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Abstract

I study the estimation of finite sequential games with perfect information. The ma-

jor challenge in estimation is computation of high-dimensional truncated integration

whose domain is complicated by strategic interaction. I show that this complication

resolves when unobserved off-the-equilibrium-path strategies are controlled for. Sep-

arately evaluating the likelihood contribution of each subgame perfect strategy pro-

file that rationalizes the observed outcome allows the use of the GHK simulator, the

most widely used importance-sampling probit simulator. Monte Carlo experiments

demonstrate the performance and robustness of the proposed method, and confirm

that misspecification of the decision order leads to underestimation of strategic effect.

KEYWORD: Inference in discrete games, sequential games, Monte Carlo integra-

tion, GHK simulator, subgame perfection, perfect information

∗Comments from Victor Aguirregabiria, Han Hong, Susumu Imai, and Robert Porter significantly im-
proved the paper at various stages. Earlier versions of the paper were circulated under the title "Estimating
Sequential-Move Games by a Recursive Conditioning Simulator." School of Economics, University of New
South Wales. E-mail: s.maruyama@unsw.edu.au
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1 INTRODUCTION

Sequential games are a standard tool to investigate sequential strategic interactions such

as first-mover (dis-)advantages and strategic precommitment. The predetermined order of

moves provides players an opportunity to strategically commit their decision that is not

revertible once the decision is made. Preemptive behavior to deter a rival’s entry is a classical

textbook example. A clear sequence and strategic interactions are also observed in heavily

regulated industries, decisions among siblings, organizational decision making, judicial cases,

labor disputes, drafts in sports leagues, parlor and TV show games, and so on.

While countless theoretical studies on sequential games exist, there has been little em-

pirical work devoted to quantifying the relevance and implications of sequential interaction.

This presumably reflects not a lack of interest in this important topic, but rather the consid-

erable computational challenges. Existing empirical studies that consider sequential games,

whether exclusively or in addition to simultaneous games, range over the entry of firms

(Bresnahan and Reiss (1991), Berry (1992), Mazzeo (2002), Maruyama(2011)), technology

adoption (Schmidt-Dengler (2006)), the labor participation of couples (Kooreman (1994)

and Hiedeman (1998)), the retirement behavior of elderly couples (Jia (2005)), the location

choice of siblings (Konrad, Kunemund, Lommerud, and Robledo (2002)), political science

and international relations (Bas, Signorino, and Walker (2008) and Signorino and Tarar

(2006)), tax competition (Redoano (2007)), and the validity and limit of subgame perfection

in experimental economics (Andreoni and Blanchard (2006)). All of the existing literature

has so far focused on simple cases where: the number of players is very small (two in most
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cases); the game structure is very simple; a certain degree of symmetry is assumed among

players; or emphasis is not on the structural estimation of strategic effect.1

In this paper, I propose a practical estimation method for discrete-choice pure-strategy

sequential games with perfect information, in which each player makes a decision in pub-

licly known exogenous decision order. The econometrician knows the decision order either

from institutional knowledge, by assumption, or from observation of data, and imposes the

sequential structure onto an econometric model to draw inferences on payoff function and

the nature of strategic interaction. Table 1 shows an example of the typical data structure

for which the method proposed in this paper is intended to be used. This data set on young

adult siblings records their tertiary education decision at the age of 18. Within each family,

the decision is first made by the firstborn sibling, followed by the secondborn and so on.

Among siblings, strategic interaction may be at work. Following an older sibling’s path

may facilitate the decision and positively affect motivation and future learning, generating

strategic complementarity. At the same time, limited parental resources may create strategic

substitution effects among their decisions. The sequential structure may generate first-mover

(dis-)advantages.

In the proposed framework, I assume a payoff function with random components that

follow normal distribution so that the game almost surely has a unique subgame perfect

equilibrium. By assuming a parametric model of payoffs and random components, estimation

relies on the maximum likelihood principle. Using micro data on heterogeneous players and

1An exception is Maruyama (2011), which is based on the approach outlined in this paper.
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Table 1: DATA EXAMPLE: DECISION ON TERTIARY EDUCATION AMONG SIB-
LINGS

Family ID Age Sex Parental income Tertiary education decision at 18
1 25 M High University - Law
1 22 M High University - Law
2 21 M Low Work
3 26 F Middle University - Arts
3 24 F Middle University - Overseas
3 22 M Middle University - Arts
4 23 M Low University - Engineering
4 20 F Low Stay home
5 25 F Middle Work
...

...
...

...
...

observed decisions of players, the econometrician aims to: make a statistical inference on

the payoff function of players by utilizing the identification power provided by the sequential

structure; examine the nature of strategic interaction; evaluate its implications for resource

allocation; and conduct counterfactual simulations.

The major challenge in estimation is the computation of high-dimensional truncated

integration whose domain is complicated by sequential strategic interaction. If the game

is a binary choice game played by two players, the dimension of random components in

a market is two after normalization and its estimation is straightforward. The likelihood

for a particular observed game outcome is analytically solved by using backward induction

and bivariate normal distribution function. As the number of players and the size of the

choice set grows, however, the dimension exceeds three and the likelihood function in gen-

eral no longer has an analytical solution, thus requiring simulation techniques that approx-

imate high-dimensional truncated integrals. For high-dimensional integration in standard

probit models, the most popular solution is the Geweke-Hajivassiliou-Keane (GHK) sim-
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ulator. This importance-sampling simulator recursively truncates the multivariate normal

probability density function, by decomposing the multivariate normal distribution into a

set of univariate normal distribution using Cholesky triangularization. However, sequential

strategic interaction causes interdependence of truncation thresholds, which undermines the

ground of the recursive conditioning approach.

I propose the use of the GHK simulator for each subgame perfect strategy profile that ra-

tionalizes the observed equilibrium outcome. I show that the interdependence of truncation

thresholds in the integration domain stems from changes in off-the-equilibrium-path strate-

gies, which are counterfactuals and, from the econometrician’s viewpoint, are the source of

the indeterminacy of the strategy profile that yields the observed game outcome. Thus,

the separate evaluation of likelihood contribution for each subgame perfect strategy profile

allows us to control for unobserved off-the-equilibrium-path strategies so that the domain

of Monte Carlo integration becomes (hyper-)rectangle and the recursive conditioning of the

GHK simulator can be used.

To demonstrate the performance and robustness of the proposed estimation method, I

conduct Monte Carlo experiments using artificial data generated for a simple airline indus-

try entry game inspired by Berry (1992). The data consists of 3,000 city-pair markets. The

number of firms varies across markets from one to six and the error component has strong

within-market correlation. Overall, when the estimated model is correctly specified, the sim-

ulation bias inherent in the method of simulated likelihood tends to be small and the model

parameters are estimated fairly quickly and precisely with a small number of simulation
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draws such as twenty. I also conduct a number of misspecification experiments. The size

of the bias due to misspecification of the decision order depends on the extent to which the

econometrician imposes the correct decision order. While misspecifying the decision order

by up to 10 percent of observations does not lead to significant bias, misspecification of the

decision order in general leads to significant downward bias of the estimate of strategic effect.

