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1.  Introduction

This study develops new unit root and cointegration rank tests for time series panels that are

robust to a number of important features, including heterogeneous dynamics, incidental trends

and cross sectional dependency of unknown form, including the possibility of cross sectional

dependency in the form of cointegrating relationships that run across the individual members of

the panel.  We show that the tests have good finite sample size properties and strong power even

in the presence of incidental trends.  Another important practical feature, particularly for the

cointegration rank tests, is that they can be implemented in panels with relatively large cross

sectional dimensions, or equivalently in large systems of equations, without the need to restrict

the form of cross sectional or cross equation dependencies.  This is an attractive feature relative

to panel VECM based approaches, which either are limited to panels with very limited cross

sectional dimensions, or else require very strong restrictions on the form of permissible cross

sectional dependencies.   All of the tests are simple to implement, and each of the tests that we

present in this study is able to accommodate higher order serial correlation that varies across

individual members of the panel without the need to choose lag truncations or bandwidths.

The analytic results of this paper are presented in three main sections.   The first section 

examines the properties of untruncated kernel based estimators for unit root tests in panels with

heterogeneous dynamics.  In doing so, we first set aside issues of cross sectional dependency and

incidental trends in order to focus on the performance of tests that use all available sample

autocovariances.   In the conventional time series case, although HAC estimators without

truncation are asymptotically invariant to nuisance parameters and can be used for testing as

demonstrated in Kiefer and Vogelsang (2002), they are inconsistent in the sense that they do not
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converge to the true long run variance.  In this paper we demonstrate that in the panel context a

transformation of such an estimator also becomes consistent as the panel dimensions grows

large.  A practical consequence of this is that the limiting distributions for the panel test statistics

become standard normal even when no truncation is used for the kernel.  We study the properties

of two such tests, one based on an unweighted pooled variance ratio test, and the other based on

a weighted pooled variance ratio test.

The next section expands on this idea by developing tests that use all available sample

autocovariances and are  robust to the presence of incidental trends and cross sectional

dependency.  The first of these can be thought of as a multivariate version of the J-test, first

introduced in Park (1990) and Park and Choi (1988).  The second of these can be thought of as

analogous to a multivariate version of a unit root test first studied in Breitung (2002).   We

demonstrate that a multivariate trace statistic based on these two types of tests perform well and

retain strong power in the presence of incidental trends in small samples.  This is an important

advance relative to earlier panel unit root tests, since many such tests have very low power when

incidental trends are included.  Finally, we show analytically that the tests are invariant to the

presence of dynamic short run cross sectional dependency, and illustrate by Monte Carlo

simulation that they have good size properties in small samples with cross sectional dependency.

In the next section, section 4, we also investigate the properties of these tests when

cointegration is present across the individual members of the panels.  Specifically, we show how

the tests can be used to test for the rank of a panel or a large system of equations in a way that is

robust to the presence of incidental trends and cross sectional dependency of unknown form. 

Most importantly, we show that these tests are feasible and perform well even when the cross
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sectional dimension is fairly large.  This is very important in practice, because existing rank tests

based on maximum likelihood methods for VECMs either require strong restrictions on the type

of cross sectional dependency or else quickly become infeasible in the absence of such

restrictions as the cross sectional dimension becomes large.

Finally, in section 5 we investigate the small sample properties of each of these tests by

way of some preliminary Monte Carlo simulations, and section 6 offers some concluding

remarks.   The mathematical proofs for each of the propositions in sections 2 through 4 are

collected in the technical appendix.  The remainder of this introductory section briefly discusses

some of the other related literature on panel unit roots.

1.1 Related Literature

The literature on testing for unit roots in panels has expanded dramatically in the last decade.  

