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Abstract

We model a duopoly in which two-sided platforms compete on both sides of a two-sided

market. Platforms (or intermediaries) select the quality they offer consumers, and the prices

they charge to consumers and firms. In this model, non-trivial competition on both sides induces

non-quasiconcave payoffs in one subgame. All equilibria are characterized. Under well-defined

conditions, the unique equilibrium in pure strategies can be computed. Prices entail a discount

on one side, a premium on the other one and the quality offered to consumers is distorted

downward. When the pure-strategy equilibrium fails to exist, a mixed-strategy equilibrium is

shown to always exist and the distributions are characterized. In this case, the market may be

preempted ex post. The model may find applications in the media, internet trading platforms,

the software industry or even the health care industry (HMO/PPO).
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1 Introduction

“The only thing advertisers care about is circulation, circulation, circulation.”

Edward J. Atorino, analyst

Fulcrum Global Partners, New York

June 17, 2004 (The Boston Globe).

In many markets, the standard modus operandi requires firms to satisfy two constituencies: for

example, consumers on one side and advertisers on the other in the case of media, or policyhold-

ers and service providers for HMOs and PPOs. Their behaviour is typically analysed as that of

platforms competing in a two-sided market. But unlike e-Bay, say, whose only purpose is to facili-

tate transactions between buyers and sellers, a medium provides an information (or entertainment)

good to attract consumers. Likewise, HMOs and PPOs typically differ in the characteristics of the

service they offer to their policyholders.1 We develop a model of platform competition in which

a) the quality of the consumer good is endogenous; and b) competition cannot be reduced to the

sole problem of attracting consumers. That is, players compete on both sides of the market. This

latter characteristic generates the main contributions of this paper. When competition is not trivial

on both sides, the equilibrium differs markedly from the results typically found in the industrial

organization literature.

The game has three stages: quality setting (inducing vertical differentiation), price setting to

consumers and price setting to advertisers. All the equilibria of the game are characterized. A

unique pure-strategy equilibrium exists only when advertising is not too lucrative (in a sense made

precise). This requires showing existence of, and computing, the unique Nash equilibrium of a

pricing game with non-quasiconcave payoffs. This problem falls outside the premises of standard

existence theorems ([7], [4], [18]). Only [5] presents a general existence theorem, but is silent as to

uniqueness and characterization. Beyond a well-defined threshold, the quality-adjusted price of the

high-quality firm is so low that it preempts this side of the market, and consequently the other one

as well. This fails to be an equilibrium as the excluded firm possesses a non-local deviation and

1For example, PPOs are known to offer access to a larger diversity of physicians, while HMOs put more emphasis

on cost containment. The rest of the paper will make use of the media vernacular for concreteness so we will speak

of consumers and advertisers, but the reader should bear in mind other applications such as the health care industry

or software development.
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monopolize the market. Then platforms must play in mixed strategies. Existence of an equilibrium

is verified in spite of discontinuous payoff functions. Equilibrium strategies are fully characterized

and entail a mass point.

Beyond the characterization result we show that, when a pure-strategy equilibrium exists, the

optimal quality level of the top firm is lower than in a well-established benchmark (Shaked and

Sutton,[23]). Quality and advertising become substitutes for the platforms. In the Shaked and

Sutton problem, a high quality is a means of extracting consumer surplus at the cost of giving away

market share to the competition. Here every consumer becomes more valuable because the platform

can extract surplus from advertisers as well, therefore advertisers cross-subsidize consumers. Given

lower prices, the quality level required to induce the marginal consumer to purchase from the high-

quality platform decreases, hence the substitution effect. When playing in mixed strategies, the

market may be preempted ex post, which is a distinct feature of two-sided markets in practice. In

this model it owes not to a contraction of the consumer market but rather to an expansion of the

other side, which induces more competition for consumers.

This article departs from two often-cited applied papers by Gabszewicz, Laussel and Sonnac

([10], hereafter GLS) and Dukes and Gal-Or ([8], now DGO) in the following manner. In these

constructs, platforms act as bottlenecks between advertisers and consumers. They become monop-

olists in the advertising market, by each offering sole access to their respective set of consumers.2

In GLS this is an immediate consequence of the specific form of ‘multi-homing’ assumption: an

advertiser may place at most one (of two available) advert on each platform, which prevents plac-

ing both ads on the same medium. It is a substantive assumption with the consequence that price

competition on the advertising side vanishes. It results in a neat computation of the unique and

symmetric equilibrium. These outcomes cannot be replicated when competition is preserved on

the advertising market.3 In DGO the bottleneck effect owes to the additive (hence, separable)

nature of the objective function. In the present paper, competition is re-introduced in the form of

a ‘single-homing’ assumption: advertisers may place at most one ad. From [6] and [13] we know

that multi-homing typically tames competition directly on the side that multi-homes, and there-

2In GLS, the revenue function at the advertising pricing stage of the game is independent of the competitor’s

price. There is no proper subgame at that stage of the game. In the same spirit, in DGO the bargaining stage is

independent across media.
3For example, if advertisers were simply allowed to place two ads on the same medium if they so wished.
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fore indirectly on the other side. In contrast, single-homing (for advertisers) implies competition on

the advertising side, and therefore more intense competition for consumers. One could argue that

whether agents multi-home or single-home should be determined as an equilibrium outcome, not

debated as an assumption. In the Appendix we show this is a moot point. What is really important

for the characteristics of an equilibrium is whether there exists competition on both sides. A general

formulation should allow for any quantity to be purchased from any provider. Some specifications

of the returns on advertising (e.g. Cobb-Douglas) lead to payoff functions for the platforms that

are akin to the multi-homing assumption; that is, they shutdown competition in advertising. Other

specifications do preserve competition, as does the simpler single-homing assumption. Thus relying

on single-homing yields qualitatively identical results: what matters is that platforms compete for

the marginal unit – in the case of single-homing, the only unit. Besides technical implications,

single homing finds some empirical support in [15] in the context of German magazines.

In the next section we set the paper in the context of the relevant literature, then we introduce

the model. Section 4 covers the characterization and Section 5 speaks to the role of externalities.

All proofs are sent to the Appendix, as well as some additional technical material.

2 Literature

Rochet and Tirole ([19],[20]), Armstrong ([2]) and Caillaud and Jullien ([6]) are the seminal refer-

ences when it comes to studying two-sided markets. The works closest to this paper are [10] and

[8], which this paper complements. When a pure-strategy equilibrium exist, our results resemble

DGO’s equilibrium, which they call ‘minimal differentiation’. However here it owes not to any

nuisance cost of advertising, but to the increased value of each consumer. The quality distortion

that obtains then is intermediate to the GLS equilibria of maximal or no differentiation, and varies

smoothly with the size of the advertising market. In both these papers the only mixed-strategy

equilibria that exist are trivial ones, and cannot result in ex post pre-emption. Armstrong and

Weeds (2005) study public versus commercial TV broadcasting and also allow for a quality vari-

able. In their model however, quality is not a strategic instrument since it enters the demand

function as an (already) price-adjusted variable. In contrast to GLS, [9] take the locations as fixed.

Gabszewicz and Wauthy ([12]) do consider endogenous costless quality, however with the option
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of multi-homing. [1] conduct a welfare analysis of the broadcasting market; advertising may be

underprovided, depending on its nuisance cost and its expected benefit to advertisers. There is no

direct competition between broadcasters for the advertisers business. In [17] it is shown that when

advertising volumes feed back into the consumers’ utility, it is as if platforms were competing in

advertising (“pecuniary externality”) however indirectly through the consumer demand for media

(see also [22] for a more general formulation). In the context of healthcare, Bardey and Rochet

([3]) allow for competition for policy holders (consumers) through quality and prices, but there is

no direct competition for service providers. [13] studies commitment problems in setting prices on

one side of the platform to attract participants on the other one.

This work is also related to an older strand of the industrial organisation literature. Building

on [11], [23] shows that when firms compete in a vertical differentiation model, their profits, prices

and market shares are ranked according to their quality choices.

3 Model

There are two platforms, identified with the subscripts 1 and 2, and a continuum of consumers of

mass 1 with private valuation b for their good. The benefit b is distributed on an interval
[
β, β

]
following a continuous, uniform distribution. All consumers value quality in the sense of vertical

differentiation – there is no ambiguity for consumers as to what quality is. Let θ ∈ Θ =
[
θ, θ
]

denote the quality parameter of each good.

Consumers’ net utility function is expressed as u(b, θi, p
R
i ) = θib − pRi ; i = 1, 2 when facing a

price pRi , where the superscript R stands for ‘reader’. Let pR =
(
pR1 , p

R
2

)
, θ = (θ1, θ2). Consumers

buy at most one medium. When θ1 > θ2, define the measure

DR
1

(
pR, θ

)
≡ Pr

(
θ1β − pR1 ≥ max

{
0, θ2β − pR2

})
Hence consumers will purchase from provider 1 over provider 2 as long as β ≥ max

{
β̂ ≡ pR1 −pR2

θ1−θ2
, β̃ ≡ pR1

θ1

}
.

Our first assumption is standard and rules out the trivial case in which the low-quality platform

necessarily faces zero demand in the price game.

Assumption 1 β − 2β > 0
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Advertisers have a profit function A(y, x) separable in x,y; x ∈ {0, 1} denotes advertising

consumption and y is a vector of variables orthogonal to x. These include any other action a

platform may undertake. Let Di denote the quality of platform i as perceived by the advertisers:

the more consumers any advertiser can reach, the more they value an ad, and e be a scaling

parameter.4 For any ŷ, advertisers may choose to purchase at most one unit of space at price pAi

if eDi [A(ŷ, 1)−A(ŷ, 0)] − pAi = eDia − pAi ≥ 0; i = 1, 2. That is, they derive an increase in

(expected) profit a. The one unit limit is a convenient way of ensuring competition on this side of

the market and can be interpreted as a tight liquidity constraint. Advertisers may value the benefit

from advertising differently according to the parameter a, which is also uniformly distributed on

[α, α] with mass 1. They act as price takers and there is no strategic interaction between them.