In addition, the misspecification also leads to bias of the coefficient estimates of variables

that are correlated to the true decision order. Imposing independent univariate normal dis-

tribution for each error term allows researchers to avoid high-dimensional integration, but

the result shows that ignoring the existent covariance structure is another potential source

of significant bias.

The structural estimation of non-cooperative discrete games has rapidly developed since

the seminal works by Bjorn and Vuong (1984) and Bresnahan and Reiss (1991).2 Recent

development has centered around the estimation of dynamic games (Aguirregabiria and Mira

(2007), Bajari, Benkard, and Levin (2007), and Su and Judd (2008)). However, the recent

development of dynamic game estimation mostly focuses on Markov perfect equilibrium in in-

finite repetition of simultaneous move games. By contrast, despite its voluminous theoretical

counterpart, the empirical analysis of sequential games has so far attracted limited atten-

tion and its existing literature is confined to a simple framework or reduced-form analysis.

No study has so far investigated the estimation of a general class of asymmetric sequential

2For example, see Bajari, Hong, Krainer, and Nekipelov (2007) for incomplete information games, and
Ciliberto and Tamer, (2009), Bajari, Hong, and Ryan (2008), Soetevent and Kooreman (2007) for complete
information games.
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games.3

After formally presenting the setup in the next section, I explain in Section 3 how the

GHK simulator can aid high-dimensional integration under subgame perfection. Monte

Carlo experiments are conducted in Section 4. Section 5 provides discussions and extensions.

Section 6 concludes.

2 MODEL

2.1 The Sequential Game

The model is a finite sequential game with perfect information. There are i = 1, ..., N players,

each makes a decision in publicly known exogenous order. The game can be set up so that

players take multiple turns alternately. Each player chooses an "action" ai from a finite set

of actions Ai, e.g. ("left", "right") and ("enter", "not enter").4 Define A ≡ ×iAi and let

a ≡ (a1, ..., aN) denote a generic element of A. Player i’s payoff, such as utility or profit,

from action ai depends on a−i, the vector of actions taken by the other players. Thus the

payoff function of player i is a map πi : A→ R. The payoff of player i given a is

πi (a, x, εi; θ1) = πi (a, x; θ1) + εi (ai) , (1)

3This paper also builds upon the literature on sequential discrete choice models. Widely used nested logit
models and sequential multinomial models incorporate the sequence of decision making by one agent. The
method I propose here extends these models by introducing sequential decision making by multiple agents.

4In many potential empirical applications, every player faces the same choice set Ai. regardless of another
player’s decision. However, allowing the choice set to vary across decision nodes is possible by defining Ai
as a union of available alternatives at each decision node.
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where vector x contains exogenous characteristics that describe players and the environment

in which the game is played and θ1 is a vector of parameters. The first term, πi (a, x; θ1), is

an assumed parametric function of mean payoffs. The second term, εi (ai) ∈ R, is a random

preference shock with continuous parametric density function, gi (εi (ai) ; θ2), where θ2 is a

vector of parameters.5 Define εi ≡ {εi (ai)}ai∈Ai and ε ≡ (ε1, ..., εN). Both x and ε are

common knowledge to the players, but the econometrician observes only x, not ε.

All the game theoretical concepts used in this paper are textbook standard, except for

"action profile", a, defined above, which records decisions made on the equilibrium path and

corresponds to what the econometrician observes as a game outcome in data, whether the

game is sequential or simultaneous. An extensive form game is a perfect information game if

every information set is a singleton decision node. With perfect information, every decision

made earlier is observable for the following players. Player i’s (pure) strategy, si ∈ Si, specifies

her decision at each decision node.6 Define S ≡ ×iSi and let s ≡ (s1, ..., sN) ∈ S denote

a strategy profile. Since s uniquely determines a game outcome, define a (s) : S → A and

ai (s) : S → Ai. A subgame of an extensive form game with perfect information is a subset

of the game that begins with a single decision node, contains all the decision nodes that

are successors of this node, and contains only these nodes. A subgame perfect equilibrium,

se, is a strategy profile in which each player’s strategy is the best response to the strategies

of the other players in every subgame. It is a well-known fact that every finite game with

5I assume the additive separability of the random shock term following much of the existing literature,
such as Bresnahan and Reiss (1991). In the following discussion, this assumption is not essential as long as
the identification of parameter estimates is established.

6Incorporating mixed strategies in the present framework is computationally impractical and beyond the
scope of this paper.
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perfect information has a pure strategy subgame perfect equilibrium (Zermelo’s theorem). In

addition, in the present setup, the game almost surely has a unique equilibrium. Denote this

subgame perfect equilibrium, se (x, ε; θ1) and its i’th component, sei (x, ε; θ1). An equilibrium

outcome function is also defined as ae (x, ε; θ1) ≡ a (se (x, ε; θ1)), with its i’th component,

aei (x, ε; θ1). Given (x, ε, θ1), the game can be solved to obtain s
e by backward induction.

2.2 Data

The econometrician observes T independent realizations of the game, (Γ1, ...,ΓT ), e.g., T

different markets, T different families, or T periods of time. I index each realization of

the game by t. The structure and environment of the game may vary across t in terms of

the number and identity of players, the choice set of each player, the decision order, and

covariates x. The parametric forms of πi (at, xt, εit; θ1) and gi (εi (ait) ; θ2) and parameters,

θ ≡ (θ1, θ2), are assumed to be invariant across t to draw statistical inferences. In each t,

the econometrician observes equilibrium outcome aot and covariate vector xt. Equilibrium

strategy sit is not observed as it contains counterfactuals. The econometrician knows the

structure of game Γt, such as the number of players and the decision order. In the following

I drop the subscript for each game, t, when no ambiguity arises.

To utilize a probit simulator below, I assume a normal distribution for εt as

εt ∼ N (0,Ω) . (2)

Covariance matrix Ω has dimension of ΠNi=1 [the number of action alternatives for i] and is
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parameterized by θ2. For the parameterization of Ω, the usual identification conditions of

probit models apply. In particular, the fact that payoff πit is an unobserved latent construct

means that what the econometrician can infer from observed decisions concerns only the rel-

ative comparison of payoffs among alternatives and, consequently, two types of normalization

for ε are required. First, the random shock of an alternative is normalized to zero so that

the interpretation of εt is the relative difference in random shocks between the normalized

alternative and other alternatives. Second, the variance of ε is also not identified. Following

the convention, it is normalized to one.7 Below I abuse notation and use ε and Ω to denote

the error structure after normalization.

2.3 Estimation and the High-Dimensional Integration

The task of the econometrician is to make statistical inferences on θ based on the structure

of game Γt and the assumed parametric forms of πi (a, x, εi; θ1) and gi (εi (ai) ; θ2). Since

the distribution of ε is specified fully parametrically, the estimation procedure relies on the

maximum likelihood principle. Game Γt is the unit for which individual likelihood is defined.

