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Abstract

We develop a nonparametric approach that allows for discrimination among alter-
native models of entry in first-price auctions. Three models of entry are considered:
those of Levin and Smith (1994), Samuelson (1985), and a new model in which the
information received at the entry stage is imperfectly correlated with bidder valuations.
We derive testable restrictions of these models based on how the pro-competitive se-
lection effect shifts bidder valuation quantiles in response to an increase in the number
of potential bidders.
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1 Introduction

Entry in auctions is an important topic. It is clear that equilibrium allocations and effi-
ciency are affected by who enters and why. At present, however, there is no consensus on
what model of entry best describes what occurs in most markets. Recent empirical papers,
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recognizing that it is necessary to endogenize entry in modeling auctions, have offered struc-
tural models. Since one attractive feature of the auction literature is that nonparametric
identification can be achieved under certain assumptions, it would be ideal if models of en-
try could similarly be distinguished nonparametrically. The main contribution of this paper
is to offer a more general model of entry that nests those proposed in earlier theoretical
work; and then to offer nonparametric tests of these models. To the best of our knowledge,
this is the first paper to adopt a nonparametric approach first developed in Laffont and
Vuong (1996) and Guerre, Perrigne, and Vuong (2000, GPV hereafter) to endogenous entry
in first-price auctions.

We consider two models of entry proposed in the theoretical literature, Levin and Smith
(1994, LS hereafter) and Samuelson (1985, S hereafter), as well as a new model, the affiliated
model of entry (AME).Most of the empirical auction literature is based on the LS model.
In that model, potential bidders are initially uninformed about of their valuations of the
good, but may become informed and then submit a bid at a cost. In equilibrium, potential
entrants randomize their entry decisions and earn zero expected profit.

In the S model, bidders make their entry decisions after they have learned their valua-
tions. The entry cost is interpreted solely as the cost of preparing a bid, and bidders choose
to enter if their valuations exceed a certain cutoff. The set of entrants is therefore a select
sample biased towards bidders with higher valuations.

Both the LS and S models are stylized to capture the amount of information available
to bidders at the entry stage: no information is available in LS, whereas the information is
perfect in S. However, the S model also has what we call the selection effect, which has not
been studied previously. We show that as the number of potential bidders increases, those
who enter, tend to have larger valuations.

Our new AME model also allows for selective entry, but dispenses with the stark as-
sumption that potential bidders know their valuations perfectly at the entry stage, as in S,
thus sharing with the LS model a costly valuation discovery stage. This model formally
nests the LS model. At the entry stage, the potential bidders each observe a private signal
correlated with their as yet unknown valuation of the good. Based on this private signal, a
bidder may learn the valuation upon incurring entry cost k. A bidder who has entered will
bid only if the valuation exceeds the reserve price. Although the signals may be informative
about the valuations, unlike in the S model, they are not perfectly informative. Both the
LS and S models can be viewed as limit cases of our model: the LS model corresponds to
uninformative signals, whereas the S model corresponds to perfectly informative signals.

How can one test for the presence of the selection effect in first-price auctions with
endogenous entry? We build on the insight in Haile, Hong, and Shum (2003) and propose
the use of exogenous variation in the number of potential bidders, N , as the basis for such
a test.1 Let Q∗ (τ |N) be the τ -th quantile of active bidders’ valuations conditional on N .

1Haile, Hong, and Shum (2003) consider a different model in which bidders’ valuations may have a
common component.
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We show that, in the AME model, the selection effect manifests itself as the effect of N on
Q∗ (τ |N): in the face of greater potential competition, some potential entrants who may be
less efficient in the auction will choose not to enter, and accordingly, the quantiles of those
who do enter increase: Q∗ (τ |N) ≤ Q∗ (τ |N ′) for N ′ > N. We show that the inequality
is strict in the S model, while Q∗ (τ |N) does not depend on N in the LS model, so that
there is no selection effect. Following the approach of GPV, we show that the quantiles,
Q∗ (τ |N), can be nonparametrically identified in any AME model if the number of potential
bidders and all bids in each auction are observed. Our tests are based on an asymptotically
normal estimator of Q∗ (τ |N) that we develop by following an approach similar to Marmer
and Shneyerov (forthcoming).

Models that are in some respects similar to our AME have been considered in the
literature. For example, Hendricks, Pinkse, and Porter (2003) estimate a bidding model
for off-shore oil. They sketch a model of entry that is in some respects similar to ours,
however, with a common-value component. The focus of their paper, however, is not on
entry but rather on testing an equilibrium model of bidding. This model is also outlined in
the concluding section of Ye (2007).

A closely related paper is Li and Zheng (2009), who develop Bayesian semiparametric
approach for the LS and S models.2 They focus on estimation, and address neither non-
parametric identification nor nonparametric testing of the entry models. In this regard, our
results are complementary.

An important contribution of Li and Zheng (2009) is that they identify the entry effect.
This effect exists in addition to the usual competition effect: as the number of potential
bidders increases, the probability of entry falls, which may lead to a reduction in the auction
price. Using data on lawn mowing contracts, they estimate a variant of the LS model, and
find that, under certain conditions, it may be optimal to restrict the competition. In fact,
their counterfactual experiment shows that, for a typical auction, it is not optimal to allow
more than three bidders to participate.

The entry effect is counter-competitive and therefore operates in the direction opposite
to the pro-competitive selection effect. Which of the two is dominant depends on the
application. We illustrate our approach using the same data as in Li and Zheng (2009).
For a certain subset of auctions, our nonparametric test favors the new AME we propose.
We then find that, in this application, the selection effect can overturn the entry effect.

The selection effect identified in this paper has been subsequently studied in Einav
and Esponda (2008), Roberts and Sweeting (2010b,a), and Coviello and Mariniello (2010).
Einav and Esponda (2008) and Roberts and Sweeting (2010a) investigate the effects of
bidder asymmetries; the latter paper considers second-price and open outcry auctions.
Roberts and Sweeting (2010b) study sequential sales mechanisms in an environment with
selective entry. Coviello and Mariniello (2010) explore how information revelation interacts
with selective entry in Italian public procurements.

2Li (2005) develops a general parametric approach for auctions with entry.
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Endogenous entry in auctions has been a subject of a number of recent papers. Bajari
and Hortacsu (2003), for example, have investigated entry and bidding in eBay auctions
using a common value framework. They implemented a Bayesian estimation method em-
ploying a dataset of mint and proof sets of US coins. The magnitude of the entry cost is
estimated, and expected seller revenues are simulated under different reserve prices. Athey,
Levin, and Seira (2011) estimate a model of timber auctions with costly entry. The entry
cost is assumed to be the private information of potential bidders, who are selected into
an entrant pool based on their entry cost draws. Krasnokutskaya and Seim (forthcoming)
explore bid preference programs and bidder participation using California data. The latter
paper also adopts the LS model, but in an asymmetric context in which small firms are
treated preferentially. Bajari, Hong, and Ryan (2010) propose a parametric likelihood-
based estimation strategy in the presence of multiple equilibria, and apply it to highway
procurement auctions, using the LS model.

The paper proceeds as follows. Section 2 presents the AME and discusses the selection
effect. Section 3 contains results on nonparametric identification. Our testing framework is
presented in Section 4. Section 5 contains an empirical application, and Section 6 concludes.

2 Affiliated model of entry

In our model, N risk-neutral potential bidders in a first-price auction observe (at no cost) a
signal that is correlated with the true value of the object, and make costly entry decisions
based on this signals. The model nests as special cases the LS model and the S model,
as noted in the introduction. The LS model arises when the signals and valuations are
statistically independent. The S model arises when the signals are perfectly informative
about valuations.

The affiliated model is formally described as follows. The game begins with the entry
stage at which nature draws signal and valuation tuples (Vi, Si) independently from the
same distribution with joint cumulative distribution function (CDF) F (v, s) and proba-
bility density function (PDF) f (v, s) with support [v, v̄]2. We assume that the marginal
distributions of Vi and Si are the same, and the marginal CDF is denoted as F (·).3 At
the entry stage, potential bidders privately observe their Si’s at no cost, but they do not
observe Vi. The latter become observable to those potential bidders who have paid an
entry cost k ≥ 0. The bidders who have paid this cost are called entrants, and only they
are eligible to bid. Moreover, only those with valuations at or above the reserve price r
actually submit a bid. These bidders are called active. The reserve price is assumed to be
binding, r ∈ (v, v̄).4

3This is a normalization and is without loss of generality. Any strictly increasing transformation of the
signals is observationally equivalent. We adopt this normalization because, in the S model, the signals are
perfectly informative.

4This case is relevant in many applications. In practice, sellers frequently use reserve prices.
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The entry stage is followed by the bidding stage. Active bidders simultaneously and
independently submit sealed bids. They do not know the number of active bidders, only the
number of potential bidders, N . The good is awarded to the highest bidder. We assume
that the signals are informative and that higher signals are “good news”. Formally, we
assume affiliation.5

Assumption 1 (Affiliation). For each bidder i, the variables (Vi, Si) are affiliated: for any
z = (v, s) and z′ = (v′, s′),

f
(
max

{
z, z′

})
f
(
min

{
z, z′

})
≥ f (z) f

(
z′
)
. (1)

Both the LS and S models can be viewed as limit cases of the AME. The former is
formally nested since it corresponds to signals being independent of the valuations; this
would effectively purify the mixed-strategy equilibrium. The latter corresponds to the
other extreme, namely, perfectly informative signals.

We assume that
N ∈ N ≡

{
N,N + 1, ..., N̄

}
,

where 2 ≤ N < N̄ . With these preliminaries, a symmetric (perfect Bayesian) AME equi-
librium is characterized in the following proposition.

Proposition 1. A unique symmetric AME equilibrium is characterized by a signal cutoff
s̄ (N) such that only bidders with Si ≥ s̄ (N) enter the auction, and a strictly increasing,
continuously differentiable bidding strategy B (·|N) : [r, v̄] →

[
r, b̄ (N)

]
given by the solution

of the differential equation

B′ (v|N) = (v −B (v|N))
(N − 1) (1− F (s̄ (N))) f (v|Si ≥ s̄ (N))

F (s̄ (N)) + (1− F (s̄ (N)))F (v|Si ≥ s̄ (N))
, (2)

subject to the boundary condition B (r|N) = r. The expected profit from bidding Π (s, s̄, N)
as a function of the observed signal Si = s (gross of the entry cost) is given by

Π (s, s̄, N) =

ˆ v̄

r
(1− F (v|s)) [F (s̄) + (1− F (s̄))F (v|Si ≥ s̄)]N−1 dv. (3)

The function Π (s, s̄, N) is non-decreasing in s and increasing in s̄. Also, Π (s, s,N) is
continuous and strictly increasing in s, and we further have the following:

(a) If Π (v̄, v̄, N) =
´ v̄
r (1− F (v|s)) dv < k, then there is no entry: s̄ (N) = v̄.

(b) If k ≤ Π (v, v,N), then there is entry with probability 1, or “full” entry: s̄ (N) = v.
5This definition follows Milgrom and Weber (1982).
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(c) If Π (v, v,N) < k < Π (v̄, v̄, N), then there is “partial” entry: s̄ (N) ∈ (v, v̄) is deter-
mined as the unique s̄ that solves

k = Π (s̄, s̄, N) . (4)

(d) The cutoff s̄ (N) is constant on {N ∈ N : N ≤ N∗}, and is strictly increasing on
{N ∈ N : N ≥ N∗}, where

N∗ = max {N ∈ N : Π (v, v,N) ≥ k} (5)

and N∗ = N if Π (v, v,N) ≤ k.

Because the tuples (Vi, Si) are independently drawn across bidders, the signals are
irrelevant at the bidding stage and they do not appear as arguments in the bidding strategy.
They are only relevant for the entry decisions: the equilibrium probability of entry is equal
to 1 − F (s̄ (N)), and the distribution of the number of active bidders is binomial, with
parameters N and 1−F (s̄ (N)). The differential equation (2) follows from the equilibrium
characterization of an auction with a random number of bidders in Harstad, Kagel, and
Levin (1990), whereas that of the equilibrium cutoff s̄ follows arguments similar to those in
LS.

In the S model, the valuations and signals are perfectly correlated, Si = Vi, and thus a
joint density f (v, s) does not exist. Nevertheless, this model can be thought of as a limit
case of the affiliated model. In particular,

F (v|s) =

{
1 , v ≥ s
0 , v < s

, F (v|Si ≥ s) =

{
F (v)−F (s)

1−F (s) , v ≥ s
0 , v < s

. (6)

Substituting (6) into (3) yields

Π (s, s̄, N) = (s̄− r)F (s̄)N−1 +

ˆ s

s̄
F (v)N−1 dv for s ≥ s̄. (7)

In an equilibrium with entry, s̄ (N) is determined as the unique solution of the equation

(s̄− r)F (s̄)N−1 = k. (8)

Its equilibrium is formally characterized in the following proposition, which in many
respects parallels Proposition 1.

Proposition 2 (Samuelson (1985)). A unique symmetric equilibrium of the S model is char-
acterized by a signal cutoff s̄ (N), such that only bidders with Si ≥ s̄ (N) (or Vi ≥ s̄ (N))
enter the auction, and a strictly increasing, continuously differentiable bidding strategy
B (·|N) : [s̄ (N) , v̄] →

[
r, b̄ (N)

]
given by the solution of the differential equation (2) subject

to the boundary condition B[s̄ (N) |N ] = r. The expected profit from bidding Π (s, s̄, N) as a
function of the observed signal Si = s (gross of the entry cost) is given by (7). The function
Π (s, s̄, N) is increasing in both s and s̄. We further have:
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(a) If Π (v̄, v̄, N) < k, then there is no entry: s̄ (N) = v̄;

(b) otherwise, there is “partial” entry: s̄ (N) ∈ (v, v̄) is determined as the unique solution
of equation (8).

(c) The cutoff s̄ (N) is strictly increasing in N .6

The monotonicity property of s̄ (N) in Propositions 1 and 2 is the key property for our
nonparametric testing approach. To gain intuition, note that as N increases, it becomes
more difficult to win the auction; thus, for a given realization of the signal s, the expected
equilibrium profit will decrease. Since the expected profit Π (s, s̄) is increasing in s, in
equilibrium bidders will increase their cutoffs to ensure that they cover their entry costs.

2.1 Selection effect

Because the signal cutoffs s̄ (N) are increasing in N for N ≥ N∗, the affiliation property
implies that the distribution of valuations conditional on bidding,

F ∗ (v|N) = F (v|Si ≥ s̄ (N) , Vi ≥ r) , (9)

is non-increasing in N . The active bidders’ valuation quantiles,

Q∗ (τ |N) = F ∗−1 (τ |N) ≡ inf {v : F ∗ (v|N) ≥ τ} τ ∈ (0, 1) ,

are therefore nondecreasing in N :

Q∗ (τ |N) ≤ . . . ≤ Q∗
(
τ |N̄

)
. (10)

Moreover, the strict affiliation of values and signals implies that, unless there is full entry for
all N ∈ N , the quantiles Q∗ (τ |N) are strictly increasing in N for N ≥ N∗.7 In other words,
as N increases, the active bidders’ valuation quantiles also increase.8 This is the essence of
the pro-competitive selection effect ∆ (τ,N,N ′) in the AME under strict affiliation:

∆
(
τ,N,N ′

)
≡ Q

(
τ |N ′

)
−Q (τ |N) > 0 for N ′ > N. (11)

In the LS model, the population of entrants has the same distribution of valuations as
does the population of potential bidders, i.e.,

F ∗ (v|N) =
F (v)− F (r)

1− F (r)
for all N ∈ N ,

6Equation (8) implies that s̄ ∈ (r + k, v̄). The bounds are sharp, as can be seen by the following example.
Let F (s) = [(s− v) / (v̄ − v)]α with α > 0. It can be seen that as α→ 0, s̄→ r+ k, and as α→∞, s̄→ v̄.

