identical with 
the distribution of degrees in Vt \ S~ conditional on 
OF(St) = D. 

P r o o f  The only difference between the genera- 
tion of edges in Gt incident with Vt \ St is that  oc- 
casionMly a vertex x from Vt \ St replaces a vertex y 
in St. From now on, as far as the degree sequence of 
Vt \ St is concerned, this is equivalent to re-labelling 
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x with y, even though the edge structure will change. 
[] 

LEMMA 2.2. We can couple Gt and G~ in such a way 
that Dt(Vt \ St) < D~(Vt* \ S~) and so M~ > Mt in 
distribution. 

P r o o f  We construct Gk and G~ simultaneously 
k = 1 , 2 , . . . , t  with Gk = G~ for 
k = 1 , 2 , . . . , N .  In general, given Gk,G~, we add 
vertex Xk+l to both. We assume that  Dt~(Sk) > 
D~(S~) and then for i = 1 , 2 , . . . , m  we choose its 
neighbours Yi,Y[ as follows: With  probabili ty p we 
choose Yi preferentially from Sk and y[ preferentially 
from S~. These choices are done independently. With  
probabil i ty 1 - p  we choose both  preferentially from 
Vk, with the proviso tha t  i f  y~ E S~ then Yi ¢ Sk. 
Note that  sometimes Yi will move into Sk replacing 
some vertex x. Since yi, x had the same degree before 
the addition of an edge, this coupling has the desired 
properties. [] 

LEMMA 2.3. We can couple Gt and G~ in such a way 
that m~ _< mt in distribution. 

P r o o f  For t _> N the degrees of the vertices in St 
follow an urn model. In each step either (i) we add 
a ball (endpoint of the edge xt) and place it in an 
urn according to urn size or (ii) we add a ball to the 
smallest urn (a vertex moves into St replacing another  
vertex). If  we replace (ii) by simpling adding a ball 
as in method (i) then we can couple the two processes 
so tha t  in the former process the smallest urn size is 
at  least the smallest urn size in the latter.  The  lat ter  
process corresponds to G~, but  with possibly more 
balls going into S~. [] 

P r o o f  o f  T h e o r e m  1.1 
Let p be the last t ime tha t  St changes in the Gt 
process. I t  follows from Lemma 3.3 (below) tha t  

(2.1) P r ( p  _> t) < et where lim et = O. 
t---~ao 

From time t _> p, St is fixed. Condition on p < In n 
and the degrees d = (dl > d2 > dN) in St at this 
point. The degrees at t ime n will be identical in 
distribution to the contents of N urns, with initial 
contents d into which 2rn ,-~ ~+pn (see Lemma 3.4) balls 
have been randomly placed according to a Polya- 
Eggenburger scheme [9]. 

As such, the expected degrees of the contents of urn 
i can be expressed as ,-~ ¢i(d,m,p)n.  Thus we can 

prove part  (a) of the theorem if we can argue that  

o~i = E E ¢,(d,m,p)Pr(p,d) > O. 
p d 

But aN > 0 follows immediately from (2.1) or from 
Lemmas 2.3 and 3.2. (Note that ai  will be different 

from the expresion a [  = -~  YI,<,<i  (1 + 2~) given 

in Lemma 3.2, due to differences in the early growth 
of Gt, G~. We do know however that  aN  > a~v ). 

W h p  the Gn degree distribution of Vn \ S~ can be 
described as follows: Up to t ime p, in distribution, 
fewer edges are created with endpoints chosen pref- 
erentially than in G~. After this time, the remaining 
edges are created in the same way as in G{. Define 
the event 

E ---- O { M t  _< Ktq/2(lnt)3)} 
t = l  

where K is some large constant. 