The individual likelihood is defined as

l (θ;xt, a
o
t ) = Pr [a

o
t = a

e
t (xt, εt; θ1)|θ2] . (3)

7In some applications, information on the level of payoffs is available and aids identification, typically
making the normalization of the variance of error terms unnecessary. For example, in the analysis of entry
decisions of health insurance plans, Maruyama (2011) uses equilibrium variable profits that are recovered
from the demand estimation and the level of fixed costs is identified.
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This leads to the following maximum likelihood problem:

θ̂ML = argmax
θ

[
1

T

T∑
t

ln l (θ;xt, a
o
t )

]
. (4)

The challenge in this maximum likelihood framework is that the probability term in the

likelihood involves high-dimensional integrals and generally does not have an analytical so-

lution. The dimension depends on the number of players and the number of alternatives each

player has.8 There are several cases where this likelihood function is easily computed. First

is the two dimensional case (Stackelberg games), which arises, for example, if the number

of players is two and the number of alternatives is two. The econometrician can then solve

the two threshold values for (ε1t, ε2t) in accordance with the observed equilibrium outcome,

aot . The bivariate normal distribution function then produces an analytical solution for the

probability term. The vast majority of the existing literature on sequential games focuses on

the two player case. If the dimension of integration increases to three, an analytical solution

is generally not available, but the quadrature method enables numerical approximation. An-

other special case is when each stochastic component in εt follows an independent univariate

normal distribution. In most applications, this is a strong assumption. It implies no game

specific error (e.g. market specific random component). It also implies a quite restrictive

substitution pattern among alternatives when the choice set is larger than the binary case.

For high-dimensional integration, the literature has developed the maximum simulated

8The dimension also depends on the number of turns each player has, if multiple decisions are assumed.
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likelihood (MSL) method, which utilizes Monte Carlo integration.9 The most straightforward

simulator for MSL is the crude frequency simulator, first proposed by Lerman and Manski

(1981). The simulator for the current setup is given by

θ̂CF = argmax
θ

{
1

T

T∑
t=1

ln l̂CFR (θ;xt, a
o
t )

}
(5)

≡ argmax
θ

{
1

T

T∑
t=1

ln
1

R

R∑
r=1

I [aot = a
e
t (xt, ε̃

r
t ; θ1)|θ2]

}
, (6)

where I [ ] denotes an indicator function. The simulation procedure takes R sets of random

draws from the assumed distribution. For each random draw ε̃rt , an equilibrium outcome

aet is solved by backward induction. The probability simulator is based on, out of R times

repetition of simulation draws, how many times the predicted equilibrium outcome coincides

with the observed equilibrium outcome. Although this simulator provides estimates that

are consistent with R and T , the simulated probability is a discontinuous function of the

parameters and is not bounded away from 0 and 1. The use of the indicator function makes

its variance quite large. Due to these problems, Lerman and Manski find that their estimator

requires a very large number of simulations for satisfactory performance.10 Since a likelihood

evaluation of relatively large asymmetric extensive form games tends to be quite expensive,

the frequency simulator is practically infeasible.

9The method of simulated moments (MSM) and the method of simulated scores (MSS) are alternative
options. These may improve the finite sample property of estimators by removing the simulation bias
that results from the logarithm in the log likelihood function (Hajivassiliou and McFadden (1998)), though
Geweke, Keane, and Runkle (1994) does not find such an advantage of MSM over MSL.
10Moreover, the discontinuity of the likelihood function requires an optimization method that does not

require differentiability of the optimand, such as the nonlinear simplex algorithm of Nelder and Mead (1964).
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2.4 The GHK Simulator

For high-dimensional integration over a region of the multivariate normal, the most popular

simulator is the GHK simulator, due to Geweke (1992), Hajivassiliou and McFadden (1994),

and Keane (1994). The GHK simulator recursively truncates the multivariate normal prob-

ability density function. Its algorithm draws recursively from truncated univariate normal

distributions, and relies on Cholesky triangularization to decompose the multivariate normal

distribution into a set of univariate normal distributions. The combination of the recursive

conditioning approach and the smooth univariate truncated variate generation algorithm

produces an unbiased and smooth importance sampling simulator. Compared to the fre-

quency simulator, it requires many fewer draws for alternatives with low probability of being

chosen and is unlikely to have boundary problems. A number of studies have confirmed its

usefulness and relative accuracy, especially when considering the low computational effort

required (Hajivassiliou, McFadden, and Ruud (1996), Hajivassiliou and McFadden (1998),

Geweke, Keane, and Runkle (1994), Börsch-Supan and Hajivassiliou (1993)).

The complication in using the GHK simulator for sequential games arises from the re-

cursive conditioning approach. The GHK algorithm repeats recursive simulation draws from

truncated univariate normal distributions so that the resulting random shocks, ε̃r, generate

equilibrium outcome ao, which is observed by the econometrician. The requirement for this

recursive conditioning is that, in the ε space, the truncation threshold for each simulation

draw is independent of other simulation draws and the truncation thresholds are orthog-

onal to each other. However, because of sequential strategic interaction, the truncation
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threshold for a draw may depend on other simulation draws. Due to this dependence of

truncation thresholds on random shocks of other players, recursive conditioning simulation

breaks down.11

3 USING THE GHK SIMULATOR

The problem of interdependent truncation thresholds arises as a result of changes in unob-

served off-the-equilibrium-path strategies. This point is best illustrated by an example entry

game that is played by two players, firm 1 and firm 2.12 Firm 1 is the Stackelberg leader.

Firm 2 makes its entry decision having observed firm 1’s entry decision. Firms 1 and 2 incur

random shocks ε1 and ε2 respectively in their profit functions. The rival’s entry reduces

payoff. Each firm enters the market when it expects nonnegative profits from entry. If not

enter, a firm earns zero profit. Hence four possible market configurations exist, and given the

assumed payoff functions, the realized values of ε1 and ε2 determine which market outcome

occurs (Figure 1). A firm with a larger random shock is more likely to enter the market.

However, the effects of ε1 and ε2 are not symmetric and the decisions of the two firms are

not independent of each other, due to the sequential nature of the game. The center part of

Figure 1 shows the asymmetry; when neither ε1 nor ε2 has dominant influence, only firm 1

enters.

The goal of this paper is to establish a computationally practical Monte Carlo integration

11Chernew, Gowrisankaran, and Fendrick (2002) use the GHK simulator in their entry model of hospitals,
but strategic interactions are not explicitly modeled in their empirical specification.
12This entry game is only for explanation purposes, as its likelihood function can easily be solved

analytically.
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Figure 1: TWO PLAYER STACKELBERG ENTRY GAME

method to evaluate the probability for each market outcome in the likelihood function.

Figure 2 illustrates this task by superimposing the probability density function of ε1 and ε2.

In this example, market configuration (Out,In) does not allow the use of the standard GHK

simulator, because the domain of integration is not a rectangle, and thus drawing ε1 cannot

be conditional on ε2 and vice-versa.

The notion of subgame perfection solves this dependency. Indeed, this non-rectangular

shaped domain of integration stems from a behavioral change in an off-the-equilibrium path.

The strategic interaction in this sequential game is illustrated by its extensive form (Figure

3). With perfect information, firm 2 has two singleton decision nodes, and the choice set of

firm 2 consists of four strategies: "never enter", "imitate", "preempted", and "always enter".