We assume neither constraint on advertising space, nor that advertising affects readership (see

Remark 4).5 The cost of running adverts is set at zero. Quality however is costly to provide and

is modeled as an investment with cost kθ2i , where we impose

Assumption 2 k >
(2β−β)2

18θ

for an interior solution in the benchmark case.6 Taken together, Assumptions 1 and 2 guarantee

that the consumer market is covered in equilibrium, which greatly simplifies the analysis (see

Section 7.2). We also rule out exogenous preemption on the advertising side, i.e.

Assumption 3 α− 2α > 0

Externality: The ranking of the platforms’ market shares on the consumer side defines their

relative quality on the other side. Given prices pA =
(
pA1 , p

A
2

)
and coverage DR = (DR

1 , D
R
2 ), a

producer purchases from 1 over 2, only if eD1a − pA1 ≥ max
{
0, eD2a− pA2

}
. This decision rule

generates the measure Pr
(
eD1a− pA1 ≥ max

{
0, eD2a− pA2

})
≡ qA1

(
pA,DR

)
.

4The advertisers payoffs are independent of the consumers’ ‘identity’ (preferences for media). This spares us

a signaling game between consumers and advertisers: media consumption would then provide information about

preferences for commoditities.
5A capacity constraint is either trivially exogenous, or endogenous as in [16], which may induce a quantity-setting

game instead of the price game.
6In the absence of a sufficiently large parameter k the Shaked and Sutton boundary result prevails.
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Game: Platforms first choose a quality level simultaneously. Given observed qualities, they each

set prices to consumers, who make purchasing decisions, and in a third stage, to advertisers. Upon

observing these prices, advertisers choose whether to purchase. This sequence captures the facts

that a) consumer prices (cover prices or subscription rates) are more difficult to change than

advertising rates, and b) readership is often reported to advertisers (ex ante and ex post, with

potential rebates). It also affords us the use of the subgame-perfect equilibrium concept, while

pricing to consumers and advertiser simultaneously would require to use a rational expectation

framework. The three-stage game is denoted Γ. A platform collects revenues from both sides, with

monies from either perfectly substitutable. For any medium i = 1, 2, the objective function takes

the form

Πi = DR
i

(
pR, θ

)
pRi − kθ2i + qAi

(
pA,DR

)
pAi = Ri(p

A,pR, θ)− kθ2i (3.1)

4 Equilibrium characterization

We proceed in two steps, starting with the advertising market where the firms’ behavior is not

directly affected by quality choices.

4.1 Advertising market subgame

The last subgame replicates the result of the classical analysis of vertical differentiation. Let

e∆DR = e(DR
1 − DR

2 ) denote the difference in the platforms’ quality. Then equilibrium payoffs

take a simple form in the last stage, for which the proof is standard and therefore omitted.

Lemma 1 Suppose DR
1 ≥ DR

2 w.l.o.g. There may be three pure strategy equilibria in the adver-

tising market. When DR
1 > DR

2 > 0, the profit functions write Π
A
1 = e∆DR

(
2α−α

3

)2
; ΠA

2 =

e∆DR
(
α−2α

3

)2
. When DR

1 > DR
2 = 0, platform 1 is a monopolist and its profits are ΠAM

1 =

eDR
1

(
α
2

)2
. For DR

1 = DR
2 , the Bertrand outcome prevails and platforms have zero profits.

Following Lemma 1 the profit function (3.1) rewrites

Πi = pRi D
R
i (p

R, θ)− k(θi) + ΠA
i

(
e∆DR(pR, θ)

)
(4.1)

on the equilibrium path, where consumer demand for the commodity takes the form DR
i = β −

pRi −pRj
∆θ , DR

j =
pRi −pRj
∆θ − β for θi > θj thanks to Assumptions 1 and 2. As usual, ∆θ = θi − θj and
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for convenience A =
(
2α−α

3

)2
and A =

(
α−2α

3

)2
.

Remark 1 Consider now the Hotelling setup applied to the present model. Using GLS notation,

at this stage of the game, profits would write

Πi = (pi − c)ni + eA(ni − nj)

Πj = (pj − c)nj + eA(ni − nj)

whenever ni > nj, where ni ≡ ni(pi, pj) is i’s consumer demand and pi the consumer price. In GLS

an equilibrium is always symmetric: ni = nj, in which case the second term is always naught. But

this cannot be an equilibrium in our construct: any firm could alter its location marginally, lower

its consumer price marginally at receive a first-order gain eA(ni − nj), A = A,A. The reason is

that profits in the present game are a function of the consumer demands of both platforms, not

just of one player.

4.2 Consumer price subgame

From Lemma 1 three distinct configurations may arise on the equilibrium path. In the first case

platform 1 dominates the consumer market, in the second one both share the consumer market

equally and in the last one it is dominated by firm 2. Hence the profit function (4.1) of each firm

i = 1, 2 rewrites

Πi = pRi D
R
i (p

R, θ)− kθ2i +


Π

A
i , if DR

i > DR
j ;

0, if DR
i = DR

j ;

ΠA
i , if DR

i < DR
j .

(4.2)

This function is continuous with a kink at the profile of consumer prices p̃R such that DR
1 =

DR
2 . More importantly it is not quasi-concave, which follows from the externality generated by

advertising revenue and induces discontinuous best responses. Thus the conditions of Theorem 2

of [7] are not met, and neither are those of [18]. The sufficient conditions (Proposition 1) of [4] also

fail here as the sum of payoffs does not satisfy diagonal quasi-concavity, so their existence result

cannot be readily applied.7 Proceeding by construction it is nonetheless possible to show that a

7A recent contribution (subsequent to the writing of this paper) by Philippe Bich establishes existence by intro-

ducing a measure of the lack ofquasi-concavity that resembles ironing [5]. Our construction does remain essential in

that we face a potential multiplicity of equilibria and seek a characterization.
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p2

p1

p
2

p
2

p
1

p
1

p̂1

p̂2

Figure 1: Best replies and unique equilibrium

unique equilibrium in pure strategies always exists. This demonstration is left to the Appendix,

Section 7.3; here we discuss it briefly and focus on its outcome, which takes a simple form. At face

value an equilibrium has a flavour of rational expectations, in that platforms must select actions

that are ‘consistent’ with each other (for example, both must play as if DR
1 > DR

2 or the converse),

as well as compatible with an equilibrium. Such a rationality requirement is not necessary. First,

from (4.2), it is immediate that any price profile pR such that DR
1 = DR

2 is dominated. Next

we can define ‘quasi best responses’ corresponding to platforms playing as if either DR
1 > DR

2 or

DR
1 < DR

2 (for example, p2, p2 in Figure 1), from which we can construct the true best replies

– discontinuous at the points p̂1, p̂2. In a penultimate step, we derive a necessary and sufficient

condition for existence, that is, for these best responses to intersect. Last, this condition is verified

by construction for one of two candidate equilibria. To paraphrase Dasgupta and Maskin [7], the

discontinuity of the best replies is essential: the discontinuity set is not trivial and even mixed

strategies cannot restore this second candidate equilibrium. This is depicted in Figure 1. Thus we

need not call on the rational expectation framework. Elimination of weakly dominated strategies

is sufficient to rule it out and play a less strenuous Nash equilibrium. For example, an outcome

such that θ1 > θ2 and D1 < D2 entails playing a weakly dominated strategy for player 2: if she

finds it attractive to reduce her price that much, so must player 1. But the intuitive reasoning

whereby the low-quality firm may find it profitable to behave very aggressively in order to access
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large advertising revenue does not hold true (see Lemma 4 in the Appendix).8 Jumping to the

result, we can state

Proposition 1 Consumer prices. Let θ1 > θ2 w.l.o.g. There may be two possible configurations

arising in the consumer price subgame. For each, there exists a unique Nash equilibrium in pure

strategies characterised as

• For ∆θ > 2e(A+A)

β−2β

pR∗
1 = 1

3

[
∆θ
(
2β − β

)
+ 2e

(
A− 2A

)]
pR∗
2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
2A−A

)]
• If ∆θ ≤ 2e(A+A)

β−2β

pR∗
1 = ∆θβ

2 − 2eA

pR∗
2 = 0

Consumer prices include a discount as platforms engage in cross-subsidisation. The lure of adver-

tising revenue intensifies the competition for consumers because they become more valuable than

just for their willingness to pay for the information good. Unlike in [23], β−2β > 0 is not sufficient

to afford the low-quality firm some positive demand: ∆θ, defined in the first stage, may be too

narrow to sustain two firms. That is, the high-quality platform may choose to act so as to exclude

firm 2 endogenously.

4.3 First-stage actions

In the first stage, platforms face the profit function (4.2), which they each maximise by choice of

their quality variable θi. That is, each of them solves

Problem 1

max
θi∈[θ,θ]

pR∗
i DR

i

(
θi, θ

∗
j ,p

R∗)+ΠA
i

(
e,∆DR(pR∗, θi, θ

∗
j )
)
− kθ2i

subject to

β̂ =
pRi − pRj
θi − θj

∈
[
β, β

]
(4.3)

8That is, playing θi < θ2 but offering a very low price pRi so that DR
i > DR

j .
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The constraint does not limit quality choices per se but is a natural restriction guaranteeing that

the endogenous threshold β̂ remain within the exogenous bounds [β, β].9 On the equilibrium path,

Constraint (4.3) can be rearranged as a pair of inequalities: ∆θ
(
2β − β

)
+ 2e(A + A) ≥ 0 and

∆θ
(
β − 2β

)
− 2e(A + A) ≥ 0. Only the second one is constraining. Let C ≡

[
2e
(
A+A

)]2
; then

the objective function of firm 1 reads

Π1 =


1
9

(
∆θ(2β − β)2 +B1 +

C
∆θ

)
− kθ21, if ∆θ > 2e(A+A)

β−2β
;

1
9

(
∆θ(2β − β)2 +B1 +

√
C(β − 2β)

)
− kθ21, if ∆θ ≤ 2e(A+A)

β−2β

(4.4)

where B1 = (2β − β)2e
(
2A−A

)
+ 3e

(
β + β

)
A is a constant. The second line of the definition of

Π1 rules out the artificial case of firm 1 facing a demand larger than the whole market. It is derived

by taking C
∆θ as fixed at its lowest value, that is, where ∆θ =

√
C

β−2β
= 2e(A+A)

β−2β
. For platform 2,

profits are

Π2 =


1
9

(
∆θ(β − 2β)2 +B2 +

C
∆θ

)
− kθ22, if ∆θ(β − 2β) > 2e(A+A);

0, ∆θ(β − 2β) ≤ 2e(A+A) and θ2 = 0;

−kθ22, ∆θ(β − 2β) ≤ 2e(A+A) and θ2 > 0;

(4.5)

with B2 = (β − 2β)2e
(
A− 2A

)
+ 3e

(
β + β

)
A. Some difficulty may arise in solving this problem

as the profit functions are not necessarily well-behaved. Section 7.5 of the Appendix studies the

profit function Π1(θ1, θ2) in the details necessary to support our results. In particular it identifies

a threshold Cf such that the function admits a binding first-order condition if C does not exceed

Cf . We first focus on this case. This is illustrated in Figure 2 (the higher curve corresponds to the

complementary case of C > Cf ). The solid lines represent the first part, and the dashed ones the

second part, of (4.4).