Early unit root studies that dealt with the case of panels with common homogeneous dynamics

include Breitung and Meyer (1994), Quah (1994).   Later studies that permitted heterogenous

dynamics in the higher order serial correlation in panel unit root tests included the works of

Levin, Lin and Chu (2002) and Im, Pesaran and Shin (2003).   The Levin, Lin and Chu tests

included both semi-parametric versions and ADF parametric versions of the tests.  Im, Pesaran

and Shin used only parametric ADF style tests, but permitted the autoregressive root to vary

under the stationary alternative.   All of the parametric based tests require the serial correlation to

be fitted individually for each member of the panel, which involves the choice of a finite

truncation value.  All of the semiparametric tests require a bandwidth choice that truncates the

number of autocovariances that are estimated.
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Versions of each of these tests were also constructed to allow for incidental trends.  But

as Breitung (2000) points out, in practice these tests tend to have very little or almost no power

when incidental trends are estimated.   Each of these tests were also constructed under the

assumption of independence across members of the panel.  More recently, many different

approaches have been proposed to deal with the issue of cross sectional dependence in panel unit

root tests, though none of these deal with the issue of low power in the presence of incidental

trends.  For example, Chang (2004) studies a bootstrap approach that conditions on the estimated

cross sectional dependency to compute appropriate critical values.  Chang (2002) examines the

use of nonlinear instrumental variables to render the panel statistics asymptotically invariant to

cross sectional dependency.  Another line of research has attempted to model the cross sectional

dependency in the form of a low dimensional common factor model, which is estimated and

conditioned out prior to construction of the panel unit root test.  Examples of this approach

include Bai and Ng (2004), Moon and Perron (2004) and Phillips and Sul (2003) as well as the 

related approach of Pesaran (2004).   Finally in the context of cointegration, another approach

has been through the judicious use of restrictions in maximum likelihood estimation of VECM

systems.  Examples of this approach include Larsson, R., J. Lyhagen, and M. Löthgren (2001),

Groen and Kleibergen (2002) as well as others.   Recent Monte Carlo studies of the role of cross

member cointegration includes Banerjee, Marcellino and Osbat (2004) and Gengenbach, Urbain

and Palm (2004).  For recent reviews of the literature we refer readers to Harris and Solis (2003)

and Pedroni and Urbain (2005).  Earlier reviews include Banerjee (1999), Baltagi and Kao

(2000) and Phillips and Moon (2000).
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2.  Robust panel unit root tests with untruncated kernels and the treatment of cross

sectional heterogeneity.

A basic premise for the use of panel unit root tests is that there may be some commonality

related to the hypothesis of interest that runs across members of the panel which can be exploited

by the use of  panel based tests.   In some cases, this may be as simple as positing that under the

null hypothesis all members of the panel follow a unit root process, while under the alternative

hypothesis all members of the panel follow a stationary processes.  In other cases, the unit root

properties of the panel may be mixed, and one is interested to know under the null hypothesis

whether most of the members follow a unit root process as compared to the alternative

hypothesis that a substantial fraction follow stationary processes.   Under either scenario, the

idea is that by pooling the information regarding the null hypothesis, one can construct tests that

have high power even when the time series dimension is small enough such that traditional

single time series tests for unit roots tend to have unacceptably low small sample power.

However, an important complicating issue for this strategy is that unit root tests must

typically be constructed in a manner that makes them invariant to a host of other features of the

data that can impact the distributional properties of the tests but that are not directly relevant for

the hypothesis of interest.  A prime example of such features are the unknown higher order serial

correlation properties of the data.  In order to ensure that the limiting distributions of the tests

statistics do not contain nuisance parameters associated with these unknown features, the

dynamics associated with the serial correlation must either be modeled and estimated

parametrically or must be accommodated by nonparametric estimation of the associated

moments.  In a panel setting, there is the added complication that these unknown features of the
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data typically differ across members of the panel, so that they must be dealt with in a way that

accounts for the cross sectional heterogeneity.

The standard approach to account for this heterogeneity is to treat the higher order serial

correlation as a member specific process and construct the tests accordingly.   When the serial

correlation is modeled parametrically, this typically involves fitting lagged differences

individually for each member of the panel prior to constructing the panel statistic.   This is the

approach taken for the ADF style panel unit tests studied in Levin, Lin and Chu (2002) and Im,

Pesaran and Shin (2003).   Similarly, when the serial correlation is accommodated

nonparametrically, this typically involves estimating autocovariances individually for each

member of the panel using kernel estimators prior to construction of the panel statistic.  This is

the approach used for example in the Phillips-Perron style panel unit root tests studied in Levin,

Lin and Chu (2002).