Since firm 1 has two alternatives, "In" and "Out", there are eight combinations as a whole.
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(In,In)

(Out,In)

(In,Out)

(Out,Out)

�1

�2

Figure 2: INTEGRATION WITH NORMAL DENSITY FUNCTION

Figure 3 assumes "Out" for firm 1 and shows four equilibrium profiles. The extensive form

highlights several important facts. First, subgame perfection implies that firm 2 chooses the

best option based on its random shock, ε2, irrespective of ε1. Facing a large negative shock,

firm 2 chooses "never enter". For a large positive shock, firm 2 chooses "always enter". For

a medium value of ε2, firm 2 chooses "preempted", i.e. it enters the market only if firm 1

does not. Due to the assumed negative impact of a rival’s entry, firm 2 never chooses the

"imitate" strategy. Secondly, different strategy profiles may generate game outcomes that

are observationally equivalent to the econometrician. In Figure 3, strategy profiles (3) and

(4) both result in (Out,In). However, the two strategies of firm 2 under (3) and (4) have

different implications for firm 1’s decision. When preemption is possible, the entry threshold

for firm 1 is lower and the integration domain of ε1 is larger.
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(Out,Out)

In

imitate

InIn

Out

Out Out

Firm 1

Firm 2

always enterpreemptednever enter

(1) (2) (3) (4)

(Out,Out) (Out,In) (Out,In)

Firm 2's

Strategy:

Game Outcome:

Figure 3: STRATEGIES AND OUTCOMES IN THE EXTENSIVE FORM WHEN FIRM
1 CHOOSES "OUT"

Figure 4 incorporates these considerations into the (ε1, ε2) space. Now the (Out,In) area is

divided into two rectangles, each representing different strategy profiles, i.e. (3) "preempted"

and (4) "always enter" as named in Figure 3. The standard GHK procedure works as long

as the domain of integration is rectangular, or hyperrectangular in a general n-dimensional

space, and therefore, we can simulate the likelihood function by evaluating each subgame

perfect equilibrium separately.

To formalize the discussion so far in the general n-dimensional case, let s−i denotes the

subvector of strategy profile s that excludes component i, and let sBRi (x, εi, s−i; θ1) denotes

the function that determines the best response strategy of player i given x, εi, and s−i. Then,

the following result holds.

Proposition 1 For any strategy profile s∗ ∈ S,

{ε|se (x, ε; θ1) = s∗} = ×i
{
εi|sBRi

(
x, εi, s

∗
−i; θ1

)
= s∗i

}
.
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�2

�1

(In,Out)

(Out,In)-(4)(Out,Out)

(In,In)

Firm 2: never enter preempted always enter

(Out,In)-(3)

Figure 4: DIVIDING AN OBSERVED MARKET OUTCOME INTO STRATEGY PRO-
FILES

Proof. Player i’s best response strategy is uniquely determined by s−i, x, and εi. Thus,

given s∗−i and x, the set of εi under which s
∗
i is the best response strategy to s

∗
−i does not

depend on another player’s component of ε. Therefore, the set of ε under which s∗ solves

the game as a subgame perfect equilibrium can be written as a Cartesian product of each

player’s set of εi under which s∗i is the best response strategy to s
∗
−i.

The logic underlying this proposition comes directly from the Nash equilibrium con-

cept, not specifically from subgame perfection. What is important here is its implication

in empirical sequential games. When the econometrician ignores subgame perfection and

only considers observed actions, ao, the realized value of εj may change player j’s off-the-

equilibrium-path decisions, which in turn affects the set of εi under which player i chooses

aoi on her equilibrium path. In contrast, the proposition clarifies that this interdependency
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across players does not occur at the level of subgame perfect strategy profiles.

The main virtue of the proposition is that for any observed market outcome, ao, by

dividing the integration problem into the subgame perfect equilibria that rationalize ao, the

interdependency of integral intervals across players resolves and the standard GHK procedure

can be used. Specifically, to obtain θ̂ML using Monte Carlo integration, the estimation

procedure evaluates the GHK simulator for every strategy profile that rationalizes observed

outcome aot . Let S
o (a) ≡ {s ∈ S|a (s) = a}. Rewrite the individual likelihood in the original

maximum likelihood problem, (3), as

l (θ;x, ao) = Pr [ao = ae(x, ε; θ1)|θ2]

=
∑

s∈So(ao)
Pr [s = se(x, ε; θ1)|θ2] .

The second equality holds owing to the fact that any ε leads to a unique subgame perfect

equilibrium. The GHK simulator is used to evaluate Pr [s = se(x, ε; θ1)|θ2] for each s ∈

So (ao), following the standard procedure. The rest of this section sets out the procedure.

The probability that the event, s = se(x, ε; θ1), occurs can be rewritten using an integral.

Let n (ε,Ω) denote the probability density function of the multivariate normal variates, ε,

with zero mean and covariance matrix Ω. Then

Pr [s = se(x, ε; θ1)|θ2] =
∫
I [s = se(x, ε; θ1)]n (ε,Ω (θ2)) dε

=

∫ ∏
i

I
[
si = s

BR
i (x, εi, s−i; θ1)

]
n (ε,Ω (θ2)) dε.
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The last equality holds from the proposition. Covariance matrix Ω (θ2) takes a parametric

form of θ2 that allows identification. Defining a setΔi (x, s; θ1) ≡
{
εi|sBRi (x, εi, s−i; θ1) = si

}
,

Pr [s = se(x, ε; θ1)|θ2] =
∫ ∏

i

I [εi ∈ Δi(x, s; θ1)]n (ε,Ω (θ2)) dε.

The set Δi(x, s; θ1) represents the conditions that random shocks εi needs to satisfy for si

to be player i’s best response given s−1. The derivation of Δi(x, s; θ1) is based on finding

thresholds of εi by comparing payoffs across available strategies given s−1. There may be

a strategy that is dominated by another strategy regardless of the value of εi. For such a

dominated strategy si, Δi(x, si, s−i; θ1) = ∅, and strategy profile s that contains si occurs

with probability zero. Define S
o
(ao, θ1) ⊂ So (ao) as the set of strategy profiles each element

of which leads to market outcome ao and occurs with positive probability. Then the likelihood

function becomes

l (θ;x, ao) =
∑

s∈So(ao)
Pr [s = se(x, ε; θ1)|θ2]

=
∑

s∈So(ao,θ1)
Pr [s = se(x, ε; θ1)|θ2] .

In the following I focus on S
o
(ao, θ1) so that Δi(x, s; θ1) is not the empty set.

Before applying the GHK simulator, I introduce Cholesky decomposition. For the sim-

plicity of explanation, I assume the choice set of every player is binary. Then, after nor-

malization, ε ∈ RN and Ω (θ2) is a N × N matrix. Allowing more than two alternatives is

straightforward under the GHK procedure. Denote the lower-triangular Cholesky factor of
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Ω (θ2) as L so that LL′ = Ω(θ2). Denote η = (η1, ..., ηN) an N -dimensional multivariate

standard normal vector; η ∼ N (0, IN). Hence we can write ε = Lη ∼ N (0,Ω (θ2)). I intro-

duce some notation to simplify the following presentation. For a vector of indexes (1, ..., N),

the notation "< i" denotes the subvector (1, ..., i − 1) and "≤ i" denotes the subvector

(1, ..., i). Thus, for a vector ε, ε<i is the subvector of the first i − 1 components, and ε−i

is the subvector excluding component i. For a matrix L, Lii is the i-th diagonal elements

of L, and Li,<i and Li,≤i denote vectors containing the first i − 1 and i elements of row i,

respectively. Using this notation, εi = Li,≤iη≤i.