4.3.1 Pure-strategy equilibrium

For C < Cf the function Π1(., .) remains increasing (and concave) on the portion beyond θ1 =

θ̃(e) ≡ θ +
√
C

β−2β
, where it admits a maximiser. To ensure this is the case, Assumption 3 is

strengthened and turned into

9θi → θj ⇒ β̂ → ∞.
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2e(A+A)

β−2β

θ1

Πi

Figure 2: Profit functions for different values of advertising

Assumption 4 e < ē ≡ min

{
1,

(
(2β−β)2

27k − θ

)
β−2β

2(A+A)

}
. 10

Assumption 4 guarantees that when θ̂1 solves the first-order condition, we have ∆θ ≥
√
C

β−2β
so that

both platforms operate (see Proposition 1). Collecting the results from Lemma 1 and Proposition 1,

and letting platform 1 be the high-quality medium w.l.o.g., we can finally state

Proposition 2 Pure-strategy equilibrium. Suppose Assumption 4 holds. The game Γ admits a

unique equilibrium in pure strategies in which both platforms operate and choose different qualities.

It is characterised by the triplet of profiles
(
p∗R,p∗A, θ∗,

)
defined by Proposition 1, Lemma 1, and

the optimal actions θ∗2 = θ and θ∗1 = θ̂1, where θ̂1 uniquely solves

(2β − β)2 = 18kθ1 +
C

(∆θ)2
(4.6)

We label the term C
(∆θ)2

the ‘cross-market effect’: it acts as an incentive to reduce quality. In

condition (4.6), firm 1 trades off the marginal benefit of quality (the left-hand side) not only with

its marginal investment cost but also with the marginal advertising profit that it must forego

because of higher consumer prices induced by higher quality (the RHS). Given that it markets a

lesser good, platform 2 selects θ to mitigate the price war. This is the Differentiation Principle at

work, but here it is subsumed by the cross-market effect.

10This arises from the condition (θ̂1 − θ)(β − 2β) > (θf1 − θ)(β − 2β) ≥
√
C, where θf1 =

(2β−β)2

27k
is defined in

Section 7.5.
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Proof: The optimality of θ∗2 = θ and θ∗1 = θ̂1 is established by Lemma 5, in the Appendix

(Section 7.6). The rest of the claim follows immediately under Assumption 4.

Proposition 2 can be appended with an immediate corollary, for which we omit the proof.

Corollary 1 If a subgame perfect Nash equilibrium of Γ exists, platforms may also play in mixed

strategies.

This is a simple coordination game where each event θ∗i = θ or θi = θ̂ is a mass-point.

4.3.2 Mixed strategies

When Assumption 4 is not satisfied, the necessary first-order condition (4.6) fails to hold entirely.

As can be seen on Figure 2, the high-quality medium would like to pick the point θ̃(e) ≡ θ+ 2e(A+A)

β−2β
,

where Π1(., .) reaches is maximum. At that point its rival is excluded (∆θ is low enough), and firm

1 still extracts as much surplus from consumers as it can without losing its status as monopolist.

But then firm 2 can ‘leap’ over it and become the monopolist at a negligible incremental cost

kθ21−k(θ1+ε)2. Intuitively, when advertising returns are large enough every consumer becomes very

valuable to both platforms. It is not immediate that the game admits a mixed strategy equilibrium,

for the payoff correspondences are not upper-hemicontinuous and their sum is not necessarily so

either.11 Nonetheless it is possible to show that a mixed-strategy equilibrium always exists, which

we do in Section 7.7 of the Appendix. [24] provides an appealing approach to characterize mixed

strategies in a problem of entry with sunk cost, but it does not quite apply here. Indeed there is no

proper entry stage and the payoffs depend not just on the ranking of the firms’ decisions (θ1, θ2),

but on the difference θ1 − θ2. In particular, playing θi = θ cannot be interpreted as a decision

to not enter the market because Πi(θi, θj) > 0 for θj such that ∆θ > 2e(A+A)

β−2β
. Let Hi(θi) be the

probability distribution over i’s play and hi(.) the corresponding density, ΘN
i the relevant support

of Hi and θci the upper bound of the support. Let also Ri(θi, θj) denote the revenue accruing to i.

We claim

Proposition 3 There exists a pair of distributions Hi, i = 1, 2 on ΘN
i = {θi}∪

[
θ̃i(e), θ

c
i

]
, i = 1, 2

11Here we face a more standard problem of payoff discontinuity, as addressed by [7].
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satisfying

Hi(θi)

∫
ΘN

j

Ri(θi, θj)dH
∗
j (θj) +

∫ θci

θ′i=θj

Ri(θi, θj)d(Hi(θi)×H∗
j (θj)) = k

∫ θci

θ̃i

θ2i d(Hi(θi)×H∗
j (θj))

(4.7)

with

H∗
i (s)

 ∈ (0, 1), s = θi;

= 1, s = θci .

and

hi(s) = 0, s ∈
(
θi, θ̃i(e)

)
and θci defined in Lemma 9.

Noticeably ΘN
i ⊂ [θ, θc] and platforms place some mass at the lower bound θ. Indeed it is obvious

from the profit function (4.5) that playing any θi ∈
(
θ, θ̃(e)

)
is strictly dominated by selecting the

lower bound. This is because Πi(θi, θj) > 0 for θj > θ̃(e): if j plays anything in the support ΘN
j

but θj , i necessarily derives positive profits by playing θi. It follows that no mass is assigned on

the dominated range
(
θ, θ̃(e)

)
. Expected profits are naught of course.

Remark 2 The existence and characterisation of a mixed-strategy equilibrium is useful beyond

completeness. Suppose that consumer prices are exogenously fixed at zero, as in the broadcasting

world. Then a pure-strategy equilibrium can never exist. The formal statement and proof of this

claim are left to the Appendix, Section 7.9.

Next we want to understand the impact of the externality e on players’ behaviour and on the

breakdown of the equilibrium.

5 The role of externalities

The results of the preceding analysis are first contrasted with standard ones well established in the

literature [23].

5.1 Quality distortion and advertising revenue

A goal of this paper is to understand the behavior of quality in the presence of cross-market

externalities. To study this problem we take to be [23] (hereafter S&S) to be the benchmark. It is

easy to adapt their model to allow for costly quality.
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Proposition 4 Quality distortion. In any pure-strategy equilibrium of the game Γ, quality is

lower than it would be absent advertising.

Differentiation is known to soften price competition, but advertising revenue puts emphasis back

on market share. This leads to more intense price competition for consumers. Lower consumer

prices uniformly relax the need to provide costly quality: at lower prices, the marginal consumer

demands a lesser product to make a purchase. More precisely, given any quality, in the second

stage firms must offer a discount to consumers. The extent of that discount, given fixed quality,

is determined by profits to be collected on the advertising market: it increases in the advertising

profits. In the quality-setting stage, the high-quality firm can further increase this discount by

lowering quality: its consumer price is p∗1 =
1
3

[
∆θ(2β − β) + 2e(A− 2A)

]
, while that of its rival is

p∗2 =
1
3

[
∆θ(β − 2β) + 2e(2A−A)

]
. This may go on until the quality spread is so narrow that firm

2 faces preemption (∆θ ≤ 2e(A + A)/(β − 2β) – which is not an equilibrium). This phenomenon

resembles that observed in industries such as software or game development: a widely used operating

system need not provide the highest intrinsic quality because it supports so many applications.

5.2 Taxonomies: externalities and differentiation

Consistent with our claim to contrast our results against those of the current literature, we present

a taxonomy of outcomes in two parts.

Proposition 5 Taxonomy I: k > 0. Let θ∗1 > θ∗2 w.l.o.g.,

For e = 0 The equilibrium is that of Problem 4 (adapted from S&S) with both firms operating;

For ē > e > 0 The equilibrium is characterised by Proposition 2;

For e > ē There is no pure-strategy equilibrium. Proposition 3 applies.

and

Proposition 6 Taxonomy II: k = 0. Let θ∗1 > θ∗2. There exists some ê > ē > 0 such that

For ê > e > 0 Maximum differentiation obtains with both firms having positive demand;

For e > ê There is no pure-strategy equilibrium. Proposition 3 applies as well.
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Note that the case ê > e > 0, k = 0 yields maximal differentiation, as in S&S and is therefore

equivalent to GLS (but of course the equilibrium is not symmetric). However this is only true as

long as e is bounded below ê; that is, advertising is not too lucrative. Beyond that point, the

incentives resemble those of GLS, that is, firms seek to increase market share on the consumer side,

but competition is too stiff for a pure-strategy equilibrium to be sustained – as in Propositions

2 and 3. Some comparative statics are informative, for which the derivations are collated in the

Appendix, Section 7.12. Let θ1 > θ2 w.l.o.g. At an equilibrium
(
θ∗,p∗R,p∗A), dθ2

de = 0, but dθ1
de < 0

and d2θ1
de2

< 0
dpA1
de >

dpA2
de > 0 and

dpR1
de <

dpR2
de < 0. The presence of a second source of revenue not

only depresses the quality of the consumer good, it does increasingly so as the advertising market

becomes more valuable. Price competition is correspondingly more intense in the consumer market,

but less in the advertising market, where platforms become more differentiated.