2.1 An example of the usual treatment of heterogeneity in panel unit root tests

Standard asymptotic theory indicates that if a sufficient number of lag differences are

fitted, or a sufficiently large number of autocovariances are estimated, then the limiting

distributions will be invariant to nuisance parameters associated with the higher order serial

correlation as the sample size grows.  However, for finite samples one must invariably make a

choice of how many lagged differences to estimate or how many autocovariances to estimate and

in practice test results can become sensitive to these choices.  The issue of lag truncation and

bandwidth selection is not unique to panels, and is well known in the standard time series

literature.  The complication introduced in the panel setting is that when the serial correlation
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properties are heterogeneous across the panel, this choice must be made not just once.  Instead,

the number of times the choice must be made is multiplied over the cross sectional dimension of

the panel.   The practical result is that the sensitivity to this choices can become even greater as

the cross sectional dimension of the panel increases, particularly considering that panel tests are

often performed in situations when the individual series are substantially shorter than in the

conventional single time series case.

To illustrate this point, consider how one of the more popular panel unit root tests, the

group mean t-statistic from Im, Pesaran and Shin (2003) is implemented when the serial

correlation properties are heterogeneous across members of the panel.   Specifically, the data

generating process characterized as

for   where   is assumed to be a stationary process for each

member i, subject to the usual regularity conditions required for the functional central limit

theorem to apply to the partial sums.   In general, there is nothing which restricts the stationary

process for  to be the same across members of the panel.  Therefore, under the simple null

hypothesis of a unit root for each member of the panel,  for all i, we would like to

pool only the information pertinent to  while allowing the serial correlation features of  to

vary among individual members of the panel.  To account for this, the  are modeled

parametrically as an  process so that for each member i, the standard ADF regression is

fitted such that
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where the truncation value  is chosen to be large enough to render  white noise

for each member .  The individual OLS based t-statistic, , is computed for each member of

the panel for the null hypothesis , and these are then used to construct the group mean

t-ratio, .    The final group mean t-statistic for the panel is then computed as

where  and   both evaluated under the null hypothesis when . 

Assuming the individual members of the panel are independent of one another, then the limiting

distribution under the null hypothesis    for each ,  as ,

while under the alternative   for each , so that the test is left tailed,

analogous to the conventional single time series ADF test. 

Asymptotically, the values for  and  are invariant to the choice of  and can be

simulated.  So as long as the time series dimension, T, is long enough so that one can choose a

sufficiently large value of , implementation of the test is fairly straightforward.  In short

panels, however, the issue is not so straightforward.  Even if one is able to successfully

accommodate the serial correlation, the use of asymptotic values for  and  can result in small

sample size distortion.  To partially alleviate this problem, Im, Pesaran and Shin simulate

approximations for  and  that apply for shorter T samples.  The difficulty, however, is that

once one deviates from large T asymptotics, appropriate values for  and  are no longer
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invariant to the serial correlation properties of the data, nor to the truncation values for .  

Consequently, Im, Pesaran and Shin simulate these values not only for different values of T, but

also for different values of .  When  differs potentially for each member of the panel, this

makes for a lot of different values for  and  depending on the various choices of .  More

importantly, for finite samples, the values for  and   depend on not only on the truncation

values for the various , but also on the true serial correlation properties of the data.  Since

these are unknown, the reported values for   and   for finite samples must be approximated

for an arbitrary DGP.   Im, Pesaran and Shin choose to report the values for the case in which the

true DGP is i.i.d. white noise.  Another solution might be to construct a bootstrap test that uses

values for   and   conditioned not only on the sample size and lag truncation choices, but also

on the fitted coefficients for the higher order serial correlation.  