Then the probability expression becomes

Pr [s = se(x, ε; θ1)|θ2] =
∫
�N

∏
i

I [εi ∈ Δi(x, s; θ1)]n (ε,Ω (θ2)) dε

=

∫
�N

[∏
i

I
[
Li,≤iη≤i ∈ Δi(x, s; θ1)

]] · [∏
i

φ(ηi)

]
dη (7)

=

∫
�N

∏
i

[
I
(
Li,≤iη≤i ∈ Δi(x, s; θ1)

) · φ (ηi)] dη,
where φ() is the probability density function of the univariate standard normal distribution.

The simulated likelihood with the GHK simulator is constructed as follows. For each sim-

ulation, r = (1, ..., R), prepare an N -dimensional vector of independent uniform (0, 1) ran-

dom variables, ũr = (ũr1, ..., ũ
r
N). For u ∈ (0, 1) and a non-empty set Δ ⊂ R, define a function

q (u,Δ) which is a mapping that takes u into a truncated standard normal distribution which

ranges over Δ. For example, if Δ = (−∞, a], then q (·) is a mapping into a standard normal

random variate that is right-hand truncated at a, i.e. q (u, (−∞, a]) = Φ−1 (Φ (a) · u), where
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Φ (a) is the standard normal distribution function. For given x, s, θ1, L, and ũr, recursively

define a sequence of simulated η̃ri so as to satisfy si = s
BR
i (x, εi, s−i; θ1) for i = 1, ..., N as

η̃r1 ≡ q (ũr1, {η1|L1,1η1 ∈ Δ1 (x, s; θ1)})

η̃r2 ≡ q (ũr2, {η2|L2,1η̃r1 + L2,2η2 ∈ Δ2 (x, s; θ1)})

...

η̃rN ≡ q (ũrN , {ηN |LN,<N η̃r<N + LN,NηN ∈ ΔN (x, s; θ1)}) .

After obtaining simulated η̃r, the probability for εi to satisfy si = sBRi (x, εi, s−i; θ1), which I

denote Qsi , is recursively calculated. For Δ ⊂ R, define Ψ(Δ) ≡
∫
Δ
φ (η) dη. For example, if

Δ = (−∞, a], then Ψ(Δ) = Φ (a). Then

Qs1 ≡ Ψ({η1|L1,1η1 ∈ Δ1 (x, s; θ1)})

Qs2 (η̃
r
<2) ≡ Ψ({η2|L2,1η̃r1 + L2,2η2 ∈ Δ2 (x, s; θ1)})

...

QsN (η̃
r
<N) ≡ Ψ({ηN |LN,<N η̃r<N + LN,NηN ∈ ΔN (x, s; θ1)}) .

Repeat this simulation R times for each element of S
o
(ao, θ1) and define the likelihood

simulator as

l̂GHKR (θ;x, ao) ≡
∑

s∈So(ao,θ1)

1

R

R∑
r=1

[
Qs1 ·

N∏
i=2

Qsi (η̃
r
<i)

]
.

Using this simulator, the estimation procedure solves the following maximum simulated
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likelihood problem,

θ̂MSL−GHK = argmax
θ

{
1

T

T∑
t

ln l̂GHKR (θ;xt, a
o
t )

}
.

This maximum likelihood problem is solved using numerical derivatives. In searching θ̂, each

iteration should use the same simulation draws
(
ũ1, ..., ũR

)
to minimize standard errors.

4 MONTE CARLO EXPERIMENTS

4.1 Experimental Design

In this section I conduct Monte Carlo experiments and demonstrate the performance and

robustness of the estimation method presented in this paper. I pay particular attention to

potential simulation bias in the Monte Carlo integration and robustness with respect to the

decision order. The latter is especially important, as the precise decision order may not

be available in many empirical applications. Inspired by Berry (1992), I employ a simple

binary-choice entry game in the passenger airline industry, in which at most 6 heterogeneous

airline firms compete to serve different markets.

A market, defined as a city pair route that connects major U.S. cities, constitutes the unit

of observation. The six largest national carriers of differing sizes (as defined by the number

of existing served routes) non-cooperatively play a sequential entry game independently in

each market, based on predicted profitability in the market. The number of players in each

market varies from 1 to 6. Following the early literature on static entry games, I assume
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a one-shot game and make no distinction between entry by new entrants and "entry" by

incumbent firms. The econometrician has a cross section data set in which she observes

which firms chose to enter into each market in the following year, in addition to the list of

"potential entrants". Also available are variables in the base period that explain the potential

profitability from entry. These variables are either at the market level, firm level, or market-

firm level. In the base model, potential entrants are assumed to make their decisions in order

of size, possibly reflecting advantages of access to the regulation bureaucracy and airport

infrastructure.

Ten artificial data sets are generated using pseudo-random numbers. Each data set

consists of 3,000 market observations and around 8,300 market-firm observations on average

and contains information on the list of potential entrants, covariates, and generated random

shocks in each market. Throughout all the experiments conducted in this study, I use the

same ten data sets for better compatibility of the simulation results. The experiments I

conduct vary in three aspects. First, I investigate the effects of changes in strategic effect

and decision order. These changes in the data generating process alter market outcomes in

the data, i.e. the entry decision of each firm in each market, which is generated by solving the

game. Second, to check the computational performance, I examine the effects of changing

the simulation framework, such as the number of simulation draws. Third, to study the

effect of misspecification, I impose restrictions on estimated models.
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4.2 Model and Data Generating Process

In market t, firms (1, ..., Nt) play the entry game. Firm i in market t chooses to enter if it

expects a non-negative profit. The expected profit from entry, πit, is

πit (n) = x
′
itβ − δ ln (n) + εit

where xit is a vector of covariates that are specific to either market t, firm i, or firm-market

pair (i, t), εit is the firm-market specific random component, and n is the number of firms

that choose to enter market t. The key parameter, δ, captures the strategic effect. For

simplicity, the strategic effect is assumed to depend only on the number of competitors, not

their identity. The random term εit is not observed to the econometrician but is known to

every firm, and follows a multivariate normal distribution: εt = (ε1t, ..., εNt,t)
′ ∼ N (0,Ωt).

The payoff when a firm does not enter is normalized to 0. The econometrician desires to

learn about β, δ, and Ω based on observed entry decisions and xit.

The covariate vector contains the following variables: two market-specific continuous

variables, population (pop) and distance (dist); a firm-market specific continuous variable,

past profitability in neighboring markets (pastp); a firm-market level dummy variable that

indicates the firm’s presence at both airports of the route in the previous period, city2; and

nroute, a firm-specific variable for the number of existing routes in the country (in 100’s)

that indicates the size of each firm and determines the decision order.