7Strict affiliation requires (1) to hold as a strict inequality, provided v > v′ and s > s′. See e.g. Avery
(1998) for this definition of strict affiliation.

8As the S model never has full entry, the selection effect is always present in that model.
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and there is no selection effect:

Q∗ (τ |N) = ... = Q∗
(
τ |N̄

)
. (12)

The selection effect forms the basis of the nonparametric test that we develop in Section
4.2, where we also derive a testable restriction of the S model.

3 Nonparametric identification

We now show that the valuation quantiles Q∗ (τ |N), which are necessary for the identifi-
cation of the selection effect, are nonparametrically identifiable if the econometrician can
observe the reserve price r and all bids in each auction.9 The number of potential bidders
N is also assumed to be observable. Both the probability of submitting a bid,

p (N) = P (Si ≥ s̄ (N) , Vi ≥ r) , (13)

and the distribution of the active bidders’ bids,

G∗ (b|N) = F (ξ (b|N) |Si ≥ s̄ (N) , Vi ≥ r)
= F ∗ (ξ (b|N) |N) , (14)

are identifiable, where ξ (·|N) :
[
r, b̄ (N)

]
→ [v∗ (N) , v̄] is the inverse bidding strategy,

which is defined as the unique solution to the equation B (ξ|N) = b. To unify the notation
for the AME and S models, let

v∗ (N) ≡
{
r, in AME model
s̄ (N) , in S model

denote the lowest valuation of those bidders who enter. Thus, the support of F ∗ (v|N) is
[v∗ (N) , v̄]. The probability density of G∗ (·|N) is denoted as g∗ (·|N). Our identification
strategy follows GPV.

Proposition 3. In both models, the inverse bidding strategy is identifiable for all b ∈[
r, b̄ (N)

]
as

ξ (b|N) = b+
1

N − 1

(
G∗ (b|N)

g∗ (b|N)
+

1− p (N)

p (N)

1

g∗ (b|N)

)
, (15)

and B (v|N) is identifiable on [v∗ (N) , v̄]. The quantiles of active bidders’ valuations (and
therefore the selection effect ∆ (τ,N ′, N)) are also identifiable according to

Q∗ (τ |N) = ξ (q (τ |N) |N) ,

where q (τ |N) ≡ G∗−1 (b|N) are the quantiles of bids.
9See, however, Remark 2 below.
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Remark 1. Proposition 3 implies that the distribution of active bidders’ valuations is
identifiable in both models as F ∗ (v|N) = G∗

(
ξ−1 (v|N) |N

)
, with support[

ξ (r|N) , ξ
(
b̄ (N) |N

)]
. (16)

The intuition for this result is as follows. Consider the first-order equilibrium conditions
of the bidding game. A bidder with value v who submits a bid b has a probability of winning
over a given rival equal to 1−p (N) +p (N)G∗ (b|N). As there are N −1 identical rivals, it
follows by independence that the probability of winning is (1− p (N) + p (N)G∗ (b|N))N−1,
and the expected profit is

(v − b) (1− p (N) + p (N)G∗ (b|N))N−1 .

Writing out the first-order condition, i.e. taking the derivative of the expected profit with
respect to b and setting it equal to 0, gives the inverse bidding strategy (15).

Remark 2 (Identification using only winning bids). The assumption that all bids are
observable is not necessary. If only the winning bid is observable, then the distribution
G∗ (b|N) can be recovered from the distribution of the winning bid G∗Y (b|N) according to
the formula

G∗Y (b|N) =
(1− p (N) + p (N)G∗ (b|N))N − (1− p (N))N

1− (1− p (N))N
.

Therefore, the inverse bidding strategy ξ(b|N) as well as the quantiles of active bidders
valuations Q∗(τ |N) are identifiable as in Proposition 3.

Note that (15) is parallel to equation (25) in GPV, who consider the identification in
a standard first-price auction model (k = 0) with a binding reserve price. In the standard
model, a failure to bid is attributed solely to the truncating effect of the reserve price, and
p (N) = 1− F (r). If k > 0, then there is an additional channel of costly entry, and p (N)
is given by (13). As s̄ (N) is nondecreasing in N ,

p (N) ≤ p
(
N ′
)
, for N > N ′.

This is another restriction that is shared by all models in this paper and will be tested
empirically.

3.1 Additional identification results

The focus of our paper is on the identification of the selection effect using variation in
N . However, in view of the identification results in GPV for the standard model (k = 0)
obtained for N fixed, it is also worth investigating the question what is identified under
this assumption in models with endogenous entry. The following proposition provides an
answer to this question.
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Proposition 4. Consider absolutely continuous distribution G∗ (·|N) with support
[
r, b̄ (N)

]
,

and let ρ (·|N) be a discrete distribution.

(a) There exists an AME or S model that rationalizes the data, i.e. such that the induced
equilibrium distribution of bids is G∗ (·|N) and the distribution of the number of active
bidders n is ρ (·|N), if and only if: (i) ρ (·|N) is Binomial with parameters (N, p (N)),
(ii) the observed bids are i.i.d. according to G∗ (·|N), and (iii) the function ξ (·|N)
defined in (15) is strictly increasing on

[
r, b̄ (N)

]
and its inverse is differentiable on[

ξ (r|N) , ξ
(
b̄ (N) |N

)]
.

Furthermore, when conditions (i)-(iii) in (a) hold,

(b) An AME rationalizes the data if and only if ξ (r|N) = r, which in turn holds if and only
if limb↓r g

∗ (b|N) = +∞.10 Any AME is observationally equivalent to the standard
model (k = 0); therefore F (v) = F ∗ (v|N) is identifiable for v ≥ r, while the entry
cost is not identifiable.

(c) An S model rationalizes the data if and only if ξ (r|N) > r. The distribution F (v) is
identifiable according to

F (v) = p (N)F ∗ (v|N) + 1− p (N)

on
[
ξ (r|N) , ξ

(
b̄ (N) |N

)]
, and k is identifiable according to (8):

k = (ξ (r|N)− r) (1− p (N))N−1 .

Remark 3 (Entry Cost Bias). It is clear that model misspecification will lead to a biased
estimate of the entry cost. The direction of this bias can also be determined. Suppose
that k is identifiable and is estimated according to LS.11 However, the data are generated
according to the AME under strict affiliation. Then k is estimated using the wrong (LS)
factor 1 − F ∗(v) instead of the correct (AME) factor 1 − F (v|s̄(N)) in (3) and (4). Since
strict affiliation implies 1 − F ∗ (v) > 1 − F (v|s), the true k is smaller than the estimated
one. The intuition for the existence of this bias is straightforward. The entry cost in the
LS model is equal to the equilibrium expected profit of the average potential bidder, while
it is equal to the expected profit of the marginal potential bidder (with signal s̄(N)) in the
AME. Because the signals and valuations are strictly affiliated, the marginal bidder has a
smaller expected profit than the average bidder, and this leads to over estimation of the
entry cost.

The following proposition shows that the variation in N enhances the identification
of the S and LS models. In the S model, the set of v for which F (v) is identified is

10This mirrors the result in Theorem 4(C2) in GPV.
11Here, we abstract from the sampling issues.
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[s̄ (N) , v̄] ⊃ [s̄ (N) , v̄] for all N > N . In the LS model, F (v) is still identified if and only if
v ∈ [r, v̄]. However, now the entry cost is identifiable if N has at least three elements and
N∗ < N̄ . This is because N∗ < N̄ and the cutoff monotonicity property in Proposition 1
implies

p (N) = ... = p (N∗) > ... > p
(
N̄
)

(17)

When N belongs to the flat segment, N ≤ N∗, we are certain that bidders enter with
probability 1 and non-participation is due to the truncating effect of the reserve price only,
and therefore are able to identify F (r) = 1 − p (N). When N belongs to the decreasing
segment, N > N∗, we are certain that bidders are indifferent between entering or not, and
are able to identify the entry cost from the indifference condition given the knowledge of
F (r).12

Proposition 5. In the S model,

(a) F (v) is identifiable for v ≥ ξ (r|N).

(b) k is identifiable according to (8), k = (ξ (r|N)− r) (1− p (N))N−1.

In the LS model,

(c) F (v) is identifiable for v ≥ r.

(d) N∗ is identifiable as

N∗ = min {N ∈ N : p (N) > p (N + 1)} . (18)

(e) If N has at least three elements and N∗ ≥ N + 1, k is identifiable according to

k = (1− F (r))

ˆ v̄

r
(1− F ∗ (v))(1− p (N) + p (N)F ∗ (v))N−1dv. (19)

Remark 4. Even if N has at least three elements, the variation in N is insufficient for
identification of the entry cost in the LS model when N∗ = N . In this case, p (N) < p (N ′)
for all N,N ′ ∈ N , and (19) holds for all N ∈ N . Then only the ratio k/(1 − F (r)) is
identifiable according to (19), but k and F (r) are not separately identifiable. Also, the
result in (d) above applies to the AME.

12In a recent working paper, Xu (2009) develops a nonparametric estimator of the entry cost for the S
model.
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4 Econometric implementation

In what follows, we allow for observable auction heterogeneity by introducing a vector of
auction-specific covariates x ∈ X ⊂ Rd. We now assume that the distribution of (v, s)
can change from auction to auction depending on the covariate value x, and is denoted by
F (v, s|x). Other objects are also indexed by x in a similar notation. The AME differential
equation (2) for the bidding strategy takes the following form.

B′ (v|N, x) = (v −B (v|N, x))

× (N − 1) (1− F (s̄ (N, x) |x)) f (v|Si ≥ s̄ (N, x) , x)

F (s̄ (N, x) |x) + (1− F (s̄ (N, x)))F (v|Si ≥ s̄ (N, x) , x)
, (20)

with the boundary condition B (r (x) |N, x) = r (x), whereas the counterpart of equation
(4) for the equilibrium cutoff s̄ (N, x) is

ˆ v̄(x)

r(x)
(1− F (v|s̄, x)) (F (s̄|x) + (1− F (s̄|x))F (v|Si ≥ s̄, x))N−1 dv = k (x) , (21)

where k (x) denotes the entry cost function.

4.1 Data generating process (DGP)

We assume that a sample of L auctions is available, and index the auctions by l = 1, .., L.
Each auction is characterized by the vector of covariates xl ∈ X . We assume that the
covariates xl are drawn independently for each auction from a distribution with density
ϕ (·). Conditional on xl = x, the number of potential bidders Nl is drawn independently
from the distribution π (N |x). It is assumed that π (·|x) has support N =

{
N, ..., N̄

}
.13

The entry cost k (x) is assumed to be a deterministic function of x. There is a binding
reserve price rl, and it is observable.14

Conditional on xl = x and Nl = N , the valuations Vil of potential bidders i = 1, ..., Nl

are drawn independently from a distribution with density f (·|x) that does not depend onN .
The support of Vil is [v (x) , v̄ (x)], where i = 1, . . . , Nl. These valuations are unobservable.

Central to our approach is the assumption that, conditional on xl, the number of poten-
tial bidders Nl is exogenous. This assumption allows us to use the variation in the number
of potential bidders for testing purposes. In Section 5, we explain why this assumption is
plausible in the context of our empirical application.

Assumption 2. Conditional on xl, Vil and Nl are independent.
13For simplicity, we assume that the support does not depend on x. The results continue to hold even

without this assumption.
14Even when the binding reserve price is not observable, it is identifiable by the minimum bid.
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The bid bil corresponding to the valuation Vil is generated according to the bidding
strategy

bil = B (Vil|Nl, xl) ,

where B (·|N, x) is a solution to (20). Decisions to submit a bid, yil ∈ {0, 1}, are generated
according to the cutoff strategy

yil = 1 if Sil ≥ s̄ (Nl, xl) and Vil ≥ rl.

The bidding strategy B and the cutoff function s̄ depend on the model’s primitives f and
k through the equilibrium conditions of each model; neither B nor s̄ is available in closed
form.

A full list of the technical econometric assumptions on the DGP required for our results
is given in Assumption 3 of Appendix B.

4.2 Hypotheses

Our main hypotheses tests are based on the identification of the selection effect in the active
bidders’ valuation quantiles. Recall that, for τ ∈ (0, 1), Q∗ (τ |N, x) denotes the conditional
quantile function of the distribution of active bidders’ valuations. Conditional on xl = x,
models’ restrictions (10) and (12) now take the following form.

HAME : Q∗ (τ |N, x) ≤ ... ≤ Q∗
(
τ |N̄ , x

)
. (22)

HLS : Q∗ (τ |N, x) = ... = Q∗
(
τ |N̄ , x

)
.

In the S model, F ∗ (v|N, x) is derived by truncation from the common “parent” distri-
bution F (v|x):

F ∗ (v|N, x) =
F (v|x)− F (s̄ (N, x) |x)

1− F (s̄ (N, x))

=
F (v|x)− (1− p (N, x))

p (N, x)
. (23)

Because the distribution F does not depend on N , this leads to the restriction

p (N, x)F ∗ (v|N, x) + 1− p (N, x) = p
(
N ′, x

)
F ∗
(
v|N ′, x

)
+ 1− p

(
N ′, x

)
. (24)

To express restriction (24) in terms of quantiles, we define

β (τ,N, x) = 1−
p
(
N̄ , x

)
p (N, x)

(1− τ) . (25)

Since p
(
N̄ , x

)
≤ p (N, x), it follows that 0 ≤ β (τ,N, x) ≤ 1 for all τ ∈ [0, 1], and β (τ,N, x)

can therefore be interpreted as a legitimate transformation of the quantile order τ .15 One
15Although any other fixed value of N can be used in place of N̄ in the definition of β, the choice N = N̄

ensures that β takes on values in the zero-one interval.
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can easily show that in the S model, condition (24) implies the following restriction in terms
of the transformed quantiles.