The conclusion of Lemma 3.7 is also valid for Gt and 
so P r ( E )  = O(t -'~) for any constant ~ > 0. From 
Lemma 2.1, the two processs coincide from time I n n  
onwards w h p  and we can apply Lemma 3.1 since we 
can assume E* holds (equivalent event to $ in the 
context of G~). [] 

3 Analysis of G~ 

In this section we analyze the behavior of G~. In 
Lemma 3.1 we prove that  dk(t ) follows a power law, 
while in Lemma 3.2 we prove tha t  deg~(xi) is linear 
for i _< N.  Then we turn our a t tent ion to computing 
different parameters  of G~. Let 

Define 

2N ~+2-+-+-~ 
C U - - - -  

l + p  

E * =  0 { M ~  _< Ktq/2(lnt)3)} 
t = l  

where K is some large constant.  

LEMMA 3.1. Let to = In n, fix Gt* o and assume k _> 
m. Condition on E*. Then 

- -  Aln  
d~(n) = (1 + o(1)) k(l+2/q). 

P r o o f  Our approach to proving a power law is 
to find a recurrence for d~(t). Lemma 3.7 shows 
tha t  P r ( ~ )  = O(t -K) for any constant K > 0. 
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Thus corrections due to conditioning can easily be 
absorbed into the error term. 

We define d~_l(t  ) = 0 for all t > 0. Then for 
t >to ,k  > m, 

E [d~(t + 1) I C,] 

= a;(t) + q~ - ( (k 
l)d~_l(t)  kd~(t) ~ 
2rot 2rot ] 

+ lk=m + O(M~t -1) 

( k  - 1 ) d ~ _ , ( t )  - kd; ( t )  
= d~(t) + q 2t 

+ lk=m + O(M;t-1) • 

The O(M~'t -1) term accounts for the addition of 
parallel edges. 

Taking expectations, we get 

(k-1)d~_l(t)-kd~(t) 
a~(t + 1) = aT(t) + q 2, 

(3.2) + lk=m + O(t q/2-1 (ln t)3). 

We consider the exact recurrence, fro-1 = 0 and 

(k - 1)fk-1 - kfk for k _> 0, 
2 

(3.3) fk = lk=~ + q 

yielding 

k i - 1  
fk = fin H i + 2/q 

i=m+l 
fmk-( l+2/q)  . 

We finish the proof of the lemma by showing that 
there exists a constant M > 0 such that  

(3.4) Ida(t) - fkt I _< M(to + tq/2(lnt)3) 

for all t > 0. 

Let Ok(t) = dk(t) - fkt. Then for k > m and t > to, 

O k ( t + l )  : ( l - - g ~ )  Ok(t) q k 2 ~ O k - l ( t  ) + 

(3.5) +O(t q/2-1 (ln t)3). 

Let L denote the hidden constant in O(t q/2-~ (ln t) 3) 
of (3.5). Our inductive hypothesis 7-/t is that 
IOk(t)l _< M(to + tq/2(lnt) 3) for every k _> m. It 
is trivially true for t _< to. So assume that t _> to. 
Then, from (3.5), 

IOk(t + 1)1 <_ M(to + tq/2(lnt)3) + Ltq/2-1(lnt) 3 
< M(to + (t + 1)q/2(lnt)3) 

provided M > 2L. This verifies 7-/t+1 and completes 
the proof by induction. [] 

LEMMA 3.2. For i < N and t > N, 

E[deg t(  i ) ] = - ~  H 1 +  
~_<j<i 

+d(t~/2) 

P r o o f  Let t > N, then 

* x * x deg~(zi) 
E Ideas+,( diG;] -- degt ( i )  + m p  D~(S~) 

deg~(xi) 
+ mq 2mr 

Taking expectations we get 

• x ( ,) E [defft+l ( i)] = E[deg;(xi)]  l + 

[deg;(x,)] 
+ ~pE [ b ~ ( ~  J 

L~-.l~t (CN+l)tl/2(lnt) 2 Let .,4 the event D2 ( S * ) -  1 +p < 
then 

[d,~g;(=,)] 
E L ~ J  

I I'- Pr( ) [ D;(S~') 

,x A] [ a~g, (~) I vr( A) 
+ E L D ~  ~ 

*x ( l + v  )) = E [deg t ( i )  I A] \2~pt + 0 (t  -3/2 P r (A)  

+ o (Vr(~A)) 
( l + p ]  

= E [eeg;(xi)] \ 2 ~ p t ]  

= E [deg t ( i)] \ 2 ~ p t ]  

* X where we used the fact deg t (~ )  < D~(S~) < 2mt, 
and Lemma 3.5. 