Remark 3 Either Maximal (or minimal) Differentiation can obtain when k = 0 and GLS’ multi-

homing assumption is imposed. That is, the equivalence between vertical and horizontal differ-

entiation is preserved in the GLS construct (see [10]). It no longer is if competition prevails on

both sides. As shown in Remark 1, no symmetric pure-strategy equilibrium can exist in a Hotelling

model with single-homing. That is, Maximal Differentiation cannot hold – and neither does minimal

differentiation.

Remark 4 The model ignores whatever disutility consumers may suffer from advertising. In-

troducing such disutility would extend the range of parameters on which the pure-strategy equi-

librium can be sustained, as it reduces the value of advertising to the platform. It otherwise

does not modify the results qualitatively. To see why, rewrite the consumers’ utility function as

ui = θib − pRi − δqAi . Advertising demand is defined as before, but suppose θ1 > θ2, consumer

demands are DR
1 = β − ∆pR+δ∆qA

∆θ and DR
2 = ∆pR+δ∆qA

∆θ − β. The new term is δ∆qA: the utility

impact of the difference in advertising levels. For firm 2 to operate, DR
2 > 0 ⇔ ∆pR > ∆θβ − δqA,

as opposed to ∆pR > ∆θβ: firm 1 can price closer to firm 2, which still has positive market share.

In equilibrium, this implies that the spread ∆θ (which governs equilibrium prices) can also be nar-

rower. A disutility function reduces the value of the marginal advertiser from the perspective of

the platform. In other words, it modifies the rate of substitution between surplus extraction from

consumers and from advertisers.
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5.3 Properties of the mixed-strategy equilibrium

Although the distributions H1,H2 do not lend themselves to easy interpretation, more can be said

about the nature of the equilibrium. Here we claim

Proposition 7 Suppose e > ē. When no platform plays at the lower bound θ, the market is

necessarily monopolised ex post. Otherwise both operate.

The dominated firm loses its investment kθ2i because the length of the interval [θ̃(e), θc] is not suffi-

cient to accommodate two firms because (θc− θ̃(e)) < 2e(A+A)/(β−2β). So either monopolisation

or the competitive situation may be an ex post outcome, which fits some industry patterns.12 The

results suggest an alternative rationale for an increased concentration in markets such as newsprint,

radio broadcasting or internet trading. According to this model, some players may be driven out

not because of a market contraction on the consumer side, but because of an expansion on the other

one. In addition ex post profits in mixed-strategy case are not monotonically ranked: consider the

play ⟨θ1, θc2⟩, which implies Π1 > Π2 = 0 although θ2 > θ1. This result also compares favourably to

some media idiosyncrasies, where the higher-quality shows do not necessarily yield higher profits.

6 Conclusion

This paper has developed an analysis of differentiation in a duopoly of two-sided platforms, where

competition prevails on both sides of the market. In this case, market share on one side not only

induces a ranking, but also a premium to being the better platform, on the other side. This

exacerbates the competition for consumers.

Restoring competition on both sides of the two-sided market yields markedly different outcomes,

as compared to those typically found in the applied literature. When a pure-strategy equilibrium

exists, maximum differentiation is hampered because too costly in terms of market share, but

minimum differentiation cannot be an equilibrium either. Qualities can come so close to each other

that the low-quality platform becomes strictly dominated, at which point the equilibrium breaks

down. Then platforms play in mixed strategies. In addition, equivalence of horizontal and vertical

differentiation breaks down here.

12Only New York City has more than one significant newspaper, for example. Or there is one largely dominant

online trading website.
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Our ability to compute an equilibrium rests on the simple structure chosen, and in particular

on the assumption of independence between goods’ consumption decisions and media consump-

tion decisions. This implies that advertisers only take into account the average consumer and

care only about coverage. Media strive to segment consumer markets (using real or perceived

correlation between media and commodity consumption) to better serve their advertisers; that is,

media consumption may be used as a signal of other consumptions choices. They also operate in

conglomerates. These important characteristics are so far left out and for future research.

7 Appendix

The Appendix contains some additional material as well the proofs of the propositions developed

in the main text. We begin by arguing in favor of the single-homing assumption this paper rests

on.

7.1 Justifying single-homing

Consider an advertiser (for concreteness) contemplating purchasing quantities q1, q2 from two inter-

mediaries (platforms), given some prices p1, p2. Let the payoff function be av(y;D1q1, D2q2), i =

1, 2, where a ∈ [α, α] ⊂ R is the advertisers’ type and Di the consumer coverage of platform i. We

suppose that v(.) is increasing and concave in each of its argument, that its third derivatives are

positive (complete monotonicity) and that vq1q2 ≥ 0. Suppressing the dependence on the vector y,

given D1, D2, an advertiser’s problem is

Problem 2

max
q1,q2

av(D1q1, D2q2)−
∑
i

piqi s.t.
∑
i

piqi ≤ M

where M is an exogenous “resource” constraint. This may be thought as a liquidity constraint or

a manager’s advertising budget. The first-order conditions yield vq1(., .) =
p1
p2

D2
D1

vq2(., .), which we

can invert to obtain q1 ≡ h
(
p1
p2

D2
D1

vq2

)
. The function h(.) ≡ (vq1)

−1 is the inverse of the marginal

payoff, so it is decreasing and convex. From here we recover a demand function q1(q2, p1, p2, D1, D2)

for advertiser a. Similarly for commodity 2. We can also verify that

dq1
dp1

=

vq2
p2

D2
D1

vq1q1D1 − p1
p2
D2vq2q1

< 0 and
dq1
dp2

=
−D2

D1

p1
p22
vq2

vq1q1D1 − vq2q1
p1
p2
D2

> 0
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by simple differentiation of the first-order conditions. So the demand (for each advertiser a) be-

haves in standard fashion. Integrating qi over the set of participating advertisers yields advertising

demands Qi, i = 1, 2

Qi ≡
∫ α

α
qidG(z).

If we presume of the Inada condition at qi = 0 we can guarantee ourselves full coverage: Qi ≡∫ α
α qidG(z). Now the platform’s problem, given D1, D2, is

Problem 3

max
pi

pi

∫ α

α
qidG(z), ∀ i

with (pointwise) first-order conditions

h(.) + pih
′(.)

[
vqj
pj

Dj

Di
+

pi
pj

Djvqjqi
dqi
dpi

]
= 0 (7.1)

for each type α. We know that h′(.) < 0 and differentiating the first-order condition with respect

to pi is enough to show that
vqj
pj

Dj

Di
+ pi

pj
Djvqjqi

dqi
dpi

> 0. More importantly, equation (7.1) directly

implies that pi ≡ pi(pj). To be obvious, rewrite (7.1)

h(.) +
pi
pj

Djh
′(.)

[
vqj
Di

+ pivqjqi
dqi
dpi

]
= 0.

That is, (7.1) characterizes a reaction function, unlike in the GLS case where pi is independent of

pj . So, there is competition (in prices) at the advertising stage, and each firm’s profits depend on

both Di and Dj . In special cases of the form v(q1, q2) = D1q
γ
1D2q

1−γ
2 , for example, the reader can

verify that we revert to the GLS construct: price competition on the advertising side (in the last

stage of the game) is circumvented. Similarly if the advertiser’s payoffs are additively separable

(as in DGO). Thus what matters for competition to be preserved on the advertising side is not the

single-homing assumption, but the specification of payoff functions and the resource constraint.

7.2 The sufficiency of Assumptions 1 and 2 for market coverage

Suppose there is no externality and denote the equilibrium quality levels are given by θ01 =

1
2k

(
2β−β

3

)2

> θ02 = θ.13 The condition for a covered market is
β−2β

3 (θ01 − θ02) ≤ βθ02 (see for

13Refer section 5 for details of this equilibrium.
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example, Tirole, (1988)). Substituting for the values of θ01, θ
0
2 and re-arranging, the market is cov-

ered for k ≥ 1
2θ

(
2β−β

3

)2(
β−2β

β−β

)
, which is necessarily satisfied by Assumption 2. It follows that

both firms operate and the relevant demand functions in the consumer market are the competitive

ones. It will be obvious that it is satisfied in an equilibrium of this game.

7.3 Existence and characterization of a unique (price) equilibrium in pure

strategies

Denote ∆θ = θ1 − θ2, A =
(
2α−α

3

)2
and A =

(
α−2α

3

)2
. The space PR

i × PR
−i of action profiles

(prices) can be divided into three regions: region I such that DR
i > DR

−i, region II such that

DR
i < DR

−i and region III such that DR
i = DR

i . We begin with

Definition 1 For i = 1, 2, the platforms’ ‘quasi-best responses’ are defined as the solution to the

problem maxpRi
Πi

(
pRi , D

R
i (p

R, θ); ΠA
i (D

R
i , D

R
j )
)
, where the profit function is defined by (4.2).

Therefore, letting θ1 > θ2 w.l.o.g,

pR1
(
pR2
)
=


pR
1

(
pR2
)
= 1

2

(
pR2 +∆θβ − 2eA

)
, if DR

1 > DR
2 ;

1
2

(
pR2 +∆θβ

)
, if DR

1 = DR
2 ;

pR1
(
pR2
)
= 1

2

(
pR2 +∆θβ + 2eA

)
, if DR

1 < DR
2 ;

and

pR2
(
pR1
)
=


pR
2

(
pR1
)
= 1

2

(
pR2 −∆θβ − 2eA

)
, if DR

1 < DR
2 ;

1
2

(
pR1 −∆θβ

)
, if DR

1 = DR
2 ;

pR2
(
pR1
)
= 1

2

(
pR2 −∆θβ + 2eA

)
, if DR

1 > DR
2 ;

While it is always possible to find some point where ‘quasi-best responses’ intersect (e.g. such that

both play as if DR
1 < DR

2 ), it by no means defines an equilibrium. Doing so assumes that in some

sense platforms coordinate on a particular market configuration – for example, such that DR
1 < DR

2 ,

which may not been immune from unilateral deviation. To find the equilibrium, if it exists, we first

need to pin down the firms’ true best replies.