HS : Q∗ (β (τ,N, x) |N, x) = . . . = Q∗
(
β
(
τ, N̄ , x

)
|N̄ , x

)
. (26)

In this paper, we consider the independent testing of HLS , HAME , and HS against
their corresponding unrestricted alternatives.16 In addition, we also test whether the entry
probabilities p (N, x) are non-increasing in N , as implied by all of the models. In this case,
for a given value of x, the null hypothesis is

Hp : 1 > p (N, x) ≥ ... ≥ p
(
N̄ , x

)
> 0. (27)

Hypothesis Hp is also tested against its corresponding unrestricted alternative.
The fact that the equilibrium probabilities of submitting a bid decline with the number

of potential bidders is probably a common feature of many other models of entry. Whenever
a model with costly entry is used to explain why some potential bidders do not bid, an
alternative explanation must be confronted. Following Paarsch (1997), even with no entry
cost, non-participation can still be explained by the fact that some bidders draw valuations
below the reserve price. In that case, however, the probability of bidding is equal to
probability P (Vi ≤ r|x) and therefore does not depend on the number of potential bidders
under Assumption 2. Thus, the null hypothesis of costless entry (k = 0) can be formulated
as

Hk=0 : p (N, x) = ... = p
(
N̄ , x

)
. (28)

Note that because k = 0 is formally included as a special case of LS, HLS is also a testable
restriction of the standard model.17

We must stress that our testing approach relies on conditional independence of Vil and
Nl (Assumption 2). In reality, this assumption may be violated. For example, unobserved
heterogeneity or the presence of multiple equilibria (see below) may result in a more compli-
cated DGP that violates Assumption 2.18 It is therefore desirable to have a nonparametric
test of this assumption, and we implement one such test. Observe that Assumption 2 implies
that the distribution of the number of active bidders conditional on (N, x) is binomial:

ρ (n|N, x) =

(
N
n

)
p (N, x)n (1− p (N, x))N−n . (29)

Because the conditional probability ρ (n|N, x) is directly identifiable, we can test the bino-
mial assumption accordingly. In Section 4.4, we propose a test for this binomial restriction.

16Our testing framework is designed to capture the selection effect, and the resulting tests may not be
consistent against all conceivable alternative models.

17This result also follows from equation (6) in Guerre, Perrigne, and Vuong (2009), who consider identi-
fication in a more general model with risk-averse bidders.

18Krasnokutskaya (forthcoming) explores identification and estimation in first-price auctions under un-
observed heterogeneity. In a recent working paper, Roberts (2009) proposes an alternative approach. He
shows that, to the extent that the reserve price is optimally chosen by the sellers, conditioning on the
reserve controls for unobserved heterogeneity.
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Remark 5 (Multiple Equilibria). As can be seen from the proof of Proposition 1, in the
AME, there are also asymmetric equilibria, where a subset of min {N,N∗} bidders enters
with probability one.19,20 These equilibria also induce a binomial distribution of the number
of active bidders, conditional on (N, x): for n = 0, 1, . . . ,min {N,N∗},

ρ̃ (n|N, x) =

(
min {N,N∗}

n

)
(1− F (r|x))n F (r|x)min{N,N∗}−n .

However, this binomial distribution is different from that corresponding to the symmetric
equilibrium in (29), whenever there is partial entry for some N ∈ N . This is because partial
entry means that N∗ < N̄ , and therefore min {N,N∗} < N and 1 − F (r|x) > p (N, x),
which implies ρ̃ (n|N, x) 6= ρ (n|N, x). If such asymmetric equilibria are present in the data
with probability α (N, x) > 0 for some N > N∗, then the conditional distribution of the
number of active bidders is a mixture of two different binomial distributions ρ (n|N, x) and
ρ̃ (n|N, x):

α (N, x) ρ̃ (n|N, x) + [1− α (N, x)] ρ (n|N, x) ,

and therefore itself is not binomial. Our binomial test can thus be used to uncover the
presence of such asymmetric equilibria in the data.

4.3 Nonparametric estimation of quantiles

In this section, we present our nonparametric estimation method for Q∗ (τ |N, x). This
method is based on the fact that, because the bidding strategies are increasing, the quantiles
of valuations Q∗ (τ |N, x) and bids q∗ (τ |N, x), where

q∗ (τ |N, x) = G∗−1 (τ |N, x) ,

are linked through the (inverse) bidding strategy

Q∗ (τ |N, x) = ξ (q∗ (τ |N, x) |N, x) .

Because both ξ (b|N, x) and q∗ (τ |N, x) can be estimated nonparametrically, we consider a
natural plug-in estimator:

Q̂∗ (τ |N, x) = ξ̂ (q̂∗ (τ |N, x) |N, x) , (30)

where ξ̂ (b|N, x) and q̂∗ (τ |N, x) denote the nonparametric estimators of ξ (b|N, x) and
q∗ (τ |N, x), respectively, which we describe below.

19Since a subset of firms enters with probability 1, there is no selective entry in these equilibria.
20The equilibria of this form do not exist in the S model because the bidders with v = v make zero

expected profit from bidding, and are thus unable to recover the entry cost. It is unknown under which
conditions multiple equilibria exist in the S model (Tan and Yilankaya (2006) obtain some results for
second-price auctions).
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Recalling that the inverse bidding strategy ξ (b|N, x) is given by

ξ (b|N, x) = b+
1− p (N, x) + p (N, x)G∗ (b|N, x)

(N − 1)p (N, x) g∗(b|N, x)

(see Proposition 3), our estimator ξ̂ (b|N, x) is obtained by replacing p (N, x), G∗ (b|N, x),
and g∗(b|N, x) with their corresponding nonparametric estimators, p̂ (N, x), Ĝ∗ (b|N, x),
and ĝ∗(b|N, x). The conditional quantile q∗ (τ |N, x) is estimated by inverting the nonpara-
metric estimator for the bids CDF estimator Ĝ∗ (b|N, x),

q̂∗ (τ |N, x) = Ĝ∗−1 (τ |N, x) = inf
{
b : Ĝ∗ (b|N, x) ≥ τ

}
.

Our nonparametric estimators for g∗ (b|N, x), G∗ (b|N, x), and p (N, x) are based on the
kernel method. More specifically, we employ the following estimators:

π̂ (N |x) =

∑L
l=1 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

)∑L
l=1

∏d
k=1K

(
xkl−xk

h

) , and

p̂ (N, x) =

∑L
l=1 nl1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

)
N
∑L

l=1 1 {Nl = N}
∏d
k=1K

(
xkl−xk

h

) ,
where h is the bandwidth parameter, K is a kernel function satisfying Assumption 4 in
Appendix C, and nl =

∑Nl
i=1 yil is the number of active bidders in auction l. As the

probability of observing N conditional on xl = x and the probability of submitting a
bid conditional on Nl = N and x = xl can be written as π (N |x) = E [1 {Nl = N} |x]
and p (N, x) = E [n|N, x] /N respectively, their estimators are standard nonparametric
regression estimators.

In Proposition 6 in Appendix C we show that the estimator p̂ (N, x) is asymptotically
normal and derive its asymptotic variance

Vp (N, x) =

(ˆ
K (u)2 du

)d p (N, x) (1− p (N, x))

Nπ (N |x)ϕ (x)
.

Moreover, the estimators p̂ (N, x) are asymptotically independent for any distinct N,N ′ ∈{
N, ...N̄

}
and x, x′ in the interior of X .

The proposed estimators of g∗ and G∗ are

ĝ∗ (b|N, x) =

∑L
l=1

∑Nl
i=1 yil1 {Nl = N}K

(
bil−b
h

)∏d
k=1K

(
xkl−xk

h

)
NLhd+1p̂ (N, x) π̂ (N |x) ϕ̂ (x)

, and

Ĝ∗ (b|N, x) =

∑L
l=1

∑Nl
i=1 yil1 {Nl = N} 1 (bil ≤ b)

∏d
k=1K

(
xkl−xk

h

)
NLhdp̂ (N, x) π̂ (N |x) ϕ̂ (x)

,
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where ϕ̂ (x) is the usual multivariate kernel density estimator of the PDF ϕ.21 The trans-
formed quantiles needed for tests of the S model, can be estimated by Q̂∗(β̂ (τ,N, x) |N, x),
where β̂ (τ,N, x) is a plug-in estimator of β(τ,N, x) in (25):

β̂ (τ,N, x) = 1−
p̂
(
N̄ , x

)
p̂ (N, x)

(1− τ) .

In Appendix C, we prove that the estimators Q̂∗ (τ |N, x) and Q̂∗(β̂ (τ,N, x) |N, x) are con-
sistent and asymptotically normal. More specifically, we prove that, under certain technical
but standard econometric assumptions,

√
Lhd+1(Q̂∗(τ |N, x)−Q∗(τ |N, x)) is asymptotically

normal with mean zero and the variance given by

VQ (N, τ, x) =

(ˆ
K (u)2 du

)d+1 (1− p (N, x) (1− τ))2

(N − 1)2Np3 (N, x) g∗3(q∗ (τ |N, x) |N, x)π (N |x)ϕ (x)
.

Further, the estimation of β(τ,N, x) has no effect on the asymptotic distribution of the
transformed quantiles estimator Q̂∗(β̂ (τ,N, x) |N, x), since, as we also show in the Ap-
pendix, β̂ (τ,N, x) converges at a faster rate than Q̂∗(·|N, x). A consistent estimator
V̂Q (N, τ, x) can be obtained by replacing p (N, x), q∗ (τ |N, x), and the other unknown
functions by their estimators. Moreover, for any distinct N,N ′ ∈ {N, ...N̄}, τ, τ ′ ∈ Υ,
and x, x′ in the interior of X , the estimators Q̂∗ (τ |N, x) are asymptotically independent,
as are the estimators Q̂∗(β̂ (τ,N, x) |N, x). These results are contained in Proposition 7 in
Appendix C.

Remark 6 (Circumventing the curse of dimensionality). Although nonparametric methods
are attractive in principle, they may be unsuitable for applications with small samples and
a high-dimensional set of covariates. Indeed, most auction papers having made nonpara-
metric identification arguments, almost always follow the approach of Haile, Hong, and
Shum (2003) and apply them to “homogenized” bids, thus finessing the covariate problem.
Unfortunately, a standard trick of assuming linearity in the covariates, estimating a first-
stage regression model to get rid of the covariates, and then using “homogenized” bids in
the second stage does not work in our model with endogenous entry. However, following the
suggestion in Paarsch and Hong (2006, Chapter 3.3), a variant of the quantile single index
model can be applied to reduce the curse of dimensionality in our setting. See Appendix
G.

4.4 Tests

In this section, we propose nonparametric tests based on the models’ restrictions. (Refer
to Table 1 for a summary of these tests.) Recall the definition of the selection effect (11)

21The estimators ĝ∗ and Ĝ∗ are standard kernel estimators of the conditional density and conditional
CDF, see Pagan and Ullah (1999), equation (2.127) on page 58.
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from Section 2.1. Conditional on xl = x, the estimated selection effect is

∆̂
(
τ,N,N ′, x

)
= Q̂∗ (τ |N, x)− Q̂∗

(
τ |N ′, x

)
.

We propose to test the affiliated model using the following statistic

TAME (x) = sup
τ∈Υ

TAME (τ, x) ,

where Υ = {τ1, ..., τk} ⊂ [0, 1] is a finite set of quantile values, and TAME (τ, x) is defined
as

TAME (τ, x) =
√
Lhd+1

N̄∑
N=N

N̄∑
N ′=N

[
∆̂ (τ,N,N ′, x)

]
+

σ̂ (τ,N,N ′, x)
.

In the above expression,

σ̂2
(
τ,N,N ′, x

)
= V̂Q (b,N, x) + V̂Q

(
b,N ′, x

)
(31)

is the estimator of the asymptotic variance of ∆̂ (τ,N,N ′, x), and the function [·]+ is defined
as

[u]+ =

{
u, u ≥ 0,
0, u < 0.

Note that under the hypothesis HAME , Q∗ (τ |N, x) − Q∗ (τ |N ′, x) ≤ 0 for N ≤ N ′, and
through the function [·]+, the statistic TAME (τ, x) captures only the pairwise differences
between the sample quantiles corresponding to different N ’s that violate the model restric-
tion. We rescale each term by its standard error to give more weight to the difference in
quantiles that are estimated more precisely.

The hypothesis HAME is rejected for large values of TAME (x). Thus, the asymptotic
size α test is

Reject HAME when TAME (x) > cAME
L,1−α(x), (32)

where cAME
L,1−α(x) is an appropriately chosen critical value. We suggest computing the critical

values cAME
L,1−α(x) using the bootstrap procedure described below.

To generate bootstrap samples, we first draw randomly with replacement, L auctions
from the original sample of auctions {(Nl, xl) : l = 1, . . . , L}. In the second step, we draw
bootstrap bids randomly with replacement from the bid data corresponding to each selected
auction. Thus, if auction l̄ is selected in the first step, then, in the second step, we draw
Nl̄ values from the set {bil̄ : i = 1, . . . , Nl̄}. Here we redefine the bil’s so that they take
values in the augmented set {R++,“no bid”}. Let {(b†1l, . . . , b

†
N†l l

, N †l , x
†
l ) : l = 1, . . . , L} be

a bootstrap sample, and M be the number of bootstrap samples. Then, in each bootstrap
sample m = 1, . . . ,M , compute T †,AME

m (x) = supτ∈Υ T
†AME
m (τ, x), where

T †,AME
m (τ, x) =

√
Lhd+1

N̄∑
N=N

N̄∑
N ′=N

[
∆̂†m (τ,N,N ′, x)− ∆̂ (τ,N,N ′, x)

]
+

σ̂†m (τ,N,N ′, x)
.
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Here, ∆̂†m (τ,N,N ′, x) is the bootstrap analogue of the selection effect ∆̂ (τ,N,N ′, x):

∆̂†m
(
τ,N,N ′, x

)
= Q̂∗,†m (τ |N, x)− Q̂∗,†m

(
τ |N ′, x

)
,

Q̂∗,†m (τ |N, x) is the bootstrap analogue of estimator Q̂∗ (τ |N, x) for the bootstrap sample
m, and σ̂†m (τ,N,N ′, x) is the bootstrap analogue of σ̂ (τ,N,N ′, x) computed using (31)
in bootstrap sample m. To compute the required statistics, we also define the bootstrap
variable y†il, where y

†
il = 0 if b†il takes the value “no bid”, and y†il = 1 otherwise. The critical

value cAME
L,1−α(x) is the (1− α)-th sample quantile of {T †,AME

m : m = 1, . . .M}.
A similar approach is used to test the restrictions of the LS and S models and those of

the standard model (no costly entry). In the case of the LS model, the statistic is given by
TLS (x) = supτ∈Υ T

LS (τ, x), where TLS (τ, x) is constructed similarly to TAME (τ, x) but
with the function [·]+ replaced by the absolute value |·|. This is because the LS model’s re-
strictions are equalities, and we need to capture the deviations from HLS in either direction.
For the S model, we define the quantile difference by using the transformed quantiles,

∆̂
(
τ,N,N ′, x

)
= Q̂∗

(
β̂(τ,N, x)|N, x

)
− Q̂∗

(
β̂(τ,N ′, x)|N ′, x

)
,

and then proceed exactly as before.
The hypothesis Hp in (27) can be tested using the statistic

Tp (x) =
√
Lhd

N̄∑
N=N

N̄∑
N ′=N

[
∆̂p (N,N ′, x)

]
+

σ̂p (N,N ′, x)
, where

∆̂p

(
N,N ′, x

)
= p̂

(
N ′, x

)
− p̂ (N, x) .

Here, σ̂2
p is the estimator of the asymptotic variance of ∆̂p. The null hypothesis of costless

entry in (28) can be tested using a statistic constructed similarly to Tp (x) but with the
function [·]+ replaced by the absolute value |·|.