Data on the pool of entrants and covariates are generated using pseudo-random num-

25



bers. For each of 3,000 markets, I first generate market population, pop, the number of

potential entrants, NCity1, and the number of potential entrants with a presence at two

airports, NCity2 based on trivariate normal distribution. These three variables are assumed

to be positively correlated with covariance matrix

⎡⎢⎢⎢⎢⎢⎢⎣
1.0 0.3 0.3

0.3 1.0 0.6

0.3 0.6 1.0

⎤⎥⎥⎥⎥⎥⎥⎦ . For pop, generated
normal variable values are transformed to a log-normal variable with mean 4.0 and standard

deviation 1.0. To constrain the number of players in each market between 1 and 6, the

two generated normal variables are transformed into truncated normal distributions. For

NCity1, the generated normal variable is transformed to a truncated normal variable with

mean 3.0 and standard deviation 1.5 and with the truncation points at 1.0 and 7.0. Like-

wise, for NCity2, the third generated normal variable is transformed to a truncated normal

variable with mean 1.5 and standard deviation 1.0 with truncation points at 0.0 and 7.0.

Both variables are then rounded down to integers. To guarantee NCity2 ≤ NCity1, NCity2

is replaced with the value of NCity1 where NCity2 > NCity1. The numbers of existing

routes, nroute, are set as (2.8, 2.5, 2.0, 1.7, 1.1, 0.75) for the six airlines. In each market,

potential entrants are randomly chosen up to the number of NCity1 with probabilities pro-

portional to nroute. This determines the list of players in each market. Potential entrants

with a presence at both airports of the market are also randomly chosen up to the number

of NCity2 (each firm with same probability). This generates the dummy variable, city2.

The two remaining variables, dist and pastp are independently generated from the standard

normal distribution.
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The error component εit is also generated for the ten data sets and is kept fixed throughout

all experiments. The covariance matrix of the error component, Ωt, is assumed to be aNt×Nt

matrix with diagonal elements, 1.0, and off-diagonal elements, ρ2. In other words, εit consists

of two independent standard normal errors, (νit, νt), as

εit =
√
(1− ρ2)νit + ρνt

where ρ is a correlation among the error terms within a market and νt measures a market-

specific factor that makes entry more attractive for all firms in the market. The correlation,

ρ, is set to be 0.7, which implies νit and νt have about the same weights in the error term.

The coefficients on (constant, pop, dist, pastp, city2, nroute) are set to be (−5.0, 1.2, 0.0,

0.4, 1.5, 0.0). To highlight the misspecification bias, the coefficient on firm size, nroute, is

set to zero so that the firm size affects profits not directly, only via the decision order. Once

I specify these parameter values, the value of strategic effect parameter, δ, and the decision

order, I can solve the game by backward induction and obtain data on market outcome. The

default specification is δ = 2.0 and assumes that firms make decisions in order of nroute. I

also conduct experiments with δ = 1.0 to study the effect of the degree of strategic effect

and experiments with randomized decision order to study the robustness of the proposed

method with respect to decision order.

Tables 2 and 3 report descriptive numbers from one of the 10 artificial data sets as an

example. Similar patterns are observed in the other data sets. The equilibrium number of

entrants presented in the tables is generated with two different values of δ, 1.0 and 2.0. The
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majority of the 3,000 markets have two or three potential entrants. It is most likely that

markets end up with one entrant, with no entrant being the second likely outcome. The

higher value of δ magnifies the competitive effect and leads to fewer entrants.

Table 2: EXAMPLE OF DATA SET: DISTRIBUTION OF MARKETS BY NUMBER OF
ENTRANTS

Outcome number Number of potential entrants
of entrants 1 2 3 4 5 6 Total

Total 556 794 846 528 215 61 3,000
(a) δ = 1.0 0 317 244 176 59 14 6 766

1 239 368 296 161 64 8 1,201
2 0 182 230 140 55 9 612
3 0 0 144 92 40 11 272
4 0 0 0 76 24 8 104
5 0 0 0 0 18 8 34
6 0 0 0 0 0 11 11

(b) δ = 2.0 0 317 244 176 59 14 6 816
1 239 442 429 250 102 15 1,477
2 0 108 187 149 66 21 531
3 0 0 54 52 20 10 136
4 0 0 0 18 12 4 34
5 0 0 0 0 1 3 4
6 0 0 0 0 0 2 2

Since the pool of potential entrants is constructed randomly but with probability propor-

tional to firm size, firm 1 appears in the data set most frequently and firm 6 least frequently.

When δ = 1.0, the early-mover advantages are smaller, so the entry propensity does not

vary much across firms, whereas, when δ = 2.0, the larger early-mover advantages reduce

the entry propensity of followers.
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Table 3: EXAMPLE OF DATA SET: NUMBER OF OBSERVATIONS AND ENTRY
PROFITABILITY BY AIRLINES

Airline ID Number of Entry frequency
observations δ = 1.0 δ = 2.0

1 2,091 1,005 48.1% 930 44.5%
2 1,931 934 48.4% 779 40.3%
3 1,589 724 45.6% 565 35.6%
4 1,379 628 45.5% 448 32.5%
5 803 361 45.0% 249 31.0%
6 442 205 46.4% 144 32.6%

Total 8,235 3,857 46.8% 3,115 37.8%

4.3 Results of the Experiments

The first set of Monte Carlo experiments is based on the correct model specification and

concerns about the size of potential simulation bias inherent in the method of simulated

likelihood for a small number of simulation draws. A debate exists in the literature on the

choice between the method of simulated likelihood and the method of simulated moments.

While the method of simulated likelihood may suffer from simulation bias given a fixed

number of simulation draws, it is simple to implement, numerically stable, and potentially

efficient under the correct specification. Geweke, Keane, and Runkle (1997) and McFadden

and Ruud (1994) provide evidence of the instability of the method of simulated moment

estimator. Nevertheless, the number of simulation draws that will lead to a sufficiently

small bias is an empirical question specific to each application, and in particular depends on

the complexity of the covariance structure of error terms. Table 4 compares the estimates

of four different simulation draw settings. The data generating process assumes δ = 2.0.

The first experiment makes 20 independent simulation draws, while the second experiment

uses antithetic sampling to make 20 simulation draws, i.e. 10 symmetric replications of 10
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independent pseudo-random draws to make simulation draws more systematic. The results

show that, first, even with only 20 independent simulation draws, the comparison of the

true parameter values and estimated values indicates overall accuracy given the estimated

standard errors. Second, however, the use of antithetic sampling considerably improves the

model fit in terms of the average log likelihood value. Third, increasing the number of draws

to 40 and 300 shows a further improvement in the fit, though the improvement is rather small.

This pattern is consistently observed in simulations with different values of parameters and

different seeds of pseudo-random number generator. Since the covariance structure in the

present model is rather simple, the result shows accuracy even with a very small number of

simulation draws, albeit small simulation bias is observed. Though not shown here, for a

smaller value of ρ, i.e. a smaller market level random effect, the number of simulation draws

required to generate the same level of accuracy is even smaller, since the distribution of each

random error is closer to the univariate standard normal distribution.