Needless to say, this becomes a fairly involved procedure.  More importantly, it becomes

clear that test results hinge in part on the decisions that are made regarding the truncation values,

particularly in the types of short spans of data for which panel tests are designed.  As any

practitioner quickly comes to realize, empirical results are often very sensitive to the choices that

one makes with regard to the truncation values.  We use the Im, Pesaran and Shin test as an

illustration, but the issue applies to virtually any test that must estimate nuisance parameters and

that faces a finite sample truncation choice in the estimation or elimination of these nuisance

parameters.  For example, semi-parametric panel unit root tests that attempt to estimate the

nuisance parameters that enter into the limiting distribution using conventional nonparametric

kernel estimators simply transfer the choice of lag truncation to one of choosing the truncation

for the number of autocovariances to estimate for the kernel.
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2.2   New panel unit root tests based on untruncated kernels

By contrast, the tests that we propose in this paper entirely avoid this problem.  The first

two tests that we consider are based on robust heteroskedasticity autocorrelation estimation

techniques that use the full untruncated sample of autocovariances.  It is well known in the time

series literature that kernel estimators without truncation do not produce consistent estimates of

the long run variance, which typically enters into the limiting distribution.  Instead, most popular

HAC estimators truncate the autocovariances in order to ensure consistent estimation of the long

run variance.  However, as Keifer and Vogelsang (2002) and Kiefer, Vogelsang and Brunzel

(2000) demonstrate, this does not preclude the use of untruncated kernel estimators for the

testing of hypothesis that use limiting distributions that contain the long run variance as a

nuisance parameter.  This is because the untruncated HAC estimator produces an estimate that is

proportional to the true long run covariance, where the proportionality is given by a random

variable with a known distribution that is nuisance parameter free.  Consequently, the nuisance

parameter can be eliminated from the limiting distribution, and the consequence of using the

untruncated HAC estimator is simply to contribute additional randomness, thereby widening the

tails of the distribution.   The new distribution can be simulated, and since it is invariant to the

presence of unknown serial correlation, it can be used as a robust test.

The first two tests that we propose in this paper rely on a similar approach in that they

use an untruncated HAC estimator.  However, an important difference in the panel setting is that

a simple transformation of the untruncated HAC estimator becomes a consistent estimator for the

true long run variance.  This occurs because as the cross sectional dimension grows large for the

panel, the random proportionality converges to a constant.  Since the constant is known and is
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determined by the mean of the random variable that relates the proportionality between the

untruncated HAC estimator and the true long run variance, it is possible to construct a

transformation of the estimator that converges to the true long run variance.  We use this

principle to construct unit root tests that employ untruncated HAC estimators which use all of

the autocovariances available in the sample.  This allows us to construct tests which do not

require a choice of truncation but which are nevertheless invariant to the presence of higher

order serial correlation that is heterogenous across members of the panel.

The specific form of the tests is straightforward, and can be interpreted as a simple

variance ratio test based on the untruncated kernel estimate of the long run variance.  There are

two such tests that we consider.  The first can be interpreted as an unweighted variance ratio test,

and the second can be interpreted as a weighted variance ratio test.  Both of these are based on

the ratio of the simple variance of the series to the untruncated kernel estimator that uses all

available sample autocovariances of the series.   Any one of a number of estimators can be used

for the untruncated kernel, but the simplest of these is based on the well known Bartlett kernel.  

Specifically, let  be the  autocovariance for the series  for member i of

the panel.  Then the untruncated Bartlett kernel for the  member of the panel

takes the form  .  If we let   be the cross sectional

average of these untruncated Bartlet kernel estimators, then the unweighted pooled variance ratio

statistic can be constructed by comparing the ratio of the cross sectional average of the

individual variances, ,   to the average of the untruncated Bartlett kernel.  By

comparison, the weighted pooled variance ratio statistic is constructed by averaging the

individual member ratios of   to .   The precise form of the statistics is given as follows:
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Definition 1:   Consider a panel of demeaned time series  ,  for  ,

, where .    Let    be the   autocovariance for

the series   for member i,  so that the untruncated Bartlett kernel estimator is defined as

.  Then the weighted and unweighted panel unit root variance ratio

statistics are defined as follows

    - “unweighted” pooled variance ratio

     - “weighted” pooled variance ratio

where   is the cross sectional average of the untruncated Bartlet kernel

estimators and  is the standard variance of    for member i.