To test the binomial restriction in (29), let

∆̂Binomial (n,N, x) = ρ̂ (n|N, x)−
(
N
n

)
p̂ (N, x)n (1− p̂ (N, x))N−n

be the deviation of the directly estimated probability of entry from the corresponding
binomial probability, where

ρ̂ (n|N, x) =

∑L
l=1 1 {nl = n} 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

)∑L
l=1 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

) (33)

is a consistent nonparametric estimator of ρ̂ (n|N, x). To test the binomial restriction, we
employ the following statistic:

TBinomial (x) =
√
Lhd

N̄∑
N=N

N∑
n=0

∣∣∣∆̂Binomial (n,N, x)
∣∣∣

σ̂Binomial (n,N, x)
,
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where σ̂2
Binomial (n,N, x) is the plug-in estimator of the asymptotic variance of the difference

∆̂Binomial (n,N, x) derived in Appendix C.
As described above, we test each hypothesis for a given value x of the covariates. The

reason for this is that a null hypothesis can be true for one value of x and false for another.
If, however, one wishes to test a hypothesis over a range of values of x, then our approach
can be modified as follows. In the case of HAME , for example, one can select a grid of
values of x from the interval of interest and compute TAME (x) for each value in the grid.
TAME (x) can then be averaged over the chosen grid of values. The critical values for
the test can be simulated using the averaged over the grid bootstrap statistic T †,AME

m (x).
Alternatively, one can use the maximum of TAME (x) over the chosen grid for x. In this
case, the critical values should be simulated using the maximum of T †,AME

m (x) over the
same grid.

We establish the asymptotic validity of the bootstrap tests in Appendix E. Note that to
ensure a valid bootstrap approximation, the bootstrap statistics must use re-centered differ-
ences. Thus, the statistic TAME (τ, x) is based on ∆̂ (τ,N,N ′, x), and its bootstrap counter-
part T †,AME

m (τ, x) is based on the re-centered differences ∆̂†m (τ,N,N ′, x)− ∆̂ (τ,N,N ′, x).
This is to ensure that the bootstrap critical values are simulated from the null distribution.

A Monte Carlo study of our test is contained in Appendix F. We find that our proposed
tests are close in size to the nominal levels, and also have good power properties.

5 Empirical application

We use the same data as those in Li and Zheng (2009, LZ hereafter) in our empirical
application. This dataset consists of 540 auctions for “mowing highway right-of-way” main-
tenance jobs held by the TDoT from January 2001 to December 2003. We observe all of
the bids and the identities of the bidders. Moreover, the available data contain information
on the project characteristics, include the engineer’s estimates, the length of the contract
(number of working days), the number of items in the proposal, the acreage of full-width
mowing, the acreage of other mowing, whether it is a state job, and whether the job is on
an interstate highway.22 LZ provide further details of this dataset. We focus only on those
aspects relevant for this study.

Importantly, we observe the list of eligible bidders (planholders) for each auction. In
the nomenclature of this paper, these eligible bidders constitute the potential bidders. A
firm becomes a planholder through the following process. All projects to be auctioned are
advertised by the TDoT three to six weeks prior to the auction date. These advertisements
include the engineer’s estimate, a brief summary of the project, and the location and type
of work involved. However, they lack detailed schedules of the work items that are revealed
only in the construction plans. Interested firms then submit a request for plans and bidding
proposals, and these documents contain the project specifics (such as the item schedule).

22Refer to Table 1 in LZ for the basic summary statistics of the data.
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The list of planholders is made available to all bidders prior to the bid submission deadline.
All bids must be submitted by the deadline in a sealed envelope. Submitted bids and active
bidders’ identities are released only after bid opening. In this application, we do not observe
the reserve price.

Our testing framework shares a number of assumptions with that in LZ, the first of
which is the exogeneity of the number of potential bidders. They note that “only (and
usually all of) those contractors in the mowing sub-industry who are located in the same
county as where the job is or nearby counties would request the official bidding proposals”.23

Thus, the exogeneity of N is supported by the local nature of participating firms and the
variation in the number of local firms across counties.24

Next, we also assume that the firms are ex-ante symmetric. LZ argue that the local
participating firms are likely to be small and not much differentiated from one another.
However, dynamic considerations such as those in Jofre-Bonet and Pesendorfer (2003) may
lead to asymmetries even within such firms. To address this issue, LZ construct the back-
log variable as the amount of incomplete work, measured in dollars, that remains from the
previously won projects. This backlog variable contains substantial variation, but has sta-
tistically insignificant effects on both the bidding and bid-submission decisions (see Tables
3 and 4 in LZ).

Before turning to our nonparametric tests, we first discuss the importance of the effects
of various auction characteristics on bid levels and the decisions to submit a bid found in
the random-effect and probit regressions in LZ.25 In the former regression, the dependent
variable is log(bid), where bid is the amount of the bid in dollars. The size of the project
has a strongly positive effect on the bids, and clearly, is the most important variable. The
impact of the other variables is much smaller. The effect of project size on the probability of
submitting a bid is also positive, although not statistically significant. This positive effect
may reflect the fact that bidders have some information when deciding whether to submit
a bid, which further implies the possibility of selective entry.

The next potentially important variable is the number of items in the construction plan,
which captures the complexity of the project. This variable is statistically significant in
both regressions, although its degree of variation is very small. The standard deviation
is 0.82, and the mean is 2.01. This is not surprising, as lawn mowing jobs are relatively
simple. The estimates for “acreage of other mowing” are also statistically significant in both
regressions. However, the effects are small: a 1% increase in the “acreage of other mowing”
is associated with only a 0.0075% decrease in the bids.

In the implementation of our testing approach, we are confronted with the usual bias
and variance trade-off of our nonparametric estimators. Including a greater number of
variables reduces the bias, but at the same time increases the sample variability of the

23See the first paragraph on page 6 of LZ.
24The assumption of an exogenous number of potential bidders has also been employed in other empirical

work on auctions. See, for example, Athey, Levin, and Seira (2011).
25Refer to Tables 3 and 4 in LZ for details.
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Table 2: Test results: Hypotheses, test statistics, and critical values corresponding to
asymptotic significance levels 0.10, 0.05, and 0.01

Hypothesis Test statistic Critical values
0.10 0.05 0.01

Costless Entry 14.50 13.56 14.92 17.05
Monotone Prob. of Entry 2.86 9.00 10.40 13.35
Binomial 327.27 391.53 470.76 759.94
AME model 8.40 37.09 41.45 49.99
LS model 64.87 51.72 55.09 63.01
S model 60.22 67.82 71.23 78.90

estimators. The reduced-form regressions in LZ indicate that, apart from project size, the
auction characteristics are unlikely to matter much. In fact, their structural estimates
suggest that the project size is the only significant factor.

We perform our tests conditional on the median project size, x = $138, 000.26 We
consider a grid Υ of 200 uniformly spaced quantile values with τmin = 0.05 and τmax = 0.95,
and use the tri-weight kernels. The bandwidth chosen is h = 1.978 × 1.06 × (std.err.) ×
(sample size)−(1/5). A well-understood practical issue is that nonparametric estimators
suffer from a substantial loss of precision when the sample size is very small. When we
tried to include all of the auctions, however, the estimates of the quantiles Q∗ (τ |N, x) were
highly erratic. Because the data are sparse, for some N, the estimated probabilities π̂ (N |x)
are very close to zero.27 To ensure the stability of our estimators, we decided to exclude
those N where the number of observations with Xi ∈ [x− h, x+ h] is less than 100. The
working sample ultimately consisted of auctions with 8-14 potential bidders, and all of the
results discussed in the following were obtained using this smaller sample.

The results of our tests are reported in Table 2. We first test the standard model (k = 0),
i.e. the equality of bid submission probabilities across N . The null hypothesis is rejected
at the 10% significance level. We then test the prediction shared by all remaining models
considered in this paper. As can be seen from Figure 1, the bid submission probabilities
p (N, x) are apparently non-increasing in N . The formal test of the monotonicity restriction

26We believe our choice of median project size is natural and reasonable. The models are not expected
to vary with x in this application.

27The estimated probability of N , conditional on x, is presented in Figure 3. There are no auctions with
19 or 21 potential bidders conditional on x = 138, 000. Note also that there remains considerable variation
in N .
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Figure 1: Estimated probabilities of bidding

on the bidding probabilities fails to reject the null at any reasonable significance level.28

The DGP passes the binomial test, thereby offering no evidence of multiple equilibria or
unobserved auction heterogeneity in the data.

The quantile test fails to reject the AME restriction Q∗ (τ |N, x) ≤ Q∗ (τ |N ′, x) for
N ≥ N ′ uniformly over τ ∈ Υ.29 We now turn to tests of the two extreme models: LS and
S. We first note that the LS model is rejected even at a 1% significance level. We therefore
reach a different conclusion from that in LZ, who find a better fit for the LS model. The S
model passes all of our tests. However, based on the p-values of the S and AME tests, the
AME has more empirical support in this application.

5.1 Should the TDoT restrict competition?

An interesting empirical exercise is to fit a parametric affiliated model to our data and then
to compare its predictions to those in LZ, who investigate, in a counterfactual experiment,
the effect of the number of potential bidders on the procurement price. In the LS model they
estimated, the entry effect overwhelms the direct effect of potential competition. Indeed,
for a typical project in the sample, they found it optimal to limit the competition to only

28It is worth noting that the effect of the number of potential bidders is statistically significant in the
probit regression in LZ. Having more potential bidders reduces the bid submission rate. For example,
increasing N by 1 reduces the odds of submitting a bid by about 4%.

29Note that here, the order of N and N ′ is reversed because, in our application, we are dealing with
low-bid auctions.
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N = 3 potential bidders. An interesting question is whether the selection effect is strong
enough to overturn this conclusion.

To answer it, we estimate a simple parametric AME model and the resultant counter-
factual effect of N on the auction price. We follow Bajari, Hong, and Ryan (2010) and
normalize the costs and signals by the engineer’s estimate. The joint distribution of costs
and signals is specified to (truncated) normal in the spirit of Bajari (2001):

cil
xl

= µ0 + εil,
sil
xl

= µ0 + ηil,

where

(εil, ηil) ∼ N
(
0, σ2

0

(
1 ρ0

ρ0 1

))
.

Since the reserve price r is unobservable, we treat it as an unknown parameter.30 The
vector of parameters to be estimated is thus given by

θ0 =
(
µ0, σ

2
0, ρ0, k0, r0

)
,

where k0 and r0 are the normalized entry cost and reserve price respectively.
To estimate θ0, we adopt a variant of the computationally convenient approach of Hong

and Shum (2002). Let q∗ (τ |N, x; θ0) be the quantiles of bids predicted by the model. Since
the bidding strategy B (c|N, x; θ0) is monotone-increasing in c, the quantiles are easy to
compute numerically using the relationship

q∗ (τ |N, x; θ0) = B [Q∗ (τ |N, c; θ0) |N, x; θ0] .

Our estimation method is based on matching the observed and predicted quantiles of the
bid distribution. Let τ1, . . . , τM be M quantile values. For any θ ∈ Θ, define

ml (θ) =
1

Nl

Nl∑
i=1


yil (τ1 − 1 (bil ≤ q∗(τ1|Nl, xl; θ)))

...
yil (τM − 1 (bil ≤ q∗(τM |Nl, xl; θ)))

yil − p(Nl, xl; θ)


It is easy to verify that

E [yil (τ − 1 {bil ≤ q∗ (τ |Nl, xl; θ0)}) |Nl, xl] = 0,

such that the true value θ0 satisfies the moment condition Em (θ0) = 0. Note that we have
M + 1 moment conditions for the five-dimensional vector θ0, so the model is overidentified
if M > 4.

30Alternatively, this feature can be taken into account by considering a model with a secret reserve price
as in Li and Perrigne (2003). However, this complicates significantly the derivation of the equilibrium
bidding strategy.
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Table 3: Estimates of AME structural parameters

Parameter Estimate Standard error

Mean of normalized cost, µ 0.970∗ 0.132
Standard deviation, σ 0.162∗ 0.055
Correlation, ρ 0.720∗ 0.181
Normalized reserve price, r 1.311∗ 0.073
Normalized entry cost, k 0.023∗ 0.005

GMM objective 21.10

∗ Significant at 5%

Our generalized method of moments (GMM) estimator θ̂ is based on the moment con-
dition Em (θ0) = 0 and is defined as

θ̂ = arg min
θ∈Θ

JL (θ) , where

JL (θ) =

(
1√
L

L∑
l=1

ml (θ)

)′
WL

(
1√
L

L∑
l=1

ml (θ)

)
,

and WL is a weighting matrix. By standard GMM results,
√
L
(
θ̂ − θ0

)
→d N

(
0,
(
D′0WD0

)−1
D′0WΩ0WD0

(
D′0WD0

)−1
)
,

where
Ω0 = E

[
ml (θ0)ml (θ0)′

]
, D0 =

(
∂

∂θ
E [ml (θ)]

)
θ=θ0

,

and the optimal weight matrix should satisfy WL →p Ω−1
0 . Further details are provided in

Appendix H. When the model is correctly specified, the GMM objective JL(θ̂) computed
using the optimal weight matrix is asymptotically χ2-distributed with M − 4 degrees of
freedom, and can be used to test the fit of the model.

The estimation results are given in Table 3. We match 19 equally spaced quantile values
{0.05, 0.1, ..., 0.95} for N = 8, ..., 14 (i.e. we chose the same values for N as those in the
previous section). As the estimate ρ̂ = 0.72 indicates, the signals contain a substantial
amount of information concerning the construction cost. This is realistic because, as we
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Figure 2: Estimated median cost conditional on entry (solid line) and its 95% confidence
band (dashed lines)

have remarked previously, lawn-mowing jobs are relatively small and simple in nature,
meaning that the plans are likely to be quite informative about the true project cost. The
estimate of the entry cost k̂ = 2.31% is given as a percentage of the project size for a
median-sized project, x = $138, 000.

The affiliated model is expected to yield a smaller estimate of the entry cost than the
LS model. Indeed, the entry cost in the latter is equal to the equilibrium expected profit
of the average potential bidder, whereas it is equal to the expected profit of the marginal
potential bidder (with signal s̄(N)) in the former. Because the signals in the AME are
positively correlated with the costs, the marginal bidder has a smaller entry cost than the
average bidder.31

Formally, the fit of the model is assessed by the J test. Since we have fitted 19 quantiles,
the J statistic has a limiting χ2 distribution with 14 degrees of freedom. The model fits
reasonably well. The J test p-value is 0.17, and therefore our parametric model is not
rejected.

In the counterfactual experiment, we find that the selection effect leads to a reduction
in the procurement price. Figures 2 and 3 depict the counterfactual effect of the number of
potential bidders on the median entrant’s cost and price for a median-sized project.32 The

31Also see Remark 3.
32LZ perform their counterfactual experiment for the 123rd auction in the sample, which has a project

size close to the mean value of $165, 349. As in our nonparametric test, we have decided here to use the
median-sized project. Our results take the same form for other project sizes, including that considered by
LZ.
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Figure 3: Counterfactual price (solid line) and its 95% confidence band (dashed lines)

graphs demonstrate the selection effect at work. Increasing the number of potential bidders
by 1 results, on average, in a 1% reduction in the cost and 3% reduction in the price.33

Therefore, our results suggest that, in order to reduce the cost of procurement, the TDoT
should not limit the competition in lawn-mowing auctions.