Table 4: POTENTIAL SIMULATION BIAS: δ = 2.0
20 draws no antithetics 20 draws 40 draws 300 draws

θ DGP θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE
cons −5.0 −4.990 0.145 0.140 −4.982 0.146 0.142 −4.978 0.146 0.144 −4.977 0.147 0.145
pop 1.2 1.193 0.032 0.024 1.197 0.033 0.023 1.197 0.033 0.022 1.198 0.033 0.023
dist 0.0 0.001 0.011 0.010 0.001 0.011 0.010 0.001 0.011 0.010 0.001 0.011 0.010
pastp 0.4 0.389 0.018 0.023 0.388 0.018 0.023 0.388 0.018 0.023 0.388 0.018 0.023
city2 1.5 1.502 0.041 0.033 1.496 0.041 0.034 1.495 0.041 0.034 1.494 0.041 0.034
nroute 0.0 0.004 0.032 0.035 −0.002 0.032 0.036 −0.003 0.032 0.036 −0.004 0.032 0.036
δ 2.0 1.992 0.074 0.068 2.009 0.075 0.067 2.012 0.075 0.070 2.016 0.075 0.069
ρ 0.7 0.691 0.028 0.031 0.701 0.027 0.030 0.703 0.027 0.030 0.705 0.027 0.031
LogL −3145.26 −3141.20 −3140.96 −3140.57

Note: θ ≡ parameter, DGP ≡ data generating value, θ̂ ≡ average parameter estimate, ASE ≡ average asymptotic
standard error, MSE ≡ root mean square error, LogL ≡ average log likelihood value.

The next series of experiments examines the effect of misspecification by imposing re-
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strictions on the correctly specified model (Table 5). The data generating process assumes

δ = 2.0 and each estimation makes 40 simulation draws using antithetic sampling. The

first restricted model assumes that the econometrician has no correct knowledge about the

decision order so estimates the model imposing a completely random decision order. The

lack of decision order information reduces the model fit and leads to significant bias of most

estimates. The serious underestimation of δ and ρ and the overestimation of nroute are

particularly notable. In the data generating process, early movers enjoy their advantages,

but without correct information on the decision order, these advantages are not captured as

a strategic effect in δ and instead are captured in the positive coefficient of nroute, which

determines the decision order but has no direct effect on payoff in the true data generating

process. Inability to well explain the entry decision of each firm results in higher weights on

individual random components, which leads to the underestimation of ρ. The two variables

that have no correlation with the decision order, dist and pastp, are nevertheless precisely

estimated, which is the case for all the experiments conducted below. The next restricted

model assumes the correct specification of the decision order but imposes zero market level

random effect, ρ = 0. Since this restriction removes the correlation between multivari-

ate normal variates, high-dimensional integration is no longer necessary and the estimation

procedure is significantly simplified. This misspecification, however, leads to considerable

reduction in the model fit and significant bias of estimates. The strategic effect, δ, is under-

estimated because ignoring market random errors that generate correlation between entry

decisions of firms blurs the true harshness of strategic interaction. The last restricted model
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assumes no market error and no interaction effect (δ = 0 and ρ = 0). These restrictions

degenerate the model to a probit model. The model fit is the worst in this table. Ignoring

early mover advantages again leads to a spurious positive estimate of the size effect.

Table 5: RESTRICTED MODELS: δ = 2.0, 40 SIMULATION DRAWS
Full Model No Order Info No Market Error Probit

θ DGP θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE
cons −5.0 −4.978 0.146 0.144 −5.338 0.140 0.359 −5.167 0.128 0.217 −4.425 0.125 0.588
pop 1.2 1.197 0.033 0.022 1.070 0.031 0.132 1.060 0.026 0.142 0.623 0.021 0.577
dist 0.0 0.001 0.011 0.010 0.001 0.010 0.009 0.000 0.008 0.010 0.001 0.010 0.007
pastp 0.4 0.388 0.018 0.023 0.402 0.019 0.016 0.416 0.019 0.025 0.385 0.018 0.023
city2 1.5 1.495 0.041 0.034 1.565 0.038 0.072 1.619 0.038 0.124 1.560 0.036 0.066
nroute 0.0 −0.003 0.032 0.036 0.269 0.028 0.270 0.173 0.031 0.175 0.371 0.027 0.372
δ 2.0 2.012 0.075 0.070 1.472 0.070 0.531 1.394 0.052 0.609
ρ 0.7 0.703 0.027 0.030 0.488 0.039 0.214
LogL / BIC −3140.96 / 6350.32 −3226.62 / 6521.64 −3211.20 / 6483.21 −3598.46 / 7250.13
Note: θ ≡ parameter, DGP ≡ data generating value, θ̂ ≡ avg parameter estimate, ASE ≡ avg asymptotic standard
error, MSE ≡ root mean square error, LogL ≡ avg log likelihood value, BIC ≡ avg Bayesian information criterion.

Table 6 reports the results of the same comparison for δ = 1.0, which reflects a weaker

strategic effect. Overall the results are consistent with the previous table. One notable

difference is that misspecifying and ignoring the sequential interaction leads to much less

reduction in the model fit.

Table 6: RESTRICTED MODELS: δ = 1.0, 40 SIMULATION DRAWS
Full Model No Order Info No Market Error Probit

θ DGP θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE θ̂ ASE MSE
cons −5.0 −4.863 0.133 0.163 −5.003 0.131 0.096 −4.876 0.119 0.161 −4.739 0.126 0.288
pop 1.2 1.171 0.030 0.037 1.143 0.030 0.060 1.026 0.024 0.175 0.893 0.022 0.308
dist 0.0 0.001 0.010 0.011 0.001 0.010 0.011 0.001 0.008 0.011 0.001 0.008 0.010
pastp 0.4 0.391 0.018 0.021 0.398 0.018 0.018 0.417 0.018 0.025 0.421 0.019 0.028
city2 1.5 1.472 0.041 0.044 1.510 0.039 0.033 1.597 0.037 0.102 1.638 0.038 0.144
nroute 0.0 −0.005 0.028 0.026 0.073 0.026 0.077 0.098 0.029 0.102 0.151 0.028 0.154
δ 1.0 1.016 0.064 0.039 0.888 0.059 0.118 0.462 0.036 0.539
ρ 0.7 0.699 0.027 0.020 0.650 0.028 0.056
LogL / BIC −3368.05 / 6804.50 −3376.77 / 6821.95 −3447.04 / 6954.89 −3432.56 / 6918.33
Note: θ ≡ parameter, DGP ≡ data generating value, θ̂ ≡ avg parameter estimate, ASE ≡ avg asymptotic standard
error, MSE ≡ root mean square error, LogL ≡ avg log likelihood value, BIC ≡ avg Bayesian information criterion.

32



The next set of experiments introduces various degrees of randomness in the decision

order. In many potential applications the econometrician may have a priori information

that reflects the true decision order only approximately. This limited knowledge about the

true decision order motivates this experiment. Specifically, while the estimated models still

assume that firms make decisions in order of nroute, I modify the data generating process

in such a way that the true decision order is determined by a weighted sum of nroute and

a random variable that follows a uniform distribution with the same mean and variance as

nroute. Thus, the weight of this uniform random variable captures the level of imprecision of

the decision order information used in the estimation. Table 7 reports the results for different

degrees of randomness. The results show that when the econometrician correctly specifies

more than 90 percent of the decision order, the differences between the estimated coefficients

and their population values tend to be smaller than the estimated standard error. The fact

that the model fit reduces with randomness in the decision order suggests the potential use of

non-nested model selection tests. Estimating and comparing models with different decision

order assumptions allows us to examine which decision order best fits the data.