Lemma 2 Let θ1 > θ2 w.l.o.g. There exists a pair of actions (p̂1, p̂2) such that the best response

correspondences are defined as

pR1
(
pR2
)
=

 pR
1

(
pR2
)
, for p2 ≥ p̂2;

pR1
(
pR2
)
, for p2 < p̂2;

(7.2)
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and

pR2
(
pR1
)
=

 pR2
(
pR1
)
, for p1 < p̂1;

pR
2

(
pR1
)
, for p1 ≥ p̂1;

(7.3)

Lemma 2 thus defines the ‘true’ best-response of each player. It says that platform 1, for example,

prefers responding with pR
1

(
pR2
)
for any prices p2 ≥ p̂2 and switches to pR1

(
pR2
)
otherwise. The best

reply correspondence is discontinuous at that point where platforms are indifferent between being

the dominant platform and not, that is, between the combination of prices
(
pR
i
(pRj ), p

A
i (p

R
i
)
)
and(

pRi (p
R
j ), p

A
i (p

R
i )
)
.

Proof: First notice from (4.2) that playing a profile p̃R such that DR
1 = DR

2 can never be a

best reply. When DR
1 = DR

2 advertising profits ΠA
i are nil for both platforms. So both players

have a deviation strategy pRi + ε in either direction since Π
A
i > ΠA

i > 0, i = 1, 2 as soon as

DR
i ̸= DR

−i. Maximising the profit function (4.2) taking p−i as fixed leaves us with two ‘quasi-

reaction correspondences’, for each competitor, depending on whether DR
1 > DR

2 or the converse.

Player i’s profit function can be rewritten Πi

(
pR1 (p

R
2 ), p

R
2 ; Π

A
i

)
. Depending on firm 2’s decision,

platform 1’s profit is either

Π1 =

 Π1

(
pR
1
(pR2 ), p

R
2 ; Π

A
i

)
= Π1

(
1
2

(
pR2 +∆θβ − 2eA

)
, pR2 ; Π

A
i

)
, or;

Π1

(
pR1 (p

R
2 ), p

R
2 ; Π

A
i

)
= Π1

(
1
2

(
pR2 +∆θβ + 2eA

)
, pR2 ; Π

A
i

)
.

Define g1(p
R
2 ) ≡ Π1

(
pR1 (p

R
2 ), p

R
2 ; Π

A
i

)
− Π1

(
pR
1
(pR2 ), p

R
2 ; Π

A
i

)
. This quantity is the difference in

profits generated by firm 1 when it chooses one ‘quasi-best response’ over the other, as a function

of the consumer price set by firm 2. For pR2 sufficiently low, g1(.) > 0. This function is continuous

and a.e differentiable, for it is the sum of two continuous, differentiable functions. Using the

definitions of equilibrium advertising profits (in Lemma 1), it is immediate to compute dg1
dpR2

=

dΠA
1 (pR1 ,pR2 )

dpR2
− dΠA

1 (pR
1
,pR2 )

dpR2
< 0, and d2g1

d(pR2 )2
= 0, whence there exists a point p̂R2 such that g1(p̂

R
2 ) = 0.

At p̂R2 , Πi

(
pR
1
(p̂R2 ), p̂

R
2

)
= Πi

(
pR1 (p̂

R
2 ), p̂

R
2

)
and platform 1 is indifferent between these two profit

functions, that is between either best response pR
1
(p̂R2 ) or p

R
1 (p̂

R
2 ). The same follows for platform 2,

which defines p̂R1 . Computing the profit functions, it is immediate that

Π1

(
pR
1
(pR2 ), p

R
2 ; Π

A
i

)
≥ Π1

(
pR1 (p

R
2 ), p

R
2 ; Π

A
i

)
⇔ pR2 ≥ p̂R2 ≡ −

(
∆θβ + e(A−A)

)
and

Π2

(
pR1 , p

R
2
(pR1 ); Π

A
i

)
≥ Π2

(
pR1 , p

R
2 (p

R
1 ); Π

A
i

)
⇔ pR1 ≥ p̂R1 ≡ ∆θβ − e(A−A)
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For each firm, its action must be an element of the best reply correspondence and these cor-

respondences must intersect. We define a condition that captures both these features, and will

show next that it is both necessary and sufficient for an equilibrium to exist. From the ‘quasi-best

responses’, an equilibrium candidate is a pair of prices such that

(
p∗R1 , p∗R2

)
=

 pR
1

(
pR2
)
∩ pR2

(
pR1
)
, if DR

1 > DR
2 or;

pR1
(
pR2
)
∩ pR

2

(
pR1
)
, if DR

1 < DR
2 ;

An equilibrium exists only if these intersections are non-empty. Together, the definitions of a

best-response profile (relations (7.2) and (7.3)) and of an equilibrium candidate sum to

Condition 1 Either

p̂R1 ≥ p∗R1 and p̂R2 ≤ p∗R2

or

p̂R1 ≤ p∗R1 and p̂R2 ≥ p∗R2

or both.

Consider an action profile p∗R satisfying this condition; from Lemma 2 each p∗Ri is an element of

i’s best response. Now, for it to be an equilibrium, players must choose reaction functions that

intersect. This is exactly what Condition 1 requires. For example, the first pair of inequalities

tells us that player 1’s optimal action has to be low enough and simultaneously that of 2 must be

high enough. When they hold, player 2’s reaction correspondence is necessarily continuous until 1

reaches the maximiser p∗R1 , and similarly for 1’s best reply. Then

Lemma 3 Condition 1 is necessary and sufficient for at least one equilibrium p∗R =
(
p∗R1 , p∗R2

)
to

exist. When both inequalities are satisfied, the game admits two equilibria.

When Condition 1 holds, the Nash correspondence pR1 (p
R
2 )×pR2 (p

R
1 ) has a closed graph and standard

theorems apply. The potential multiplicity of equilibria owes to the discontinuity of the best-reply

correspondences.

Proof: Since player i’s action set is PR
i ⊆ R, it is compact and convex. For each platform

this can be partitioned into two subsets PR
i =

[
pR,min
i , p̂Ri

]
and P

R
i =

[
p̂Ri , p

R,max
i

]
, on which the
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best-response correspondences defined by (7.2) and (7.3) are continuous for each platform i. It can

be verified that the profit function (4.2) is concave in its own argument in each of these domains,

but it is not immune from non-local deviation (that is, not quasi-concave over the whole set PR
i .

Consider any equilibrium candidate
(
p∗R1 , p∗R2

)
. By construction it is defined as the intersection of

the ‘quasi-best responses’, which is not necessarily an equilibrium. But when Condition 1 holds,

following the definitions given by equations (7.2) and (7.3), either p∗R1 ∈ pR
1
(pR2 ) and p∗R2 ∈ pR2 (p

R
1 ),

or p∗R1 ∈ pR1 (p
R
2 ) and p∗R2 ∈ pR

2
(pR1 ) (or both, if two equilibria exist). Thus at the point

(
p∗R1 , p∗R2

)
the reaction correspondences necessarily intersect at least once, whence the Nash correspondence

has a closed graph and the Kakutani fixed-point theorem applies. To show necessity, suppose a

pair
(
p∗R1 , p∗R2

)
is a Nash equilibrium. By definition, pR2

(
pR1
)
∩ pR1

(
pR2
)
̸= ∅, and by Lemma 2,

either
(
p∗R1 , p∗R2

)
= pR

1

(
pR2
)
∩ pR2

(
pR1
)
or
(
p∗R1 , p∗R2

)
= pR1

(
pR2
)
∩ pR

2

(
pR1
)
, or both if two equilibria

exist. For the first equality to hold, the first line of Condition 1 must hold, and for the second one,

the second line of Condition 1 must be satisfied.

Let C =
[
2e
(
A+A

)]2
=
[
2e
(
(2α−α

3 )2 + (α−2α
3 )2

)]2
. Condition 1 provides us with a pair of

easy-to-verify conditions in terms of prices. Thus we can establish

Lemma 4 Existence. An equilibrium in pure strategies of the consumer price subgame always

exists. It is unique and located in region I.

Proof: First construct a candidate equilibrium as follows. Suppose that platforms maximise ΠH
1 =

pR1 D
R
1 (p

R, θ)−kθ21+Π
A
1 and ΠH

2 = pR2 D
R
2 (p

R, θ)−kθ22+ΠA
2 , respectively. Solving for the first-order

conditions laid out in Definition 1 yields

p∗R1 = 1
3

[
∆θ
(
2β − β

)
+ 2e

(
A− 2A

)]
p∗R2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
2A−A

)]
From equilibrium prices it is straightforward to compute consumer demand: DR

1 =

1
3∆θ

[
∆θ(2β − β) +

√
C
]
and DR

2 = 1
3∆θ

[
∆θ(β − 2β)−

√
C
]
, hence the restriction DR

2 > 0 pro-

vided ∆θ >
√
C

β−2β
and

p∗R1 = ∆θβ
2 − e2A

p∗R2 = 0

otherwise. When DR
i = 0 i = 1, 2, pRj is determined by platform j’s reaction correspondence

only. Thus it easy to verify that the first line of Condition 1 is satisfied and that
(
p∗R1 , p∗R2

)
indeed
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constitutes an equilibrium by Lemma 3. This equilibrium always exists because p̂R1 ≥ p∗R1 and p̂R2 ≤

p∗R2 are always satisfied. Indeed, either both hold when both platforms are active, for ∆θ
(
β + β

)
+

e
(
A+A

)
≥ 0 is always true, or p∗R2 = 0 > p̂R2 and p̂R1 > p∗R1 can be immediately verified when only

firm 1 is active. Another candidate equilibrium
(
p∗∗R1 , p∗∗R2

)
can be constructed by letting platform

1 play as if ΠL
1 = pR1 D

R
1 (p

R, θ) − kθ21 + ΠA
1 and platform 2 as if ΠL

2 = pR2 D
R
2 (p

R, θ) − kθ22 + Π
A
2 ,

whence

p∗∗R1 = 1
3

[
∆θ
(
2β − β

)
+ 2e

(
2A−A

)]
p∗∗R2 = 1

3

[
∆θ
(
β − 2β

)
+ 2e

(
A− 2A

)]
with DR

1 = 1
3

[
(2β − β)2 −

√
C
]
and DR

2 = 1
3

[
(β − 2β)2 +

√
C
]
, therefore DR

1 > 0 if ∆θ >
√
C

2β−β
.