6 Concluding remarks

In this paper, we propose nonparametric tests to discriminate among alternative models of
entry in first-price auctions. Those considered are: (a) the Levin and Smith (1994) (LS)
model with randomized entry strategies; (b) the Samuelson (1985) (S) model that assumes
that bidders are perfectly informed about their valuations at the entry stage, and selected
into the pool of entrants based on this information; and (c) a new model (the affiliated
entry model, or AME), which allows for selective entry but in a less stark form than that
in Samuelson (1985). More specifically, our model captures the selection effect by assuming
that bidders receive signals that are informative about their valuations and make entry
decisions based on these signals.

We estimate an AME and find a strong degree of correlation between costs and signals.
We then repeat the counterfactual experiment of Li and Zheng (2009), and, using our new
model, find that increasing the number of potential bidders would be desirable: on average,
the price falls by 1% with each additional potential bidder in the auction.

33The confidence bands in the graphs are computed using the parametric bootstrap.
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Our work can be extended in a number of directions. First, it would be interesting
to extend our approach to other auction mechanisms and data structures as in Athey
and Haile (2002).34 Second, our models of entry do not fully endogenize the information
acquisition process, the nature of which may have important consequences for auction
design (see, e.g., Persico (2000) and Bergemann and Valimaki (2002)). Also, incorporating
risk aversion, as Guerre, Perrigne, and Vuong (2009) and Campo, Guerre, Perrigne, and
Vuong (forthcoming) do in the standard first-price auction model, would clearly be very
interesting.

Another extension would be to allow for bidder asymmetries, as in a recent working
paper by Krasnokutskaya and Seim (forthcoming). The obvious difficulty here would be
the necessity to deal with multiple equilibria head-on. Bajari, Hong, and Ryan (2010)
obtain a number of identification results in this direction, and estimate a parametric model
with multiple equilibria for highway procurement auctions. Another extension would be to
incorporate dynamic features, as in Jofre-Bonet and Pesendorfer (2003). These extensions
are left for future research.

34See Athey and Haile (2007) for a survey of the literature.
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Appendix

A Proofs of the results in Sections 2 and 3

Proof of Proposition 1. Observe that, if the bidders follow an entry strategy prescribed
by the cutoff strategy s̄, the auction in the second state of the game is an IPV auction
with a random number of bidders. Specifically, the distribution of the number of bidders is
binomial with parameters N and 1−F (s̄ (N)), and the distribution of entrants’ valuations
is F (v|Si ≥ s̄ (N)). Differential equation (2) follows directly from Theorem 1 in Harstad,
Kagel, and Levin (1990). The expected profit (3) follows from the Envelope Theorem: by
independence, the bidder with valuation v has the probability of winning the auction

(F (s̄) + 1− F (s̄)F (v|Si ≥ s̄))N−1 ≡ λ (v, s̄)N−1 ,

therefore his expected profit in the auction is
´ v
r λ (x, s̄)N−1 dx. At the entry stage, the

expected profit is

Π (s, s̄, N) =

ˆ v̄

r

ˆ v

r
λ (x, s̄)N−1 dxdF (v|s)

=

ˆ v̄

r
(1− F (v|s))λ (v, s̄)N−1 dv,

where the last line follows from integration by parts. This proves (3).
Next, Π (s, s̄, N) is increasing in s̄ because λ (v, ·) is increasing: for all v ∈ [v, v̄),

∂λ (v, s̄)

∂s̄
= f (s̄) +

∂

∂s̄
P {Vi ≤ v, Si ≥ s̄}

= f (s̄)− f (s̄)F (v|s̄) > 0.

Also, Π (s, s̄, N) is non-decreasing in s because the affiliation property implies that the
conditional CDF F (v|Si ≥ s) is non-increasing in s. We see that Π (s, s,N) is continuous
increasing in s, and (a)-(c) follow straightforwardly in a symmetric equilibrium. The result
in (a) follows since if Π (v̄, v̄, N) ≤ k, then a bidder with v = v̄, the highest valuation possi-
ble, is unable to recover the entry cost even when he is the single bidder in the auction. The
result in (b) follows since if Π (v, v,N) ≥ k, then a bidder with v = v, the lowest valuation
possible, is able to recover the entry cost even when all his rivals enter with probability
1. To show (c), note that if Π (v, v,N) < k < Π (v̄, v̄, N), then strict monotonicity of
Π (s, s,N) in s implies the equation Π (s̄, s̄, N) = k has a unique solution s̄ (N) ∈ (v, v̄).
Then entering if Si > s̄ (N) and not entering if Si < s̄ (N) is clearly an equilibrium because
Π (Si, s̄, N) > k in the first case and Π (Si, s̄, N) < k in the second case.

Lastly, observe that λ (v, s̄) ∈ (0, 1) in any equilibrium with with entry, which is our
maintained assumption. Therefore Π (s, s,N) is decreasing in N (N ≥ 2). Consequently,
s̄ (N) is constant on {N : N ≤ N∗} and is strictly increasing on {N : N ≥ N∗}. �
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Proof of Proposition 3. For every b ∈
[
r, b̄ (N)

]
, we have

G∗ (b|N) = F (ξ (b|N) |N,Si ≥ s̄ (N) , Vi ≥ r)

=
F (ξ (b|N) |Si ≥ s̄ (N))− F (r|Si ≥ s̄ (N))

1− F (r|Si ≥ s̄ (N))
. (34)

where ξ (·|N) :
[
r, b̄ (N)

]
→ R+ denotes the inverse bidding strategy, defined as the unique

solution to the equation B (ξ|N) = b. Since the probability of submitting a bid is

p (N) = P (Si ≥ s̄ (N) , Vi ≥ r)
= P (Si ≥ s̄ (N))P (Vi ≥ r|Si ≥ s̄ (N))

= (1− F (s̄ (N))) (1− F (r|Si ≥ s̄ (N))) ,

we see that

p (N)G∗ (b|N) = (1− F (s̄ (N))) [F (ξ (b|N) |Si ≥ s̄ (N))− F (r|Si ≥ s̄ (N))]

After simplification,

1− p (N) + p (N)G∗ (b|N) = F (s̄ (N)) + (1− F (s̄ (N)))F (ξ (b|N) |Si ≥ s̄ (N)) .

Differentiating (34) with respect to b gives the density of bids

g∗ (b|N) =
f (ξ (b|N) |Si ≥ s̄ (N))

1− F (r|Si ≥ s̄ (N))
ξ′ (b|N) ,

and we see that

p (N) g∗ (b|N) = (1− F (s̄ (N))) f (ξ (b|N) |Si ≥ s̄ (N)) ξ′ (b|N) .

Therefore,

1− p (N) + p (N)G∗ (b|N)

p (N) g (b|N)
=
F (s̄ (N)) + (1− F (s̄ (N)))F (ξ (b|N) |Si ≥ s̄ (N))

(1− F (s̄ (N))) f (ξ (b|N) |Si ≥ s̄ (N))

1

ξ′ (b|N)
.

Since ξ′ (b|N) = 1/B′ (v|N) for v = ξ (b|N), (15) follows from the differential equation (2)
for the bidding strategy . �

Proof of Proposition 4. The proof of the results in (a) is omitted because it parallels
the proofs of Theorems 1 and 4 in GPV.

For (b), suppose the data are generated by an AME with some k > 0 and F (·|·) such
that F (r) ∈ (0, 1). Consider any standard model (k = 0) with the distribution of valuations
given by

F0 (v) = F0 (v|v < r)F0 (r) + F ∗ (v|N) [1− F0 (r)]
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where F0 (r) = 1 − p (N) and F0 (·|v < r) is an arbitrary absolutely continuous CDF with
support [v0, r] for some v0 ∈ (0, r). One can check that the differential equation (2) for the
bidding strategy remains the same as for the original AME, so the inverse bidding strategy
is also ξ (·|N). Since the distribution of active bidders’ valuations F ∗ (v|N) is the same by
construction, it follows that this standard model induces, in the Bayesian-Nash equilibrium,
the same distribution of observable bids G∗ (·|N). Furthermore, since each bidder becomes
active with probability 1− F (r) = p (N), the distribution of the number of active bidders
is also the same.

Going in the other direction, suppose the data (G∗ (·|N) , p (N)) are generated by some
standard model with the distribution of valuations F0 above. Since LS model is included in
the AME class, it is sufficient to construct an observationally equivalent LS model. Consider
an LS model with the distribution of valuations

FLS (v) = FLS (v|v < r)FLS (r) + F ∗ (v|N) [1− FLS (r)]

where FLS (·|v < r) is an arbitrary absolutely continuous CDF with support [vLS , r] for
some vLS ∈ (0, r), and FLS (r) is chosen to assure that the probability of bidding is still
p (N):

α [1− FLS (r)] = p (N)

for some entry probability α ∈ (0, 1). To complete the construction, let

k =

ˆ v̄

r
(1− FLS(v) (α+ (1− α)FLS (v))N−1 dv.

Again, it is straightforward to show that this LS model’s differential equation for the bidding
strategy is the same as in the original standard model. Since FLS (v|v ≥ r) = F0 (v ≥ r),
the induced distribution of bids is the same. Also, according to (4), bidders are indifferent
between entering and not entering provided the rivals enter with probability α ∈ (0, 1),
while the probability of submitting a bid is equal to p (N) as in the original standard
model.

For part (c), if ξ (r|N) > r, similar arguments imply that any S model with k =
(ξ (r|N)− r) (1− p (N))N−1 and

FS (v) = FS (v|v < ξ (r|N)) [1− p (N)] + F ∗ (v|N) p (N)

where FS (·|v < ξ (r|N)) is any absolutely continuous CDF with support [vLS , r] for some
vLS ∈ (0, r), rationalizes the data. �

Proof of Proposition 5. In the S model, F (v) is identified for v ≥ s̄ (N) > r, using, for
example, (23):

F (v) = p (N)F ∗ (v|N) + 1− p (N) (35)
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Consequently, F (v) is identified for v ≥ min {s̄ (N) : N ∈ N} = s̄ (N). The entry cost is
also identified:

k = (ξ (r|N)− r) (1− p (N))N−1 . (36)

In the LS model, k is smaller than the expected profit from bidding even under full entry
for N = N, ..., N∗, and is strictly greater than the expected profit for N = N∗ + 1, ..., N̄ .
Equivalently,

ˆ v̄

r
(1− F (v))(F (r) + [1− F (r)]F (v|Vi ≥ r))N∗−1dv > k

>

ˆ v̄

r
(1− F (v))(F (r) + [1− F (r)]F (v|Vi ≥ r))N∗dv. (37)

For N = N, ..., N∗, non-participation in the auction is caused by the truncating effect of the
reserve price. In other words, p (N) = 1− F (r) for N = N, ..., N∗, and F (r) = 1− p (N)
is identifiable. This implies the identification of both F (v) = [1− F (r)]F ∗ (v|N) + F (r)
and k according to (19). �

Remark 7. Note that (37) is a condition on the primitives of the model sufficient for the
pattern (17) to arise.

B Additional details of the DGP

We make the following assumptions concerning the DGP.

Assumption 3. (a) {(Nl, xl) : l = 1, . . . , L} are i.i.d.

(b) Let ϕ (x) denote the marginal PDF of xl. We assume that ϕ (·) > 0 on its compact
support X ⊂ Rd and admits up to R ≥ 2 continuous partial derivatives on the interior
of X .

(c) Let π (N |x) denote the distribution of Nl conditional on xl. We assume that π(·|x)
has support N =

{
N, ..., N̄

}
for all x ∈ X , N ≥ 2, and π (N |·) admits R continuous

bounded derivatives on the interior of X for all N ∈ N .

(d) (Vil, Sil) and Nl are independent conditional on xl.

(e) {(Vil, Sil) : i = 1, . . . Nl; l = 1, . . . , L} are i.i.d. conditional on (Nl, xl).

(f) In the AME, suppose that the density f (v, s|x) is strictly positive and bounded away
from zero on its support, a compact interval [v (x) , v (x)]2 ⊂ R2

+ for all x ∈ X ;
f (·, ·|x) admits up to R − 1 continuous partial derivatives on [v (x) , v (x)]2 for all
x ∈ X , and f (v, s|·) admits up to R continuous partial derivatives on the interior
of X for all v, s ∈ [v (x) , v (x)]2. In the S model, suppose that the density f (v|x)
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is strictly positive and bounded away from zero on its support, a compact interval
[v (x) , v (x)] ⊂ R+ for all x ∈ X ; f (·|x) admits up to R − 1 continuous derivatives
on [v (x) , v (x)] for all x ∈ X , f (v|·) admits up to R continuous partial derivatives
on the interior of X for all v ∈ [v (x) , v (x)].

(g) The reserve price r (x) is binding for all x ∈ X , N ∈ N , i.e. v (x) < r (x), and r(·)
admits up to R continuous partial derivatives on the interior of X .

(h) The entry cost k(x) admits up to R continuous partial derivatives on the interior of
X .

Remark 8. Assumption 3(a) is the usual i.i.d. assumption on the DGP for the covariates.
The smoothness conditions in Assumptions 3(b), (c), (f), (g) and (h) are standard in the
nonparametric literature and used for deriving the asymptotic properties of the kernel
estimators. Assumption 3(c) also defines the support of the distribution of Nl conditional
on the covariates. Assumption 3(d) repeats the condition in Assumption 2 for completeness.
Assumption 3(e) is the IPV assumption.

Lemma 1. The following results hold for the AME and the S model.

(a) Let f∗(v|N, x) denote the conditional PDF of valuations given Nl = N, xl = x and
conditional on bidding. Then f∗(·|N, x) is strictly positive and bounded away from zero
on its support [v (x) , v (x)], admits up to R−1 continuous derivatives on [v (x) , v (x)]
for all x ∈ X , N ∈ N , and f∗(v|N, ·) admits up to R continuous partial derivatives
on the interior of X for all v ∈ [v (N, x) , v (N, x)] , N ∈ N .

(b) The conditional probability of entry p(N, x) admits up to R continuous partial deriva-
tives with respect to x on the interior of X for all N ∈ N .

Proof of Lemma 1. Consider the AME first. Note that s̄ (N, x) is determined by

ˆ v̄(x)

r(x)
(1− F (v|s, x))λ (v, s̄, x)N−1 dv − k (x) = 0, where (38)

λ (v, s̄, x) = F (s̄|x) +

ˆ v̄(x)

s̄
F (v|s, x) f (s|x) ds.

By Lemma A1(i) in GPV, v̄ (x) admits up to R continuous partial derivatives on the interior
of X . Together with our Assumptions 3(f)-(h), this implies that the left-hand side in (38)
is smooth up to order R in x. Moreover, its partial derivative with respect to s̄ is

ˆ v̄(x)

r(x)
(1− F (v|x)) (f (s̄|x)− F (v|s̄, x) f (s̄|x))N−1 dv > 0.
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The Implicit Function Theorem then implies that s̄ (N, x) admits up to R continuous partial
derivatives with respect to x on the interior of X for all N ∈ N . The result follows then
from the conditions of the lemma, and the definitions of f∗(v|N, x) and p(N, x):

f∗ (v|N, x) =

´ v̄(x)
s≥s̄(N,x) f (v, s|x) ds´ v̄(x)

v≥r(x)

´ v̄(x)
s≥s̄(N,x) f (v, s|x) dsdv

,

p (N, x) =

ˆ v̄(x)

r(x)

ˆ v̄(x)

s̄(N,x)
F (v, s|N, x) f (s|N, x) dsdv.