Therefore 

E [deg~+l(xi)] = E [deg~(x,)] ( i +  ~ ) +  (~ ( t -1/2)  , 

and by induction 

+ O  * x Etdegt (  i)] = E[deg~(xi)]t /N ( t  ' /2)  
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Now, if t < N we have 

E [deg~+ 1 (X i ) lG~]  

And therefore 

E [deg~¢ ( x i ) ]  = 

= deg~(xi) + m deg;(xi) 
2mt (1) 

= deg2(xi) 1 + . 

E[deg~xi] I I  ( 1 + 2 ~ )  
l< j< i  

m H 1 +  
l< j< i  

LEMMA 3.3. Suppose m _> 4. Let 

et = P r  [37- _> t : m~. - M~. _< m ] .  

Then ct ~ 0 as t --~ c~. 

P r o o f  From Lemma 3.6, 

P r  ImP_ ~(2pTl~T)q/2+p/4]-~O(7---2+43P(m--1)), 

SO for some constant A > 0 we have 

(3.6) P r  [37- > t :  m{ < (2pinT-) q/2+p/'] 

_< A~>_,~--~?~(m-a) = O( t -  2+431' (m-1) ). 

Also, from Lemma 3.7, 

P r  [Mr*> 7-q/2(lnT)3] ~ exp ( m  (ln~7-)2) , 

therefore 

Pr [37- > t:  M: > 7-~/~ ln(t)~] 

~_ O(e-(lnt)Z/12). 

The result follows from (3.6) and (3.7). 

LEMMA 3.4. Suppose t > N.  Then 

2rap t < E [D;(S*)] < 2mp t 

P r o o f  Let zt = E [Dr(S*)], then Zy = 2Nm,  

z, ( q) 
zt + l = zt + mp + qm ~ = mp + zt 1+  ~ . 

The result follows by induction. 

[] 

LEMMA 3.5. I f  t > N then 

< 2e-P(lnt)2/m. 

P r o o f  Enumerate the edges ea, e2, • • •, emt in the 
order they appear. For i > N m  let Y/ be the 0, 1 
random variable taking value 1 if and only if ei is 
incident to S*. Then 

and 

rat 

D;(S*) = 2 N m  + E 
i = m N + l  

Y~ 

Dr(S*) I 
P r [ Y i = O I D ; ( S * ) ] =  q 1 2mLi lmJJ" 

We apply Azuma's inequality to show the concentra- 
tion of D~(S*). Given i we define for 7- = [i/mJ + 
1 , . . . , t .  

A~(i) =1 E [D{(S*)W1 = y l , . . .  ~ ,Y / -1  ~-  y i - l , Y i  = 0] 
I 

- E [D~-(S*)IY1 = Yl , . . . ,Yi -1  = Yi- l ,Y i  = 1] I' 

Notice that  

q ~ ( i )  
~ - r + l ( i )  = A T ( i )  + 2mLt/m j , 

and A[i/mJ+l(i) = 1. Thus, 

Therefore, 

_ (m7-)./2 
~(i)  < ,-T-J 

mt 

[] E At(i)2 -< 
i = N m + l  

< 

E 
i = N m + l  

/2' ( i t )  q x -qdx  < mt /p ,  
N 

and 

] --~*(1~ t) 2 
Pr IDt(S*)-E[Dt(S*)]I_>t~/2lnt  _< 2 e  m 

[] The result follows after using Lemma 3.4. [ ]  
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LEMMA 3.6. If i _< N and e > 0 then 

P r  [deg:(x,) < (2pint) 1-'] = 0 (t -e(m-')) 

P r o o f  We couple our graph process with an urn 
process: We start the process at time t ---- N with 
r = degN(x/) red balls and b = 2 N m -  r blue 
balls. Each time we add an edge to the graph that  is 
incident to S* we add a ball to the urn. If the edge is 
incident to x/, the ball is red otherwise is blue. Then 
Rt the number of red balls in the urn by time t is 
equal to deg~(x/), while the total number of balls in 
the urns is D~(S*). 