Notice that an equilibrium such that

p∗R1 = 0

p∗R2 = −∆θβ

2 − e2A

cannot exist, for these prices are not best response to each other. At the price-setting stage, the

cost of quality is sunk, so for θ1 > θ2 there always exists some price pR1 ≥ pR2 such that consumers

prefer purchasing from platform 1. Then when both firms are active Condition 1 holds as long as

∆θ
(
β + β

)
− e

(
A+A

)
≤ 0. Given that ∆θ ≥

√
C

2β−β
, take the lower bound and substitute into the

second line of Condition 1. Recalling
√
C = 2e(A+A),

e(A+A)

(
2(β + β)

β − 2β
− 1

)
> 0, ∀β ≥ 0

which violates the second pair of inequalities of the necessary Condition 1. So the second candidate

can never be an equilibrium. For completeness, Condition 1 is also sufficient to rule out deviations

from the pairs
(
p∗R1 , p∗R2

)
and

(
p∗∗R1 , p∗∗R2

)
. The SOC of the profit function (4.2) is satisfied at

prices p∗Ri and p∗∗Ri ∀i,∀pR−i, there cannot be any local deviation. Consider now deviations involving

inconsistent actions, that is, such that both platforms maximise either pRi D
R
i (p

R, θ)− kθ2i +Π
A
i or

pRi D
R
i (p

R, θ)− kθ2i +ΠA
i . Since

(
p∗R1 , p∗R2

)
always exists, the first line of Condition 1 always holds.

It immediately follows from (7.2) and (7.3) that pR1
(
pR2
)
∩ pR2

(
pR1
)
= ∅ and pR

1

(
pR2
)
∩ pR

2

(
pR1
)
= ∅

as well.
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7.4 Proof of Proposition 1

Directly from Lemma 4, which establishes existence and uniqueness of this equilibrium. In partic-

ular no such alternative equilibrium can exist when ∆θ <
√
C

2β−β
. Consider such a situation, then

the prices

pR1 = ∆θβ
2 − 2eA

pR2 = 0

do form an equilibrium for they satisfies Condition 1. But the pair

pR1 = 0

pR2 = −∆θβ

2 − 2eA

cannot be best responses to each other. At the price-setting stage, the cost of quality is sunk. So

with θ1 > θ2, there always exists some price pR1 ≥ pR2 such that consumers prefer purchasing from

platform 1.

7.5 Analysis of the high-quality firm’s profit function

In the sequel θ1 > θ2 without loss of generality. The profit function Π1(., .) is obviously continuous

for θ1 < θ +
√
C

β−2β
or the converse. Furthermore, assume e < ∞, then

Claim 1 The function Π1 is continuous for ∆θ =
√
C

β−2β

Proof: For ease of notation, let Π1 = ΠL
1 for all ∆θ ≥

√
C

β−2β
and Π1 = ΠR

1 otherwise. These are

the definitions of Π1(θ1, θ) to the left and the right of the point such that ∆θ =
√
C

β−2β
for any pair

(θ1, θ2). To the left platform 1 is a monopolist whose profits ΠL
1 are necessarily bounded. The

function is defined as ΠL
1 : Θ1 ×Θ2 ⊆ R2 7→ R, therefore Theorem 4.5 in Haaser and Sullivan ([14],

page 66) applies: a mapping from a metric space into another metric space is continuous if and

only if the domain is closed when the range is closed. So ΠL
1 (θ1, θ2) is continuous at ∆θ =

√
C

β−2β
,

and is necessary the left-hand limit of the same function ΠL
1 . Now consider a sequence θn1 such that

∆θ >
√
C

β−2β
converging to

√
C

β−2β
from above for some fixed θ2 . This sequence exists and always

converges for Θ1 ⊆ R is complete. As e < ∞ and A and A are necessarily bounded, C is finite so

there is some n and some arbitrarily small δ such that ΠR
1 (θ

n
1 , θ2) − ΠL

1 (θ2 +
√
C

β−2β
, θ2) < δ. That

is, lim
θn1→θ2+

√
C

β−2β

ΠR
1 (θ

n
1 ) = ΠL

1 (θ2 +
√
C

β−2β
, θ2). Hence Π1 is continuous for ∆θ =

√
C

β−2β
.

25



Π1(., .) being the difference of two convex functions, its exact shape is affected by that of these

two primitives. Indeed, when C becomes large enough, it is no longer well behaved.

Claim 2 There exists some Cf ≡
[
(2β−β)2

27k − θ

]2(
(2β−β)2

3

)
such that Π1(., .) admits a binding

first-order condition for C ≤ Cf only. When C > Cf , its maximum is reached at the kink:

θ1 = θ +
√
C

β−2β
.

Proof: Seeking first-order conditions of Π1(., .) with respect to θ1 yields

∂Π1

∂θ1
=



(
2β−β

3

)2

− 2kθ1 = 0, for ∆θ ≤
√
C

β−2β
;(

2β−β

3

)2

− C
(3∆θ)2

− 2kθ1 = 0, for ∆θ >
√
C

β−2β
and C ≤ Cf ;(

2β−β

3

)2

− C
(3∆θ)2

− 2kθ1 < 0, for ∆θ >
√
C

β−2β
and C > Cf ;

(7.4)

When binding, the second line of system (7.4) can be rearranged as
(
2β − β

)2
= ϕ(θ1), with slope

ϕ′(θ1) = 18k− 2C
(∆θ)3

. Since ∆θ > 0, this FOC has at most two solutions: one where ϕ′(θ1) < 0 and

the other with ϕ′(θ1) > 0. The SOC requires ϕ′(θ1) ≥ 0 for the FOC to identify a maximiser, so

there exists a unique local maximiser of Π1, denoted θ̂1. Let θ
0
1 be the (unique) maximiser of the first

line of system (7.4). It is immediate that θ̂1 < θ01 and consequently θ01 − θ2 ≤
√
C

β−2β
, θ1 ∈ BR1(θ2)

can never be true. That is, the two statements of the first line of (7.4) cannot be simultaneously

satisfied: firm 1 would not play the first line of (4.4), but the second one. We rewrite:

∂Π1

∂θ1
=

(
2β − β

3

)2

− 2kθ1 > 0; for ∆θ ≤
√
C

β − 2β

Recall that the profit function is continuous, so it does not jump anywhere. Because Π1

is monotonically increasing below θ̂1 and the SOC is monotonic beyond θ̂1, it is concave for

C ≤ Cf and θ̂1 is a global maximiser. The binding first-order condition defines a function

C(θ1, θ2) ≡ (∆θ)2
[
(2β − β)2 − 18kθ1

]
, whence dC(.)

dθ1
= 0 ⇔ θf1 =

(2β−β)2

27k . Substituting back into

C(θ1, θ2) gives the cut-off value Cf ≡
[
(2β−β)2

27k − θ2

]2(
(2β−β)2

3

)
. When C > Cf , the first-order

condition (7.4) is everywhere negative, hence

dΠ1
dθ1

|
θ1<θ+

√
C

β−2β

> 0

dΠ1
dθ1

|
θ1>θ+

√
C

β−2β

< 0
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While this profit function is not differentiable for ∆θ =
√
C

β−2β
, it has been established that it is

nonetheless continuous for any such pair (θ1, θ2). It is monotonic on either side of ∆θ =
√
C

β−2β
, so

that θ̂1 such that ∆θ =
√
C

β−2β
, is the unique maximum of Π1(θ1, θ2) given some fixed θ2.

Last in this section we examine the behavior of the quality variable θ1 when the first-order

condition (7.4) does bind.

Claim 3 Let θ̂1 solve
(
2β − β

)2 − C
(∆θ)2

− 18kθ1 = 0, then dθ̂1
de < 0 and dθ̂1

dk < 0.

Proof: Differentiate the first-order condition (7.4); after some manipulations we can write

dθ∗1
de

=
8∆θe(A+A)

2
(
2e(A+A)

)2 − 18k(∆θ)3

dθ∗1
de ≥ (≤)0 ⇔ 2C − 18k(∆θ)3 = −(∆θ)3ϕ′(θ1)|θ1=θ∗1

≥ (≤)0 so that
dθ∗1
de < 0 (assuming the SOC

holding strictly at θ∗1, otherwise
dθ∗1
de is not defined and we need to consider the left derivative). The

second statement is similar: differentiate the first-order condition of (4.4) to find 2C(∆θ)−3 dθ1
dk −

18θ1 − 18k dθ1
dk = 0, which is rearranged as dθ1

dk = 18θ1(∆θ)3

2C−18k(∆θ)3
. The denominator is exactly the SOC

of (4.4), which we know to hold, multiplied by (∆θ)3.

7.6 Proof of Proposition 2

We begin by characterising the first-stage actions

Lemma 5 Let θ1 > θ2 w.l.o.g. and Assumption 4 hold. Optimal actions consist of θ∗2 = θ and

θ∗1 = θ̂1, where θ̂1 uniquely solves

(2β − β)2 = 18kθ1 +
C

(∆θ)2
(7.5)

Both platforms operate.

Proof: First off the following simplifies the analysis and lets us focus on platform 1’s problem.

Claim 4 In any pure-strategy Nash equilibrium (θ∗1, θ
∗
2) such that θ∗1 > θ∗2, θ

∗
2 = θ necessarily.

Proof: Assume the FOC (7.4) binds so that θ∗1 = θ̂1. Computing the slope of the profit function

Π2 yields

dΠ2

dθ2
=

 −(β − 2β)2 + C
(∆θ)2

− 2kθ2 < −2kθ2, if ∆θ(β − 2β) >
√
C;

−2kθ2, if ∆θ(β − 2β) ≤
√
C.
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whence it is immediate that dΠ2
dθ2

|θ2>θ <
dΠ2
dθ2

|θ < 0.

Next delineate an impossibility. When C is said to be ‘large’ the profit function Π1(., .) is no

longer well behaved, as shown in Section 7.5. This leads to

Lemma 6 Let θ1 > θ2 w.l.o.g. and C ≥ Cf ≡
[
(2β−β)2

27k − θ2

]2(
(2β−β)2

3

)
, a Nash equilibrium in

pure strategies cannot exist.

Proof: Follows directly from Claims 4 and 2 in Section 7.5. Any pair

(
θ2 +

√
C

β−2β
, θ2

)
cannot be

an equilibrium because firm 2 can ‘jump’ and assume the monopolist’s role at incremental cost kε2.