In the S model, the cutoff s̄(N, x) is determined as an implicit function from the equation
(s̄− r (x))F (s̄|x)N−1−k (x) = 0. The derivative with respect to s̄ of the expression on the
left-hand side is F (s̄|x)N−1 + (s̄− r (x)) (N − 1) f (s̄|x)F (s̄|x)N−2 > 0. Assumptions of
the lemma also imply that the left-hand side of equation determining s̄(N, x) has continuous
partial derivatives up to order R with respect to s̄ and x. The Implicit Function Theorem
then implies that the solution s̄ (N, x) has continuous derivatives up to order R in x on
the interior of X . The result follows since in this case for v ≥ s̄ (N, x), f∗ (v|N, x) =
f (v|x) /p (N, x), and p (N, x) = 1− F (s̄ (N, x) |x). �

We can now prove the following result about the order of smoothness of g (b|N, x).35

Lemma 2. Suppose that Assumptions 3(f) and (g) hold. Then for all N ∈ N , the condi-
tional PDF of bids g∗ (b|N, x) is strictly positive and bounded away from zero on its support
[b (N, x) , b̄(N, x)], and g∗ (·|N, ·) admits up to R continuous partial derivatives on the inte-
rior of the set {(b, x) : x ∈ X , b ∈ [b (N, x) , b̄(N, x)]}.

Proof of Lemma 2. First, we establish the order of smoothness of inverse bidding strategy
ξ (v|N, x) is R in both v and x. It is straightforward to show that differential equation (2)
can be re-written in terms of ξ (b|N, x) for b ∈

(
b (N, x) , b̄ (N, x)

)
as

∂ξ (b|N, x)

∂b
=

1

N − 1

1

ξ (b|N, x)− b
p (N, x) f∗ (ξ (b|N, x) |N, x)

1− p (N, x) + p (N, x)F ∗ (ξ (b|N, x) |N, x)
(39)

≡ ΦN (ξ (b|N, x) , x) .

By 3(f), f∗ (v|N, x) admits R − 1 derivatives with respect to v and R derivatives with re-
spect to x, while p (N, x) admits R derivatives with respect to x. Therefore ΦN (v, x) also
admits R−1 derivatives with respect to its first argument and R derivatives with respect to
second. A fundamental results in the theory of differential equations (see, for example, The-
orem 2.6 in Anosov, Aranson, Arnold, Bronshtein, Grines, and Il‘Yashenko (1997)) implies
that ξ (·|N, x) admits R derivatives on

(
b (N, x) , b̄ (N, x)

)
as a solution of this differential

equation. Also, ξ(b|N, ·) admits R partial derivatives on the interior of X . Next, since
35This result parallels Proposition 1(iii) in GPV.
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G∗ (b|N, x) = F ∗ (ξ (b|N, x) |N, x), we have g (b|N, x) = f∗ (ξ (b|N, x) |N, x) ∂ξ (b|N, x) /∂b.
Substituting ∂ξ (b|N, x) /∂b from (39) yields (note that f∗ (ξ (b) |N, x) cancels out):

g∗ (b|N, x) =
1

N − 1

1

ξ (b|N, x)− b
p (N, x)

1− p (N, x) + p (N, x)F ∗ (ξ (b|N, x) |N, x)
.

The result follows from the just established order of smoothness of ξ (·|N, ·) and Assump-
tions 3(f) and (g). �

C Details of the estimation method

For kernel estimation, we use kernel functions K satisfying the following standard assump-
tion (see, for example, Newey (1994)).

Assumption 4. The kernel K has at least R ≥ 2 continuous and bounded derivatives on
R, compactly supported on [−1, 1] and is of order R:

´
K (u) du = 1,

´
ujK (u) du = 0 for

j = 1, ..., R− 1.

The standard nonparametric regression arguments imply that the estimator of entry
probabilities p̂ (N, x) is asymptotically normal (see, for example, Pagan and Ullah (1999),
Theorem 3.5, page 110):

Proposition 6. Assume that the bandwidth h satisfies Lhd → ∞ and
√
LhdhR → 0 as

L→∞. Then, for x in the interior of X and under Assumptions 3 and 4,
√
Lhd(p̂ (N, x)−

p (N, x)) is asymptotically normal with mean zero and variance

Vp (N, x) =
p (N, x) (1− p (N, x))

Nπ (N |x)ϕ (x)

(ˆ
K (u)2 du

)d
.

Moreover, the estimators p̂ (N, x) are asymptotically independent for any distinct N,N ′ ∈{
N, ...N̄

}
and x, x′ in the interior of X .

Since the distribution of values and, consequently, the distribution bids have compact
supports, the estimator of the PDF g∗(b|N, x) in Section 4.3 is asymptotically biased near
the boundaries of the bids’ support. Our quantile approach allows one to avoid the problem
by considering only inner intervals of the supports. Specifically given N ∈ N and x in the
interior of X , let 0 < τ1(N, x) < τ2(N, x) < 1. In our approach, we use quantiles Q∗(τ |N, x)
with τ ∈ [τ1 (N, x) , τ2 (N, x)]. Due to the assumptions on f∗(v|N, x) and since the bidding
function is monotone, there are b1 (N, x) and b2 (N, x) such that

[b1 (N, x) , b2 (N, x)] ⊂
(
b (N, x) , b̄(N, x)

)
, and (40)

[q∗ (τ1 (N, x) |N, x) , q∗ (τ2 (N, x) |N, x)] ⊂ (b1 (N, x) , b2 (N, x)) . (41)
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By (40), the estimator ĝ∗(b|N, x) in Section 4.3 consistently estimates g∗(b|N, x) on the
interval [b1 (N, x) , b2 (N, x)] as we show in the lemma below. Condition (41) is used for
establishing consistency of Q̂∗(q̂∗(τ |N, x)|N, x).

In practice, τ1(N, x) and τ2(N, x) can be selected as follows. Following the discussion
on page 531 of GPV, in the case with no covariates one can choose τ1(N) and τ2(N) such
that

[q̂∗ (τ1 (N) |N) , q̂∗ (τ2 (N) |N)] ⊂ (bmin (N) + h, bmax (N)− h) ,

where bmin (N) and bmax (N) denote the minimum and maximum bids respectively in the
auctions with Nl = N . When there are covariates available, one can replace bmin (N) and
bmax (N) with the corresponding minimum and maximum bids in the neighborhood of x as
defined on page 541 of GPV.

Lemma 3. Under Assumptions 3 and 4, for all x in the interior of X and N ∈ N ,

(a) ϕ̂ (x)− ϕ (x) = Op((Lh
d/ logL)−1/2 + hR).

(b) π̂ (N |x)− π (N |x) = Op((Lh
d/ logL)−1/2 + hR).

(c) p̂ (N, x)− p (N, x) = Op((Lh
d/ logL)−1/2 + hR).

(d) supb∈[b(N,x),b̄(N,x)] |Ĝ
∗ (b|N, x)−G∗ (b|N, x) | = Op((Lh

d/ logL)−1/2 + hR).

(e) supτ∈[ε,1−ε] |q̂∗ (τ |N, x)−q∗ (τ |N, x) | = Op((Lh
d/ logL)−1/2+hR), for any 0 < ε < 1/2.

(f) supb∈[b1(N,x),b2(N,x)] |ĝ∗ (b|N, x) − g∗ (b|N, x) | = Op((Lh
d+1/ logL)−1/2 + hR), where

b1 (N, x) and b2 (N, x) are defined in (40) and (41).

(g) supτ∈[τ1(N,x),τ2(N,x)] |Q̂∗ (τ |N, x)−Q∗ (τ |N, x) | = Op((Lh
d+1/ logL)−1/2 + hR).

(h) Q̂∗(β̂ (τ,N, x) |N, x) = Q∗ (β (τ,N, x) |N, x) + Op((Lh
d+1/ logL)−1/2 + hR) uniformly

in τ such that β (τ,N, x) ∈ [τ1(N, x) + ε, τ2(N, x) − ε], for any 0 < ε < (τ2(N, x) −
τ1(N, x))/2.

Proof of Lemma 3. Parts (a)-(c) of the lemma follow from Lemma B.3 of Newey (1994).
For part (d), define

G∗0 (b,N, x) = Np (N, x)π (N |x)G∗ (b|N, x)ϕ (x) ,

and its estimator

Ĝ∗0 (b,N, x) =
1

L

L∑
l=1

Nl∑
i=1

yil1 {Nl = N} 1 (bil ≤ b)K∗h (xl − x) ,
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where

K∗h (xl − x) =
1

hd
Kd

(
xl − x
h

)
, and

Kd

(
xl − x
h

)
=

d∏
k=1

K

(
xkl − xk

h

)
. (42)

Similarly to Lemma B.2 of Newey (1994), by Lemma 2 and Assumptions 3(b), (c), and (g),

sup
b∈[b(N,x),b̄(N,x)]

∣∣∣G∗0 (b,N, x)− EĜ∗0 (b,N, x)
∣∣∣ = O

(
hR
)
. (43)

Next, we show that

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) | = Op

((
Lhd

logL

)−1/2
)
. (44)

We follow the approach of Pollard (1984). Consider, for given N ∈ N and x in the interior
of X , a class of functions Z indexed by h and b, with a representative function

zl (b,N, x) =

Nl∑
i=1

yil1 {Nl = N} 1 (bil ≤ b)hdK∗h (xl − x) .

By the result in Pollard (1984) (Problem 28), the class Z has polynomial discrimination.
Theorem 37 in Pollard (1984) (see also Example 38) implies that for any sequences δL, αL
such that Lδ2

Lα
2
L/ logL→∞, Ez2

l (b) ≤ δ2
L,

α−1
L δ−2

L sup
b∈[b(N,x),b̄(N,x)]

| 1
L

L∑
l=1

zl (b,N, x)− Ezl (b,N, x) | → 0 (45)

almost surely. We claim that this implies that(
Lhd

logL

)1/2

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) |

is bounded as L→∞ almost surely, which in turn implies the result in (44). The proof is
by contradiction. Suppose not. Then there exist a sequence γL →∞ and a subsequence of
L such that along this subsequence

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) | ≥ γL
(
Lhd

logL

)−1/2

. (46)
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on a set of events Ω′ ⊂ Ω with a positive probability measure. Now if we let δ2
L = hd and

αL = ( Lh
d

logL)−1/2γ
1/2
L , then the definition of z implies that, along the subsequence on a set

of events Ω′,

α−1
L δ−2

L sup
b∈[b(N,x),b̄(N,x)]

| 1
L

L∑
l=1

zl (b,N, x)− Ezl (b,N, x) |

=

(
Lhd

logL

)1/2

γ
−1/2
L h−d sup

b∈[b(N,x),b̄(N,x)]
| 1
L

L∑
l=1

zl (b,N, x)− Ezl (b,N, x) |

=

(
Lhd

logL

)1/2

γ
−1/2
L sup

b∈[b(N,x),b̄(N,x)]
|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) |

≥
(
Lhd

logL

)1/2

γ
−1/2
L γL

(
Lhd

logL

)−1/2

= γ
1/2
L →∞,

where the inequality follows by (46), a contradiction to (45). This establishes (44), so that
(43), (44) and the triangle inequality together imply that

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)−G∗0 (b,N, x) | = Op

((
Lhd

logL

)−1/2

+ hR

)
. (47)

To complete the proof, recall that from the definitions of G∗0 (b,N, x) and Ĝ∗0 (b,N, x),

G∗ (b|N, x) =
G∗0 (b,N, x)

p (N, x)π (N |x)ϕ (x)
and Ĝ∗ (b|n, x) =

Ĝ∗0 (b,N, x)

p̂ (N, x) π̂ (N |x) ϕ̂ (x)
,

so that by the mean-value theorem,

∣∣∣Ĝ∗ (b|N, x)−G∗ (b|N, x)
∣∣∣ ≤ C̃ (b,N, x)

∥∥∥∥∥∥∥∥


Ĝ∗0 (b,N, x)−G∗0 (b,N, x)
p̂ (N, x)− p (N, x)
π̂ (N |x)− π (N |x)
ϕ̂ (x)− ϕ (x)


∥∥∥∥∥∥∥∥ , (48)

where ‖·‖ denotes the Euclidean norm, C̃ (b,N, x) is given by∣∣∣∣ 1

p̃ (N, x) π̃ (N, x) ϕ̃ (x)

∣∣∣∣
∥∥∥∥∥
(

1,
G̃∗0 (b,N, x)

p̃ (N, x)
,
G̃∗0 (b,N, x)

π̃ (N, x)
,
G̃∗0 (b,N, x)

ϕ̃ (x)

)∥∥∥∥∥ ,
and ‖(G̃∗0−G∗0, p̃−p, π̃−π, ϕ̃−ϕ)‖ ≤ ‖(Ĝ∗0−G∗0, p̂−p, π̂−π, ϕ̂−ϕ)‖. Further by Assumption
3(b), (c), and (g), and the results in parts (a)-(c) of the lemma, with probability approaching
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one ϕ̃, π̃, and p̃ are bounded away from zero. The desired result follows from (47), (48)
and parts (a)-(c) of the lemma.

For part (e) of the lemma, since Ĝ∗ (·|N, x) is monotone by construction,

P (q̂∗ (ε|N, x) ≤ b (N, x)) = P

(
inf
b

{
b : Ĝ∗ (b|N, x) ≥ ε

}
≤ b (N, x)

)
= P

(
Ĝ∗ (b (N, x) |N, x) ≥ ε

)
= o (1) ,

where the last equality is by the result in part (d). Similarly,

P
(
q̂∗ (1− ε|N, x) ≥ b (N, x)

)
= P

(
Ĝ∗
(
b (N, x) |N, x

)
≤ 1− ε

)
= o (1) .

Hence, for all x in the interior of X and N ∈ N , b (N, x) < q̂∗ (ε|N, x) < q̂∗ (1− ε|N, x) <
b (N, x) with probability approaching one. Since the distribution G∗ (b|N, x) is continuous
in b, G∗ (q∗ (τ |N, x) |N, x) = τ , and for τ ∈ [ε, 1− ε], we can write the identity

G∗ (q̂∗ (τ |N, x) |N, x)−G∗ (q∗ (τ |N, x) |N, x) = G∗ (q̂∗ (τ |N, x) |N, x)− τ. (49)

Next,

0 ≤ Ĝ∗ (q̂∗ (τ |N, x) |N, x)− τ ≤ (supuK (u))d

p̂ (N, x) π̂ (N |x) ϕ̂ (x)NLhd
, (50)

where the first inequality is by Lemma 21.1(ii) in van der Vaart (1998), and the second
inequality holds with probability one since Ĝ∗(·|N, x) is an empirical CDF and the distri-
bution of bids is continuous so that ties occur with probability zero. By (50) and the results
in (a)-(c),

Ĝ∗ (q̂∗ (τ |N, x) |N, x) = τ +Op

((
Lhd

)−1
)

(51)

uniformly over τ ∈ [ε, 1 − ε]. Combining (49) and (51), and applying the mean-value
theorem to the left-hand side of (49), we obtain

q̂∗ (τ |N, x)− q∗ (τ |N, x)

=
G∗ (q̂∗ (τ |N, x) |N, x)− Ĝ∗ (q̂∗ (τ |N, x) |N, x)

g∗ (q̃∗ (τ |N, x) |N, x)
+Op

((
Lhd

)−1
)
, (52)

where q̃∗ lies between q̂∗ and q∗ for all (τ,N, x). Now, by Lemma 2, g∗ (b|N, x) is bounded
away from zero, and the result in part (e) follows from (52) and part (d) of the lemma.