5 DISCUSSION AND EXTENSIONS

5.1 The Perfect Information Assumption

I use the perfect information assumption to guarantee a unique subgame perfect equilib-

rium. The uniqueness is necessary to specify the domain of integration in the ε space for
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Table 7: EFFECT OF RANDOMNESS IN DECISION ORDER
Randomness misspecified δ (δ0 = 2.0) ρ (ρ0 = 0.7)

in sequence order (%) δ̂ ASE MSE ρ̂ ASE MSE LogL
0% 0.0% 2.012 0.075 0.070 0.703 0.027 0.030 −3140.96
10% 0.0% 2.012 0.075 0.070 0.703 0.027 0.030 −3140.96
20% 1.9% 2.006 0.075 0.065 0.699 0.028 0.028 −3141.24
30% 13.4% 1.939 0.075 0.098 0.667 0.030 0.047 −3162.22
40% 26.0% 1.876 0.076 0.140 0.640 0.032 0.069 −3188.38
50% 37.1% 1.823 0.076 0.192 0.623 0.032 0.086 −3209.99
60% 45.7% 1.786 0.077 0.220 0.608 0.033 0.097 −3228.39
70% 52.0% 1.737 0.077 0.266 0.590 0.034 0.115 −3245.10
80% 56.9% 1.701 0.077 0.304 0.571 0.036 0.133 −3264.87
90% 60.7% 1.685 0.077 0.321 0.568 0.036 0.137 −3272.85
100% 63.7% 1.682 0.077 0.323 0.570 0.036 0.135 −3275.09

Note: misspecified order indicates how many observations are assigned with different

decision order. δ̂, ρ̂ ≡ avg parameter estimate, ASE ≡ avg asymptotic standard error,
MSE ≡ root mean square error, LogL ≡ avg log likelihood value, 40 simulation draws
using antithetic sampling.

each strategy profile that rationalizes the observed game outcome, without making a strong

(often ad hoc) assumption on the equilibrium selection mechanism. Admittedly the per-

fect information assumption is strong in many applications. Even though the main point

of introducing sequentiality in empirical studies is to study implications of publicly known

decision order and publicly known decision history, results might be affected by possibilities

that some players may move simultaneously, there may be some private information, and

"nature" may bring in uncertainty. Relaxing the perfect information assumption is possible

as long as the uniqueness of an equilibrium is guaranteed for any possible values of random

shocks, ε. In general the following approaches potentially help relaxing the perfect informa-

tion assumption. First, we can specify the game and payoff function in such a way that a

unique subgame perfect equilibrium is guaranteed. Second, focusing on a set of equilibria

might provide uniqueness. An example is an entry game in which the identity of the entering
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firms is not uniquely determined but the number of entrants is uniquely determined (Berry

(1992)). Third, an equilibrium concept that is stronger than subgame perfection may help to

avoid the multiplicity of equilibria. For example, sequential equilibrium (Kreps and Wilson

(1982)) may reduce the set of subgame perfect equilibrium strategy profiles when decision

nodes that are never reached exist (Litan and Pimienta (2008)). Fourth, some equilibrium

selection mechanism can be assumed. The use of the notions of Pareto and risk-dominance

may provide a reasonable option if it leads to a unique equilibrium.

5.2 Decision Order

The entry game example in the previous section assumes that each firm makes a one-shot

decision sequentially. In general, the proposed estimation framework allows players to take

multiple turns alternately. In simulating the likelihood function, all turns of player i must

be simulated at once, as the strategy of each player consists of a decision at every decision

node.

A more fundamental issue on decision order is the empirical analogue of decision order.

The proposed estimation framework utilizes a publicly known exogenous decision order. In

some applications, even if sequential interaction appears likely, such decision order may not

be available or may be endogenously determined. The above Monte Carlo experiments illus-

trate that misspecifying the true decision order may lead to significant bias of the estimate

of strategic effect. If the game is correctly specified except for decision order, we can draw

an inference about not only structural parameters but also decision order. Specifically, the
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econometrician can estimate different models, each with a different imposed decision or-

der, then conduct a model selection test for non-nested specifications. Advancing this idea

further, estimation of the population decision order by selecting the decision order that max-

imizes the likelihood function may be a possibility. The statistical properties of an estimated

decision order and how to deal with the discontinuity that arises from maximization over

decision orders are left for future research.13

5.3 Computation

For applications with relatively simple games such as the entry game example in this paper,

the computation burden of the proposed estimation procedure is fairly manageable. This is

due to the high performance of the GHK simulator, and also because, while solving a sequen-

tial game requires a large number of calculations, it does not require much multiplication

and division. For example, conducting all the Monte Carlo experiments shown in the tables

of this paper only requires a half day or so with a standard stand-alone desktop computer.14

However, increasing the number of players, the number of turns, or the number of alterna-

tives increases the dimension of integration, which may quickly make computation infeasible.

Although applications with many players, many alternatives, and many turns generally entail

less value in the structural estimation of sequential interaction, middle-sized games with a

13Endogenizing the order of decision is another possible extension. This class of games is called a leadership
game or a commitment game (Hamilton and Slutsky (1990)) and has attracted some theoretical applications
(e.g. Kempf and Rota-Graziosi (2010)). These games endogenize the order by introducing a pre-play stage
that determines the order of decision. Consequently, these games are no longer perfect information games,
but as long as a unique outcome is secured, estimation may be possible as discussed in the previous subsection.
However, the empirical analogue of leadership games seems to be rather unclear.
14Most of the time is spent on the experiments with 300 simulation draws.
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complex covariance structure may considerably benefit from the following computation tech-

niques that reduce computational burden. First, structures of payoff function and strategic

interaction implied by assumed economic theory can be utilized to skip the unnecessary part

of the calculation in the backward induction algorithm. In the above entry game example,

the assumed negative effect of a rival’s entry excludes one strategy ("imitate" in Figure 3)

from the simulation procedure. In Maruyama (2011) I exploit the non-increasing property

of the profit function in the number of entering rival firms and reduce the computation time

by more than 95 percent. As a result, in the estimation of sequential games with at most 16

heterogeneous firms, the computational burden is not found to be a significant problem.

Second, variance reduction techniques will enhance the performance of the simulator. The

Monte Carlo experiments above show the gain from antithetic sampling. Instead of using

pseudo-random numbers, systematic simulation draws by quasi-Monte Carlo sampling, such

as Halton sequences, and sampling methods based on orthogonal arrays will produce better

performance (Train (2003), Sándor and András (2004)). Lastly another potential avenue is

the use of a more efficient importance-sampling algorithm to enhance the GHK simulator

(Liesenfeld and Richard (2010)).

6 CONCLUSION

In this paper I study the estimation of finite sequential games with perfect information and

propose a computationally practical estimation method that overcomes high-dimensional

truncated integration with complication due to sequential strategic interaction. I show that
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separate evaluation of each subgame perfect strategy profile that rationalizes the observed

equilibrium outcome allows us to use the GHK simulator, the most widely used importance

sampling probit simulator, for Monte Carlo integration, by controlling for unobserved off-

the-equilibrium-path strategies. The method allows researchers to empirically study strate-

gic interactions in a large asymmetric game. Specifically, researchers can draw inferences

on strategic complementarity and perform counterfactual simulations that take sequential

strategic interactions into account. Monte Carlo experiments for a simple entry game exam-

ple demonstrate the performance and robustness of the proposed method and the potential

bias resulting from misspecification.
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