In line with the previous section of the Appendix, firm 1’s first-order condition reads
(
2β − β

)2−
C

(∆θ)2
− 18kθ1 = 0 and admits a unique maximiser θ̂1. This analysis does not yet identify an

equilibrium of this game but only platform 1’s behaviour, taking that of firm 2 fixed. Suppose firm

1 plays θ̂1; by Claim 4, platform 2 cannot increase its quality to any θ2 ∈
(
θ, θ̂1

)
. So the pair(

θ̂1, θ
)
is an equilibrium as long as firm 2 cannot ‘jump’ over firm 1 and become the high-quality

firm. It will necessarily do so if platform 1 turns out to be a monopolist. To guarantee firm 2

operates we need (θ̂1 − θ)(β − 2β) >
√
C – Assumption 4 must holds. When firm 2 does operate,

the smallest ‘leap’ it can undertake is such that θ̃2 ≥ θ̂1 + ε. Hence the no-deviation condition is

Π2

(
θ̂1, θ

)
≥ Π2

(
θ̂1, θ̂1 + ε

)
, or

(θ̂1 − θ)(β − 2β)2 +B2 +
C

(θ̂1−θ)
≥ B1 +

√
C(β − 2β)− 9k(θ̂1 + ε)2

(θ̂1 − θ)
[
(β − 2β)2 + (2β − β)2

]
− 18kθ̂21 +B2 ≥ B1 +

√
C(β − 2β)− 9k(θ̂1 + ε)2

(θ̂1 − θ)
[
(β − 2β)2 + (2β − β)2

]
− 9kθ̂21 +B2 ≥ B1 +

√
C(β − 2β)

using the FOC (2β − β)2 − 18kθ̂1 − C
(θ̂1−θ)2

= 0 and the fact that kθ̂1θ = kθ2 = 0 (by assumption).

Noting θ̂1 − θ >
√
C

β−2β
, this condition is generically satisfied.

7.7 Existence of a mixed-strategy equilibrium

Proposition 8 A mixed-strategy equilibrium of the game Γ always exists.

This assertion holds trivially by Corollary 1 when Assumption 4 holds. The balance focuses on the

case where it fails. The conditions of the Proposition guarantee that the market is covered – this

is Assumption 3. We need some preliminaries to establish the Proposition.
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Denote θ̃ = θ+
√
C

β−2β
from now on. It is not immediate that the game Γ admits a mixed-strategy

equilibrium, for the payoffs are not everywhere continuous. First define by θc1 the threshold such

that Π1(θ
c
1, θ) = 0 when θ1 > θ2. This point exists and exceeds θ̃1 because dΠ1

dθ1
|θ1>θ̃1

< 0 and the

cost function is convex. Neither platform will want to exceed that threshold, so we restrict the

set of pure actions over which firms randomise to be [θ, θci ] ⊆ Θi, i = 1, 2. Next, any distribution

over this set must assign zero mass to any θi ∈ (θ, θ̃) by Claim 4: any action in this interval is

dominated by either θ or θ̃. For [θ̃, θci ] large enough (and θ2 ≥ θ̃) there may be outcomes such

that ∆θ >
√
C

β−2β
, in which case both platforms are active, or ∆θ ≤

√
C

β−2β
, in which case only the

high-quality firm operates. Take θ1 > θ2 > θ and suppose ∆θ >
√
C

β−2β
and Π1 > Π2 > 0. Let θ2

increase, both Π1 and Π2 vary smoothly. But while limθn2 ↑θ1 Π1 = Π1 > 0, limθn2 ↓θ1 Π1 = −kθ21,

and similarly for firm 2. Both payoff functions are discontinuous at the point θ1 = θ2. In this case

neither the payoffs nor their sum are even upper-hemicontinous. Following Dasgupta and Maskin’s

(1986) Theorem 5, it is first necessary to characterise the discontinuity set. If it has Lebesgue

measure zero, a mixed-strategy equilibrium does exist. Consider the case where θ1 ≥ θ2 w.l.o.g.

and define Υ0 =
{
(θ1, θ2)|θ1 = θ2, θi ∈ [θ̃i, θ

c
i ] ∀i

}
, the set on which the payoffs are discontinuous.

Further define the probability measure µ(θ1, θ2) over the set ΘN = {θ1} ∪ [θ̃1, θ
c
1]× {θ2} ∪ [θ̃2, θ

c
2].

It is immediate that Υ0 has Lebesgue measure zero, so that Pr ((θ1, θ2) ∈ Υ0) = 0. Next we claim

Lemma 7 Suppose θ1 = θ2 = θ, an equilibrium in mixed strategies exists in the consumer price

subgame.

As each platform’s payoffs are bounded below at zero and only one of them can operate (except at

pR1 = pR2 ), their sum is almost everywhere continuous, except for the set of pairs (pR1 = pR2 ), which

has measure zero.

Proof: Let θ1 = θ2 = θ. The sum of profits Π = Π1 + Π2 is almost everywhere continuous.

Either Π = Π1 > 0 ∀pR1 < pR2 , or Π = Π2 > 0 ∀pR1 > pR2 , both of which are continuous except

at pR1 = pR2 , where Π = Π1 + Π2 = 0. But the set Ψ =
{
(pR1 , p

R
2 )|pR1 = pR2 , (p

R
1 , p

R
2 ) ∈ R2

}
has

Lebesgue measure zero. Theorem 5 of Dasgupta and Maskin (1986) directly applies and guarantees

existence of an equilibrium in mixed strategies.

Therefore the pair θ1 = θ2 = θ may be part of an equilibrium of the overall game. Then

Proposition 8 asserts that a mixed-strategy equilibrium of the game Γ exists, which can now be

easily proven.
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Proof: We only need showing that the payoff functions Πi i = 1, 2 are lower-hemicontinuous

in their own argument θi. Without loss of generality, fix θ1 > θ2. We know that Π1 is continuous

for any θ1 > θ2 (refer Section 7.5). From Claim 4 it is immediate that Π2 is continuous for θ1 > θ2.

Last, for i = 1, 2

Πi =

 0, if θ1 = θ2 = θ;

−kθ2i , if θ1 = θ2 > θ.

that is, Πi, i = 1, 2 is l.h.c. Since (θ2, θ1) s.t θ2 = θ1 ∈ Υ0, Theorem 5 in Dasgupta and Maskin

(1986) can be applied, whence an equilibrium in mixed strategies must exist.

7.8 Proof of Proposition 3

Let θci denote the upper bound of the support of the distribution of the pure action space, a precise

definition of which will soon be provided. Let Hi(θi) be the distribution over i’s pure actions

θi ∈ {θ} ∪
[
θ̃, θc

]
. For any equilibrium mixing probability H∗

2 (θ2), write the expected profit of firm

1 as

Eθ2 [Π1] =

∫
Π1(θ1, θ2)d(H1 ×H∗

2 ) +

∫ θ′1=θ2

θ̃1

Π1(θ1, θ2)d(H1 ×H∗
2 ) +

∫ θc1

θ′1=θ2

Π1(θ1, θ2)d(H1 ×H∗
2 )

= H1(θ1)

∫
Π1(θ1, θ2)d(H

∗
2 ) +

∫ θ′1=θ2

θ̃1

Π1(θ1, θ2)d(H1 ×H∗
2 ) +

∫ θc1

θ′1=θ2

Π1(θ1, θ2)d(H1 ×H∗
2 )

with possibly an atom at θ1. With probability
∫ θ′1=θ2

θ̃1
d(H1 × H∗

2 ) it plays θ1 > θ such that

medium 2 is the dominant firm (θ2 ≥ θ1); in this case, Π1(θ1, θ2) = −kθ21 < 0. With probability∫ θc1
θ′1=θ2

d(H1 ×H∗
2 ) it is the dominant firm (the second integral). We first claim

Lemma 8 There is a mass point at θi. More precisely, ∀ i, Hi(θi) ∈ (0, 1).

Proof: Suppose H1(θ1) = 1, then argmaxEθ1 [Π2(θ1, θ2)] = θ̃2, so H2(θ2) = 0 and H2(θ2) assigns

full mass at θ̃2 : h2(θ̃2) = 1. But then firm 1 should play some θ1 > θ̃2 and become the monopolist

for sure. If H1(θ1) = 0, then 1 necessarily plays on
[
θ̃, θc

]
and playing θ̃2 is a dominated strategy

for firm 2. It therefore assigns no mass at this point. But then ∀ θ2 ∈
(
θ̃2, θ

c
2

]
, Π1(θ1, θ2) > 0 and

platform 1 should shift some mass to θ1.

The equilibrium conditions write ∀θi ∈ ΘN
i ,

Eθj [Πi(θi, θj)] = Πi(θi, θ̃j)

Πi(θi, θ̃j) = 0
(7.6)
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The first line asserts that i’s expected payoff cannot be worse than if not investing for sure, in

which case j’s best response is θ̃j . The second one sates that if not investing for sure, a platform

can only expect zero profits. Thus expected profits in the mixed-strategy equilibrium must be zero.

We next need to determine the upper bound θci of the support of Hi(θi) for each platform i = 1, 2.

As a consequence of Lemma 8 it solves either

Πi(θj , θ
c
i ) = 0

or

Πi(θ̃j , θ
c
i ) = 0

hence

Lemma 9 θci = max
{
θ′i|Πi(θj , θ

′
i) = 0,Πi(θ̃j , θ

′
i) = 0

}
Proof: Let θ′i solve Πi(θj , θ

′
i) = 0 and θ′′i solve Πi(θ̃j , θ

′′
i ) = 0. Suppose θ′i < θ′′i and θci = θ′i: there

is a measure θ′′i − θ′i on which i places zero weight. Then j should shift at least some weight to

θ′i + ϵ, ϵ > 0 and small, to obtain EĤ(θi)
[Πj ] > 0 = Eθi [Πj(θi, θj)] (where Ĥ(.) is an alternative

distribution). Clearly this extends to any θi ∈ [θ′i, θ
′′
i ).

Rewriting the equilibrium condition (7.6), ∀ θi ∈ ΘN
i ,

Hi(θi)

∫
ΘN

j

Ri(θi, θj)dH
∗
j (θj) +

∫ θci

θ′i=θj

Ri(θi, θj)d(Hi(θi)×H∗
j (θj)) = k

∫ θci

θ̃i

θ2i d(Hi(θi)×H∗
j (θj))

where Ri(θi, θj) stands for platform i’s revenue (gross of costs). Hence Proposition 3, the proof of

which we complete below.