To prove part (f), by Lemma 2, g∗ (·|N, ·) admits up to R continuous bounded partial
derivatives. Let

g∗0 (b,N, x) = p (N, x)π (N |x)ϕ (x) g∗ (b|N, x) , and (53)
ĝ∗0 (b,N, x) = p̂ (N, x) π̂ (N |x) ϕ̂ (x) ĝ∗ (b|N, x) . (54)
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By Lemma B.3 of Newey (1994), ĝ∗0 (b,N, x) is uniformly consistent in b over the interval
[b1 (N, x) , b2 (N, x)]. By the results in parts (a)-(c), the estimators p̂ (N, x), π̂ (N |x), and
ϕ̂ (x) converge at a faster rate than that of ĝ∗0 (b,N, x). The desired result follows by the
same argument as in the proof of part (d), equation (48).

Next, we prove part (g). By Lemma 2, g∗ (b|N, x) > cg > 0 for some constant cg. Then,∣∣∣Q̂∗ (τ |N, x)−Q∗ (τ |N, x)
∣∣∣

≤ |q̂∗ (τ |N, x)− q∗ (τ |N, x)|+ 2
|ĝ∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q∗ (τ |N, x) |N, x)|

p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x) cg

+
|p̂ (N, x)− p (N, x)|

p̂ (N, x) p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x)

≤
(

1 +
2 supb∈[b1(N,x),b2(N,x)] |∂g∗ (b|N, x) /∂b|

p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x) cg

)
|q̂∗ (τ |n, x)− q∗ (τ |n, x)|

+2
|ĝ∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q̂∗ (τ |N, x) |N, x)|

p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x) cg

+
|p̂ (N, x)− p (N, x)|

p̂ (N, x) p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x)
. (55)

Define the event

EL (N, x) = {q̂∗ (τ1 (N, x) |N, x) ≥ b1 (N, x) , q̂∗ (τ2 (N, x) |N, x) ≤ b2 (N, x)} ,

and let βL =
(
Lhd+1/ logL

)−1/2
+ hR. By the result in part (e), P (EcL (N, x)) = o (1).

Hence, it follows from part (e) of the lemma that the estimator ĝ∗(q̂∗ (τ |N, x) |N, x) is
bounded away from zero with probability approaching one, and the first term on the right-
hand side of (55) is Op (βL) uniformly over [τ1 (N, x) , τ2 (N, x)]. Next,

P

(
sup

τ∈[τ1(N,x),τ2(N,x)]
β−1
L |ĝ

∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q̂∗ (τ |N, x) |N, x)| > M

)

≤ P

(
sup

τ∈[τ1(N,x),τ2(N,x)]
β−1
L |ĝ

∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q̂∗ (τ |N, x) |N, x)| > M,EL (x)

)
+P (EcL (x))

≤ P

(
sup

b∈[b1(N,x),b2(N,x)]
β−1
L |ĝ

∗ (b|N, x)− g∗ (b|N, x)| > M

)
+ o (1) . (56)

Part (g) follows from (55) and (56) by the results in parts (c) and (f) of the lemma.
For part (h), first for all τ ∈ [0, 1],∣∣∣β̂ (τ,N, x)− β (τ,N, x)

∣∣∣ ≤ ∣∣∣∣∣ p̂
(
N̄ , x

)
p̂ (N, x)

−
p
(
N̄ , x

)
p (N, x)

∣∣∣∣∣ ,
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and therefore by the result in part (c) of the lemma, supτ∈[0,1] |β̂ (τ,N, x) − β (τ,N, x) | =
Op((Lh

d/ logL)−1/2 +hR) for all N ∈ N and x in the interior of X . The desired result then
follows by the triangular inequality, uniform consistency of β̂(τ,N, x), the result in part (g)
of the lemma, differentiability of Q∗ (·|N, x), the mean-value theorem, and since f∗ (·|N, x)
is bounded away from zero by Assumption 3(f). �

Lemma 4. Suppose that Assumptions 3 and 4 hold, and that the bandwidth h is such that
Lhd+1 →∞,

√
Lhd+1hR → 0. Then,
√
Lhd+1 (ĝ∗ (b|N, x)− g∗ (b|N, x))→d N (0, Vg (b,N, x))

for b ∈ [b1 (N, x) , b2 (N, x)], x in the interior of X , N ∈ N , where b1 (N, x) and b2 (N, x)
are defined in (40) and (41), and Vg (b,N, x) is given by

Vg (N, b, x) =
g∗ (b|N, x)

Np (N, x)π (N |x)ϕ (x)

(ˆ
K (u)2 du

)d+1

.

Furthermore, ĝ∗ (b|N1, x) and ĝ∗ (b|N2, x) are asymptotically independent for all N1 6= N2,
N1,N2 ∈ N .

Proof of Lemma 4. Consider g∗0(b, n, x) and ĝ∗0(b, n, x) defined in (53) and (54) respec-
tively. It follows from parts (a)-(c) of Lemma 3,
√
Lhd+1 (ĝ∗ (b|N, x)− g∗ (b|N, x))

=
1

p (N, x)π (N |x)ϕ (x)

√
Lhd+1 (ĝ∗0 (b,N, x)− g∗0 (b,N, x)) + op(1). (57)

Furthermore, as in Lemma B2 of Newey (1994), Eĝ∗0 (b,N, x) − g∗0 (b,N, x) = O
(
hR
)
uni-

formly in b ∈ [b1 (N, x) , b2 (N, x)] for all x in the interior of X and N ∈ N . Thus, it remains
to establish asymptotic normality of

√
Lhd+1 (ĝ∗0 (b,N, x)− Eĝ∗0 (b,N, x)).

Define

wil,N =

√
1

hd+1
yil1 {Nl = N}K

(
bil − b
h

)
Kd

(
xl − x
h

)
,

wL,N =
1

NL

L∑
l=1

Nl∑
i=l

wil,N ,

where Kd is defined in (42). With the above definitions we have that
√
NLhd+1 (ĝ∗0 (b,N, x)− Eĝ∗0 (b,N, x)) =

√
NL (wL,N − EwL,N ) . (58)

Then, by the Liapunov CLT (see, for example, Corollary 11.2.1 on page 427 of Lehman and
Romano (2005)),

√
NL (wL,N − EwL,N ) /

√
NLV ar (wL,N )→d N (0, 1) , (59)
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provided that Ew2
il,N <∞, and for some δ > 0,

lim
L→∞

1

Lδ/2
E |wil,N − Ewil,N |2+δ = 0.

The last condition follows from the Liapunov’s condition (equation (11.12) on page 427 of
Lehman and Romano (2005)) and because wil,N are i.i.d. Next, Ewil,N is given by√

1

hd+1
E

(
p (N, xl)π (N |xl)

ˆ
K

(
u− b
h

)
g∗ (u|N, xl) duKd

(
xl − x
h

))
=

√
1

hd+1

ˆ ˆ
p (N, y)π (N |y)K

(
u− b
h

)
g∗ (u|N, y)Kd

(
y − x
h

)
ϕ (y) dudy

=
√
hd+1

×
ˆ ˆ

p (N, x+ hy)π (N |x+ hy)K (u) g∗ (b+ hu|N, x+ hy)Kd (y)ϕ (x+ hy) dudy

→ 0.

Further, Ew2
il,N is given by

1

hd+1

ˆ ˆ
p (N, y)π (N |y)K2

(
u− b
h

)
g∗ (u|N, y)K2

d

(
y − x
h

)
ϕ (y) dudy

=

ˆ ˆ
p (N, x+ hy)π (N |x+ hy)K2 (u) g∗ (b+ hu|N, x+ hy)K2

d (y)ϕ (x+ hy) dudy

< ∞.

Hence,

NLV ar (wL,N )→ p (N, x)π (N |x) g∗ (b|N, x)ϕ (x)

(ˆ
K2 (u) du

)d+1

du. (60)

Next, E |wil,N |2+δ is bounded by

1

h(d+1)(1+δ/2)

ˆ ˆ ∣∣∣∣K (u− bh
)∣∣∣∣2+δ

g∗ (u|N, y)

∣∣∣∣Kd

(
y − x
h

)∣∣∣∣2+δ

ϕ (y) dudy

=
1

h(d+1)δ/2

ˆ ˆ
|K (u)|2+δ g∗ (b+ hu|N, x+ hy) |Kd (y)|2+δ ϕ (x+ hy) dudy

≤ 1

h(d+1)δ/2
sup

u∈[−1,1]
|K (u)|(d+1)(2+δ) sup

x∈X
ϕ (x) sup

b∈[b1(N,x),b2(N,x)]
g∗ (b|N, x)

=
C

h(d+1)δ/2
.
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Lastly,

1

Lδ/2
E |wil,N − Ewil,N |2+δ ≤ 21+δ

Lδ/2
E |wil,N |2+δ

≤ 21+δC

(Lhd+1)
δ/2

→ 0, (61)

since Lhd+1 → ∞ by the assumption. The first result of the lemma follows now from
(57)-(61).

Next, note that the asymptotic covariance of wL,N1 and wL,N2 involves a product of the
two indicator functions, 1 {Nl = N1} 1 {Nl = N2}, which is zero for all N1 6= N2. The joint
asymptotic normality and asymptotic independence of ĝ∗ (b|N1, x) and ĝ∗ (b|N2, x) follows
then by the Cramér-Wold device. �

Proposition 7. Assume that the bandwidth h satisfies Lhd+1 → ∞ and
√
Lhd+1hR → 0.

Then, for τ ∈ (0, 1), x in the interior of X , and under Assumptions 3 and 4,
√
Lhd+1

(
Q̂∗ (τ |N, x)−Q∗ (τ |N, x)

)
→d N (0, VQ (N, τ, x)) ,

√
Lhd+1

(
Q̂∗
(
β̂ (τ,N, x) |N, x

)
−Q∗ (β (τ,N, x) |N, x)

)
→d N (0, VQ (N, β (τ,N, x) , x))) ,

where

VQ (N, τ, x) =

(
1− p (N, x) (1− τ)

(N − 1)p (N, x) g∗2(q∗ (τ |N, x) |N, x)

)2

Vg (N, q∗ (τ |N, x) , x) ,

and Vg (N, τ, x) is defined in Lemma 4. Moreover, for any distinct N,N ′ ∈
{
N, ...N̄

}
,

τ, τ ′ ∈ Υ, and x, x′ in the interior of X , the estimators Q̂∗ (τ |N, x) are asymptotically
independent, as well as the estimators Q̂∗

(
β̂ (τ,N, x) |N, x

)
.

Proof of Proposition 7. First, by Lemma 3 (c), (e) and (f), and the mean-value theorem,

Q̂∗ (τ |N, x) = Q∗ (τ |N, x)− 1− p (N, x) (1− τ)

(N − 1)p (N, x) g̃∗2(q∗ (τ |N, x) |N, x)

× (ĝ∗ (q∗ (τ |N, x))− g∗ (q∗ (τ |N, x))) + op

(
1√

Lhd+1

)
, (62)

where g̃∗ is a mean-value between g∗ and ĝ∗ for b = q∗ (τ |N, x). The result follows then by
Lemma 4. �
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D Asymptotic variance for the binomial restriction test

By the delta-method, the asymptotic variance of ∆̂Binomial (n,N, x) is given by

VBinomial (n,N, x) = Vρ (n,N, x) +D2 (n,N, x)Vp (N, x)− 2D (n,N, x)σρ,p (n,N, x) ,

where Vρ and Vp are the asymptotic variances of ρ̂ and p̂ respectively:

Vρ (n,N, x) =
ρ (n|N, x) (1− ρ (n|N, x))

(´
K2 (u) du

)d
Nπ (N |x)ϕ (x)

,

Vp (N, x) =
p (N, x) (1− p (N, x))

(´
K2 (u) du

)d
Nπ (N |x)ϕ (x)

,

D (n,N, x) is the derivative of
(
N
n

)
p (N, x)n (1− p (N, x))N−n with respect to p (N, x):

D (n,N, x) =(
N
n

)(
np (N, x)n−1 (1− p (N, x))N−n − (N − n) p (N, x)n (1− p (N, x))N−n−1

)
,

and σρ,p (n,N, x) is the asymptotic covariance between ρ̂ and p̂:

σρ,p (n,N, x) =
E {(1 (nl = n)− ρ (n|N, x)) (nl/N − p (N, x)) |N, x}

(´
K2 (u) du

)d
Nπ (N |x)ϕ (x)

.

In the above expression, the term E {(I (nl = n)− ρ (n|N, x)) (nl/N − p (N, x)) |N, x} can
be estimated as∑L

l=1 (1 (nl = n)− ρ̂ (n|N, x)) (nl/N − p̂ (N, x)) 1 {Nl = N}
∏d
k=1K

(
xkl−xk

h

)∑L
l=1 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

) .

E Validity of the bootstrap

We establish the bootstrap validity for the AME test (32). For the other tests, the proof
is analogous and therefore omitted. As is standard in the literature on statistical testing,
see for example Chapter 21.4 in Gourieroux and Monfort (1995), we control the maxi-
mum asymptotic rejection probability under our composite null hypothesis, and replace the
statistic TAME (x) with its infeasible re-centered version T̄AME (x),

T̄AME (x) = sup
τ∈Υ

√
Lhd+1

N̄∑
N=N

N̄∑
N ′=N

[
∆̂ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
+

σ̂ (τ,N,N ′, x)
, where

∆
(
τ,N,N ′, x

)
= Q∗ (τ |N, x)−Q∗

(
τ |N ′, x

)
.
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Since under the null hypothesis, ∆(τ,N,N ′, x) ≤ 0, it follows that P (TAME (x) > u) ≤
P (T̄AME (x) > u) for all u ∈ R. Therefore, when the test based on T̄AME (x) has asymp-
totic size α, the asymptotic size of the test TAME (x) is less or equal to α. Thus, it suffices
to show that

sup
u

∣∣∣P (T̄AME (x) > u)− P †(T †,AME
m (x) > u)

∣∣∣→p 0, (63)

where P † denotes the bootstrap distribution conditional on the original data.
To show (63), we proceed as follows. First, the results in Lemma 3 imply the following

delta-method expansion.

√
Lhd+1

[
∆̂ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
+

σ̂ (τ,N,N ′, x)
=
κ (τ,N,N ′, x)

σ (τ,N,N ′, x)

×
√
Lhd+1

[
ĝ∗ (q∗ (τ |N, x))− g∗ (q∗ (τ |N, x))− ĝ∗

(
q∗
(
τ |N ′, x

))
+ g∗

(
q∗
(
τ |N ′, x

))]
+

+ op (1) , (64)

where κ (τ,N,N ′, x) is determined by the term in the front of ĝ∗ (q∗ (τ |N, x))−g∗ (q∗ (τ |N, x))
in (62), and the op (1) term is uniform in τ ∈ [τ1(N, x), τ2(N, x)].