Note that  preferential attachment is equivalent to 
choosing an edge e at random and then choosing a 
random end point from e, therefore this urn process 
follows a Polya urn process: In time t given that  we 
add a ball, the probability of adding a red ball is 
Rt/Tt, where Tt is the total number of balls in the 
urns. We think in our urn process isolated from the 
graph process and call % step" of the process when 
a ball is added. We use s = 1 ,2 , . . .  ,D~(S*) - 2Nm 
to index the steps of the urn process. 

Now, for any 0 < k < s 

P r  [R~ = r + k] 

(~ )  r . . . ( r  + k -  l)b(b+ l ) . . . ( b +  s -  k - 1 )  
= F-T6T:r~¥6h-T: i) 

r--1 
( r + b -  1)! i ~ l k + i  

= ( 8 + r ~ = ~ ) [ ~ - 1 ) !  "= s + i  

~+~(H ~- b - ~  ) i=l b + s - k + i - 1  

( r + b - 1 ) !  (~-.{-r-~) r-1 
-< (s + r ~ : - -  T).v~ - 1)! + 7 7 

1 b + 8 + r - 1  

And therefore if e > 0 

v~ [Rs < 8 '-°] 
81- -e_ r  (r+b-1)[ ~ (k--l-r-I) r- l__ 

_< (8 + r ) ( ~ -  ~)~(b- 1)! ~ ~ ;  

(~+b-  1)! fo s-° -< (~2 F).v~ --i)t x~-ldx 

2r+b 
< _ _ s - e ( r - U  
- r - 1  

Recalling that  r _> m and r + b = 2Nm and 
deg~(xi) = RD~(S*)_2N m we get, using Lemma 3.5, 

P r  [deg~(xi) < ( 2 p m t ) ' - q  
_< P r  [deg~(xi) _< tl-e]D~(S *) - 2Nm _> 2pmt] 

+ P r  [D~'(S*) - 2Nm < 2pint] 

_< P r  In ,  < sl- ' ls  > 2pmt] + e -p('"t)=/m 

<_ 2mN (2pmt) -~(m-1) + e-P(ln t)2/m 

= O ( t - ' ( m - 1 ) ) .  

[] 

LEMMA 3.7. Let s > N and let t > s. 

P r  [deg~(xs)_> (t/s)q/2(lnt)a] _< exp ( m  

P r o o f  Fix s > N and let X~- = deg~_(s) for 
r = s , s + l , . . . , t .  

Then conditional on Xr = x, we have 
/ qx \ 

and so 

< e ~" exp (qX(e)' - 1)) 
- -  \2T 

= exp (Ax (1 + q (12- - -~ ) )  , 

for any A<_ 1. 

Thus 

E [eXX'+l]-< E [exp (XrA (1 + q ( l +  A--------)-))] " 2 7 "  

If and take At 
% 

small enough such that 

(3.9) A~- _< A = min 1, for r = s , . . . , t ,  

we have 
E(e~'Xq < e ~ . .  

and we can write 

(1 + A ) q ~  
Ar_i _< A~ 1 + ----~---/ ,  

then 

As ~ I  ( (1 + A)q~ < A 1 + - - ~ - - -  ] 
.T~8 

_< 2A(t/s) O+A)q/2 

< 6A(t/8) q/~ 
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and therefore we can take )~ ~- ~(s / t )  q/2 and get 
(3.9). 
Put t ing  u = (t /s)q/2(lnt) 3 we get 

P r ( X t  > u) ~ e mx`-xu 

_< e x p ( A m  A(lnt)3)6 

[] 
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