Proof: Existence is established by Proposition 8. For any play θj , total revenue Ri(θi, θj) is

decreasing in θi ∈ ΘN
i \ θi – refer Conditions (4.4) and (4.5). Thus for any distribution Hi(θi) ×

H∗
j (θj) the LHS is bounded as well, and decreasing in θi.

7.9 No charge to consumers (Remark 2)

In this section we study a constrained version of the problem, namely, when the consumer price is

exogenously fixed at zero. First we show that

Lemma 10 When consumer prices are identical a pure strategy equilibrium cannot exist.
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Proof: Given pR1 = pR2 , consumer demand is given by

DR
i =


1, if θi > θj ;

1
2 , if θi = θj ; and

0, if θi < θj .

for i ̸= j, i = 1, 2, whence platform i faces payoffs

Πi =

 eDR
i

(
α
2

)2 − kθ2i ≥ 0, if θi > θj ≥ θ;

−kθ2i ≤ 0, if θ ≤ θi ≤ θj ;

Any profile θ1 = θ2 can never be an equilibrium. Suppose so, then D1 = D2 and platforms are

Bertrand competitors in the advertising market, realising −kθ2i ≤ 0 each. When −kθ2i < 0, firm i

possesses a unilateral deviation: set θi = θ. When −kθ2i = 0, it also possesses a unilateral deviation:

set θi > θ.

Therefore we have

Proposition 9 Fix pR1 = pR2 = 0. A pure-strategy equilibrium does not exist. A mixed-strategy

equilibrium exists and is characterised as in Proposition 3.

Proof: Directly from Lemma 10. Existence is established in Proposition 8.

Proposition 10 admits a straightforward corollary.

Corollary 2 Fix pR1 = pR2 = 0. Platforms are monopolists on the advertising side except at

θ1 = θ2 = θ, where pA1 = pA2 = 0.

We refer to this as an irrelevance result: the other player’s action can be disregarded in the

advertising market. This result differs from GLS however in that only one firm operates.

Proof: The proof follows directly from the fact that firms necessarily play a mixed strategy

equilibrium. Since θi ∈ ΘN
i ∀i, each event but θ1 = θ2 = θ has probability zero – see the atom from

Proposition 3. Therefore, except at θ, platform will be a monopolist in the advertising market with

certainty and the cost kθ2i is sunk. Else they are Bertrand competitors.

7.10 Elements of Proof of Proposition 4 – unique subgame perfect equilibrium

of the Shaked and Sutton model

In the Shaked and Sutton (1982) model there exists a unique equilibrium in the price subgame. In

the first stage of the game, firms solve
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Problem 4

max
θi∈Θi

p∗iDi(p
∗, θi, θ

∗
j )− kθ2i

for i = 1, 2 and with demand D1 =
1
3

(
2β − β

)
, D2 =

1
3

(
β − 2β

)
and prices p1 =

∆θ
3

(
2β − β

)
, p2 =

∆θ
3

(
β − 2β

)
, respectively. This problem is concave ∀i, and, given equilibrium prices p∗i ∀i, has obvi-

ous maximisers θ02 = θ and θ01 = 1
2k

(
2β−β

3

)2

with θ01 < θ thanks to k >
(2β−β)2

18θ
. These individually

optimal maximisers also form a Nash equilibrium, for although Π1

(
θ01, θ

0
2

)
> Π2

(
θ01, θ

0
2

)
∀k > 0 14,

it is also true that

Claim 5 @ θ̃2 > θ01 such that Π2

(
θ01, θ̃2

)
≥ Π2

(
θ01, θ

0
2

)
.

Proof: Consider a deviation θ̃2 = θ01+ϵ, ϵ arbitrarily small. We can compute firm 2 profit from this

deviation as Π2

(
θ01, θ̃2

)
= ϵ

(
2β−β

3

)2

−kθ̃22 < 0 and the marginal profit

(
2β−β

3

)2

−2k(θ01 + ϵ) < 0.

This is the equilibrium characterisation of the benchmark model. To complete the proof of

Proposition 4, observe that firm 1’s first-order condition in the benchmark problem reads

(
2β−β

3

)2

−

2kθ01 = 0 while that of Problem 1 is

(
2β−β

3

)2

− 2kθ̂1 =
C

(3∆θ)2
> 0. Therefore θ̂1 < θ01.

7.11 Proof of Propositions 5 and 6

For lines 1 and 3 the proof follows directly from Propositions 2 and 4, as well as the analysis of

Π1(., .) in Section 7.5. When k = 0, because quality is a sunk cost in the original model, nothing

is altered until platforms’ have to choose their quality variable. That is, the analysis of the third

and second stages remains valid. In the first stage, they now face profit functions

Π1 =
1

9

[
∆θ(2β − β)2 +B1 +

C

∆θ

]
Π2 =

1

9

[
∆θ(β − 2β)2 +B2 +

C

∆θ

]
subject to constraint (4.3) as well. As in the proof of Lemma 5, it is useful to rewrite them as

Π1 =


1
9

[
∆θ(2β − β)2 +B1 +

C
∆θ

]
, if ∆θ > 2e(A+A)

β−2β
and ;

1
9

[
∆θ(2β − β)2 +B1 +

√
C

β−2β

]
, if ∆θ ≤ 2e(A+A)

β−2β
.

14We can readily compute these profits with closed form solutions: Π1 > Π2 ⇔
(

2β−β

3

)2
[

1
2k

(
2β−β

3

)2

− θ

]
>(

β−2β

3

)2
[

1
2k

(
2β−β

3

)2

− θ

]
, which can be re-arranged as θ01

[
1
2
+ 2

3

ββ

β
2−β2

]
> θ, and always holds
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and

Π2 =


1
9

[
∆θ(β − 2β)2 +B2 +

C
∆θ

]
, if ∆θ > 2e(A+A)

β−2β
and ;

1
9

[
∆θ(β − 2β)2 +B2 +

√
C

β−2β

]
, if ∆θ ≤ 2e(A+A)

β−2β
.

The necessary FOC of the first line of Π1 identifies a minimiser for firm 1 for any θ1 < θ2. Therefore

when a FOC binds, firm 1 has a strict incentive to jump to the boundary θ. Meanwhile as before,

dΠ2
dθ2

< 0 as in the proof of Claim 4. Hence maximal differentiation obtains when the FOC binds,

that is, when C is not too large. Let ê denote the corresponding threshold on e; it is immediate

that ê > e since C(e) is increasing in e and k is naught here. When e > ê, a FOC fails to bind

entirely for firm 1 – it is clearly negative. Hence firm 1 would like to set θ1 = θ2 +
√
C

β−2β
and firm

2, θ2 = θ. But of course this fails to be an equilibrium as firm 2 is excluded. The analysis of

Propositions 8 and 3 carries through.

7.12 Comparative statics

Uniqueness of the subgame-perfect equilibrium renders the comparative statics exercise valid. For

the first line, recall that θ∗2 = θ is a strictly dominant strategy when an equilibrium exists, whence

θ∗2 is independent of e. The second series of statements is stated and proven in Section 7.5. To

show concavity, differentiate
dθ∗1
de once more and rearrange to find

d2θ∗1
de2

=
8
(
A+A

)
[−(∆θ)3ϕ′]2

[
dθ∗1
de

e
(
(∆θ)318k + 2C

)
−∆θ

(
ϕ′ + 4C

)]

Since ϕ′ ≥ 0 it is immediate that
d2θ∗1
de2

< 0. The behavior of advertising prices obtains from their

equilibrium definition:

dpA1
de

=

(
(β + β) + 4e

∆θ − e
dθ∗1
de

(∆θ)2

)√
A >

(
(β + β) + 4e

∆θ − e
dθ∗1
de

(∆θ)2

)√
A =

dpA2
de

> 0.

Ascertaining the behaviour of consumer prices is equally simple:

dpR1
de

=
1

3

[
dθ∗1
de

(2β − β) + 2(A− 2A)

]
<

1

3

[
dθ∗1
de

(β − 2β) + 2(2A−A)

]
=

dpR2
de

< 0.

7.13 Proof of Proposition 7

When e is large enough platform 1 (the high-quality firm) prefers playing such that ∆θ = 2e(A+A)

β−2β
≡

z(e) for any θ2 (and θ1 not so large as to induce negative profits). Its payoffs when ∆θ ≤ z(e) are
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given by the second line of (4.4), where B1(e) = 2e(2β − β)(2A−A). This can be re-arranged as

π1(e, θ) =
1

9

[
∆θ
(
2β − β

)2
+ 2e[A(5β − 4β)−A(β + β)]

]
− kθ21

for ∆θ ≤ z(e) and

π1(e, θ) =
1

9

[
∆θ
(
2β − β

)2
+B1(e) +

[2e(A+A)]2

∆θ

]
− kθ21

if ∆θ > z(e). Let π1(e, θ) = maxπ1(e, θ) for any pair θ1 > θ2 such that ∆θ = z(e). This is an

upper bound on firm 1’s profits for any play by firm 2. Clearly π1(e, θ) is maximised for θ2 = θ.

Recall that we denote the corresponding value of θ1 by θ̃1. For any e and θ2,
∂π1(e,θ)

∂θ1
> 0 when

∆θ < z(e) and ∂π1(e,θ)
∂θ1

< 0 when ∆θ = z(e) and θ2 > θ. Therefore π1(e, θ) reaches zero for some

value θ′1 ≤ θc1. Thus no firm will play out of these bounds. More precisely,

∂π1(e,θ)
∂θ1

=
2β−β

9 − 2kθ1 > 0, when ∆θ < z(e) and

∂π1(e,θ)
∂θ1

=
2β−β

9 − 2kθ1 < 0, for ∆θ = z(e), θ2 > θ.

with max ∂π1(e,θ)
∂θ1

reached for θ2 = θ. Since argmax Π1(θ1, θ2) > θ̃1 when θ2 > θ, it follows that

∂π1(e, θ)

∂θ1
< |∂π1(e, θ)

∂θ1
|

and therefore | θ̃1 − θc1 |< z(e).
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