Let ĝ∗,†m (·|N, x) be the bootstrap analogue of ĝ∗ (·|N, x) in bootstrap sample m. We
say that a bootstrap statistic ζ†L is o†p(1) if for all ε > 0, P †(|ζ†L| > ε) →p 0. By repeating
the steps of Lemma 3 for the bootstrap analogues of the original sample statistics, one can
show that the bootstrap version of (64) holds as well:

√
Lhd+1

[
∆̂†m (τ,N,N ′, x)− ∆̂(τ,N,N ′, x)

]
+

σ̂† (τ,N,N ′, x)
=
κ (τ,N,N ′, x)

σ (τ,N,N ′, x)

×
√
Lhd+1

[
ĝ∗,†m (q∗ (τ |N, x))− ĝ∗ (q∗ (τ |N, x))− ĝ∗,†m

(
q∗
(
τ |N ′, x

))
+ ĝ∗

(
q∗
(
τ |N ′, x

))]
+

+ o†p (1) , (65)

where the o†p (1) term is again uniform in τ ∈ [τ1(N, x), τ2(N, x)].36

Next, we use the uniform strong approximation for the bootstrap of Chen and Lo
(1997). Provided that Lhd+1 →∞ and by Proposition 3.2 in Chen and Lo (1997), one can
construct g̃∗ (·|N, x) independent of the original data, such that g̃∗ (·|N, x) =d ĝ∗ (·|N, x),
and for almost all sample paths,

sup
x∈X 0

sup
b∈[b1(N,x),b2(N,x)]

√
Lhd+1

∣∣∣ĝ∗,†m (b|N, x)− ĝ∗ (b|N, x)− (g̃∗ (b|N, x)− g∗ (b|N, x))
∣∣∣

= O (δL) , (66)

36The proof of (65) is given in the supplement Marmer, Shneyerov, and Xu (2011), which is available
from the UBC working papers series and the authors’ web-pages.
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where δL → 0 is a sequence of constants.37 In the above result, [b1 (N, x) , b2 (N, x)] and
X 0 are the inner compact subsets of the support of bids and x respectively.

Define[
∆̃ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
+

σ (τ,N,N ′, x)
=
κ (τ,N,N ′, x)

σ (τ,N,N ′, x)

×
[
g̃∗ (q∗ (τ |N, x))− g∗ (q∗ (τ |N, x))− g̃∗

(
q∗
(
τ |N ′, x

))
+ g∗

(
q∗
(
τ |N ′, x

))]
+
,

and

T̃AME (x) = sup
τ∈Υ

√
Lhd+1

N̄∑
N=N

N̄∑
N ′=N

[
∆̃ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
+

σ (τ,N,N ′, x)
.

By the results in Lemma 4, (64), and the Continuous Mapping Theorem,

T̄AME (x)→d T , (67)

where T is a random variable with a continuous CDF. Since g̃∗ (·|N, x) =d ĝ∗ (·|N, x) by
construction, we have as well that

T̃AME (x)→d T . (68)

Next, by (65) and (66),

T †,AME
m (x)− T̃AME (x) = o†p(1). (69)

Since g̃∗ (·|N, x) is independent of the original data by construction, P †(T̃AME (x) ≤ u) =
P (T̃AME (x) ≤ u) for all u ∈ R. This, together with (69) and the fact that the CDF of T
is continuous, implies that

P (T̃AME (x) > u)− P †(T †,AME
m (x) > u)→p 0 (70)

for all u ∈ R.38 Lastly, by (67), (68), and (70), we have that for all u ∈ R,

P (T̄AME (x) > u)− P †(T †,AME
m (x) > u)→p 0. (71)

The result in (63) now follows by the pointwise convergence in (71) and Pólya’s Theorem
(Shao and Tu, 1995, page 447).

37See (14) in Chen and Lo (1997) for the precise definition of δL.
38This can be shown similarly to Theorem 22.4 on page 349 in Davidson (1994).
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F Monte-Carlo experiment

In this section we present a Monte-Carlo study of the small sample properties of the tests.
In particular, we are interested in seeing how a dense grid of quantiles τ affects size and
power of the tests.

We simulate S and V using a Gaussian copula. Let (Z1, Z2) be bivariate normal with
zero means, variances equal to one, and correlation coefficient ρ ∈ [0, 1). Informative signals
corresponds to ρ > 0, while the LS model corresponds to ρ = 0. Let Φ denote the standard
normal CDF. A pair (S, V ) is generated as S = Φ (Z1) and V = Φ (Z2).

Details of the computation of the distributions F (v|S) and F ∗ (v|N) that are needed in
order to solve for the equilibrium of the auction are as follows. First, Z2|Z1 ∼ N

(
ρz1, 1− ρ2

)
,

and therefore the conditional distribution of V given S is given by

F (v|S) = P (V ≤ v|S)

= P
(
Z2 ≤ Φ−1 (v) |Φ−1 (S)

)
= Φ

(
Φ−1 (v)− ρΦ−1 (S)√

1− ρ2

)
.

Next, note that the marginal distribution of S is uniform on the [0, 1] interval, therefore

F ∗ (v|N) = F (v|S ≥ s̄ (N))

=
1

1− s̄

ˆ 1

s̄(N)
Φ

(
Φ−1 (v)− ρΦ−1 (s)√

1− ρ2

)
ds,

where the cutoff signal s̄ (N) can be found, given the value of N , as a solution to equation
(4). Lastly, for S ≥ s̄ (N), the bids are computed according as a solution to (2).

In our simulations, we set L = 250, N = {2, 3, 4, 5}, π (N) = 1/4 for all N ∈ N , and
k = 0.17. The number of Monte Carlo replications is 1,000; in each replication, the critical
values for the tests are obtained using 999 replications. We use the tri-weight kernel function
K (u) = (35/32)

(
1− u2

)3
1 {|u| ≤ 1} and 1.978× 1.06× (std.err.)× (sample size)−(1/5) for

the bandwidth. Our grid consists of 200 quantiles equally spaced between 0.05 and 0.95.
We generate three random samples. The first one is ρ = 0, which corresponds to LS

model. The second is an AME sample with ρ = 0.5. The last sample is the S sample.
Table 4 reports the results of size simulations for the tests. TAME test performs reasonably
well in the finite samples. Some under rejection is observed for the LS sample (ρ = 0). For
nominal sizes of 0.1, 0.05, and 0.01, the simulated rejection rates are approximately 0.057,
0.025 and 0.005 respectively. For the AME (ρ = 0.5), the simulated rejection probabilities
are very close to their nominal values: for the same nominal sizes, they are approximately
0.088, 0.047, and 0.014. Finally, the rejection probabilities in the S experiment are also
close to their nominal values.
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Table 4: Simulated size and size-corrected power of models’ tests

Test Nominal size
0.1 0.05 0.01

Size

LS 0.0570 0.0250 0.0050
AME 0.0880 0.0470 0.0140
S 0.0850 0.0510 0.0120

Size-corrected power

LS 1.0000 1.0000 1.0000
AME 0.9930 0.9700 0.8550
S 0.9950 0.9810 0.9300

Table 1 also reports the size corrected power results (the critical values are computed
from the simulated distribution of the test statistic under the null). To address the power
issue for the AME test, it is necessary to come up with an alternative. We reverse the order
of quantiles, making them decreasing in N . To do this in the simplest fashion possible, we
multiply each quantile by minus one and then add a constant to all quantiles to assure that
they are positive.

The results in Table 4 show that the power properties are good. For ρ = 0.5 and
for nominal sizes of 10%, 5%, and 1%, the simulated rejection rates are 99.3%, 97% and
85.5% respectively. Similar results hold for LS (ρ = 0) and S models. Taken together,
the simulation results indicate that our bootstrap method has both good size and power
properties, even in samples of moderate size.

G Circumventing the curse of dimensionality: A single index
approach

Consider a single index model

F (v, s|x) = F
(
v, s|x′β

)
,

r = r
(
x′β
)
.
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(In this section, we abuse the notation slightly by often keeping it the same for the distri-
bution conditional on the single index, as well as for other relevant objects, r etc.) Here
x′β is a single index that captures the dependence of signals and valuations on covariates,
and β ∈ Rd is a vector of coefficients, identifiable up to a common scale normalization. For
simplicity, assume that the entry cost k does not vary with x.39 Equation (21) implies that
the signal cutoffs s̄ are also functions of the single index x′β, say s̄ (N, x′β), and therefore
the distribution of active bidders’ valuations F ∗ (v|x′β) also depends on x only through
x′β. Equation (20) implies that the bidding strategy B (·|N, x′β) also depends on x only
through the single index x′β. Moreover, since the bidding strategy is monotone increasing,
the quantiles of bids are equal to

q∗ (τ |N, x) = B
(
Q∗
(
τ |N, x′β

)
|N, x′β

)
≡ q̃∗

(
τ |N, x′β

)
,

i.e. also depend on x only through the single index x′β. Consequently, we can estimate β
from the bids data by any of the methods proposed in the literature on single index quantile
regression.

In particular, we can use an average derivative estimator. For u = x′β, we have
∂q∗ (τ |N, x)

∂x
= β

∂q̃∗ (τ |N, u)

∂u
, (72)

and β can be estimated as an average quantile derivative. (Recall that β is only identifiable
up to a scale normalization). Equation (72) implies that β is proportional to the average
derivative ˆ

∂q∗ (τ |N, x)

∂x
w (x)ϕ (x) dx, (73)

where w (·) is a nonnegative, smooth weighting function with compact support within X .
Since β is only identifiable up to a scalar multiple, we can normalize β by setting it equal to
(73). Taking into account this compact support assumption for w (·) and using integration
by parts in (73),

β = −
ˆ
q∗ (τ |N, x)

∂ [w (x)ϕ (x)]

∂x
dx

= −
ˆ
q∗ (τ |N, x)

(
ϕ (x)

∂w (x)

∂x
+ w (x)

∂ϕ (x)

∂x

)
dx. (74)

Chaudhuri, Doksum, and Samarov (1997) propose an estimator of β based on a finite sample
analogue to the average derivative (74):

β̂ = − 1

L

L∑
l=1

q̂∗ (τ |N, x)

ϕ̂ (xl)

(
ϕ̂ (xl)

∂w (xl)

∂x
+ w (xl)

∂ϕ̂ (xl)

∂x

)
, (75)

39This assumption may be plausible in some applications. For example, Bajari, Hong, and Ryan (2010)
in their empirical study of highway procurement auctions assume that entry costs do not depend on auction
characteristics.
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and provide conditions under which this estimator is root-L consistent, β̂ = β+Op
(
L−1/2

)
.

Since the convergence of the estimator β̂ is root-L, which is faster than nonparametric, the
asymptotics of our estimators Q̂∗ (τ |N, x) etc. will remain unaffected if we use the single
index x′β̂ in place of x in the implementation of the nonparametric estimators described in
the main text.

H Econometric details of the quantile-matching GMM esti-
mator

Here, we provide the detailed expressions for Ω0 and D0 that appear in the asymptotic
distribution of the GMM estimator θ̂ in Section 5.1. For generic random vectors Y and Z,
we define EZY ≡ E [Y |Z]. First,

ENl,xl [yil (τ1 − 1 (bil ≤ q∗(τ1|Nl, xl; θ0))) (τ2 − 1 (bil ≤ q∗(τ2|Nl, xl; θ0)))]

= ENl,xl [yilENl,xl,yl [(τ1 − 1 (bil ≤ q∗(τ1|Nl, xl; θ0))) (τ2 − 1 (bil ≤ q∗(τ2|Nl, xl; θ0)))]]

= ENl,xl [yil (τ1 ∧ τ2 − τ1τ2)] , where τ1 ∧ τ2 = min {τ1, τ2}
= (τ1 ∧ τ2 − τ1τ2) p (Nl, xl; θ0) .

Next,

ENl,xl [yil (τ − 1 (bil ≤ q∗(τ |Nl, xl; θ0))) (yil − p(Nl, xl; θ0))]

= ENl,xl [yil (yil − p(Nl, xl; θ0)) (τ − ENl,xl,yil [1 (bil ≤ q∗(τ |Nl, xl; θ0))])]

= 0,

and

ENl,xl (yil − p(Nl, xl; θ0))2 = ENl,xlyil − p (Nl, xl; θ0)2

= p (Nl, xl; θ0) (1− p (Nl, xl; θ0)

Therefore,

ENl,xlml (θ0)ml (θ0)′ =

1

Nl

(
ΥM×M · p (Nl, xl; θ0) 0M×1

01×M Ep (Nl, xl; θ0) (1− p (Nl, xl; θ0)

)
,

where

Υk×k =


τ1 (1− τ1) τ1 ∧ τ2 − τ1τ2 · · · τ1 ∧ τM − τ1τM

τ1 ∧ τ2 − τ1τ2 τ2 (1− τ2) · · · τ2 ∧ τM − τ2τM
...

...
. . .

...
τ1 ∧ τM − τ1τM τ2 ∧ τM − τ2τM · · · τM (1− τM )

 .
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For example, if τ1 < τ2 < . . . < τM , then

Υk×k =


τ1 (1− τ1) τ1(1− τ2) · · · τ1(1− τM )
τ1(1− τ2) τ2 (1− τ2) · · · τ2(1− τM )

...
...

. . .
...

τ1(1− τM ) τ2(1− τM ) · · · τM (1− τM )

 .

We have

Ω0 = E

[
1

Nl

(
ΥM×M · p (Nl, xl; θ0) 0M×1

01×M Ep (Nl, xl; θ0) (1− p (Nl, xl; θ0)

)]
.

Note that Ω0 can be estimated without estimating θ0 first. This is because p̂ (N, x) →p

p (N, x; θ0), where p̂ (N, x) is the kernel-based nonparametric estimator of the conditional
entry probabilities. Thus, a consistent estimator of Ω0 is

Ω̂ =
1

L

L∑
l=1

1

Nl

(
ΥM×M · p̂ (Nl, xl) 0M×1

01×M p̂ (Nl, xl) (1− p̂ (Nl, xl))

)
,

and the optimal weight matrix can be computed as Ω̂−1.
For D0, we have

∂

∂θ
ENl,xl,yil [yil (τ − 1 (bil ≤ q∗(τ |Nl, xl; θ)))]

=
∂

∂θ
[yil (τ −G∗ (q∗(τ |Nl, xl; θ)|Nl, xl))] if yil = 1 and zero otherwise

= −yilg∗ (q∗(τ |Nl, xl; θ)|Nl, xl)
∂q∗(τ |Nl, xl; θ)

∂θ
.

Therefore,

D0 = −E


yilg

∗ (q∗(τ1|Nl, xl; θ0)|Nl, xl)
∂
∂θq
∗(τ1|Nl, xl; θ0)

...
yilg

∗ (q∗(τM |Nl, xl; θ0)|Nl, xl)
∂
∂θq
∗(τM |Nl, xl; θ0)

∂
∂θp(Nl, xl; θ0)

 .
Given θ̂ and nonparametric kernel-based estimator ĝ∗ (·|N, x), the matrix D0 can be con-
sistently estimated as

D̂ = − 1

L

L∑
l=1

1

Nl

Ni∑
i=1


yilĝ

∗
(
q∗(τ1|Nl, xl; θ̂)|Nl, xl

)
∂
∂θq
∗(τ1|Nl, xl; θ̂)

...
yilĝ

∗
(
q∗(τM |Nl, xl; θ̂)|Nl, xl

)
∂
∂θq
∗(τM |Nl, xl; θ̂)

∂
∂θp(Nl, xl; θ̂)

 .
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