Since the limiting distributions for both    and  contain the long run variance as a nuisance

parameter, the two cancel out in the ratio and the limiting distribution for the statistics become

free of this nuisance parameters.  A straightforward standardization of the pooled ratios produces

standard normal limiting distributions.   The results are summarized in the following proposition.

Proposition 1.    Consider the data generating process  for  ,

  where  are independent across i and are subject to standard regularity conditions

such that for the partial sums,   as  for , and where
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the  are independent standard Wiener processes, taken to be defined on the same

probability space for all i and where  is defined as the long run variance

of  for member i.    Furthermore, let  where

 is demeaned Brownian motion and ,  and let 

 and  .   Then under the null hypothesis    for each ,

as , where  ,    and where

,   .    Furthermore, under the alternative hypothesis,  

  for each ,

 

as .

A more formal proof of the result is sketched in the technical appendix.   But it is instructive to

consider why these results hold.  Specifically, Kiefer and Vogelsang (2002) show that for

untruncated kernels in general, 
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as , where  is a Brownian bridge depending on the kernel, k.  For the special case of

the untruncated Bartlett kernel, Kiefer and Vogelsang show that in the presence of a unit root

this reduces to

as , where .   The nuisance parameter  is the same as the nuisance

parameter that enters into the standard variance in the presence of a unit root.  Specifically in the

presence of a unit root the standard variances converges to

as .  Thus, the untruncated Bartlett produces a random variable that is proportional to the

nuisance parameter and the nuisance parameter cancels out in the ratio.  The result is simply that

the additional randomness widens the tails of the distribution.  In the panel, as we average these

over the cross sectional dimension, the proportionality goes to a known constant in the limit

which depends only on the moments of the corresponding Wiener process functionals. 

Consequently, one practical consequence of the averaging process is that by standardizing

accordingly, the statistics can be made to converge to a standard normal distribution.  The values
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for this standardization,   and  depend on the transformations of the asymptotic

moments of the underlying functionals of  as indicated in the

proposition.   To compute these, we simulated the large sample moments of the corresponding

functionals for T=1000.  

As we show in the Monte Carlo simulations reported in section 4, in general these tests

perform remarkably well in terms of small sample size and power performance in relatively

modestly dimensioned panels even when there is considerable heterogeneity in the serial

correlation properties across members of the panel.  In the next section we propose tests which

also have the advantage of not requiring the choice of finite sample truncations in the treatment

of higher order serial correlation that is potentially heterogeneous across members of the panel. 

In addition, however, the tests developed in the next section are also designed to be robust to the

presence of incidental heterogeneous trends and cross sectional dependence.   The tradeoff is that

for the tests developed in the next section, in order for the limiting distribution to be a good

approximation for the finite sample distribution, we require that the ratio of the N dimension

relative to the T dimension be smaller than that required for the tests developed in this section. 

They nonetheless allow for a much larger N dimension than is typically required for unrestricted

parametric based tests that permit cross sectional dependency.

3.  Robust panel unit root tests and the treatment of incidental trends and cross sectional

dependency.

In addition to the issue of sensitivity to lag truncations in the treatment of heterogeneous higher

order serial correlation, another important issue in panel unit root tests is the sensitivity to cross
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sectional dependency and the presence of incidental trends.    In this section we present

multivariate trace tests which are also robust to each of these issues.

The presence of deterministic trends is an important issue even for conventional single

time series unit root tests, because the inclusion of the trend term tends to further reduce the

already low power of most unit root tests in small samples.   In panels, the problem is potentially

much worse since the time series dimensions are typically short and the impact of the trend

estimation is not eliminated per se by including the cross sectional dimension.  The dilemma

stems from the fact that panel techniques are typically implemented for panels whose individual

members are much shorter than one would typically use for conventional single time series.  This

is because the intent of panel techniques is to make up for the lack of power in short time series

by exploiting information about the unit root that is available from other members of the panel.   

However, the problem that the trend term introduces is not eliminated as the N dimension is

increased, because with each additional member there is an additional trend term to be estimated. 

Consequently, power does not necessarily improve much in panels relative to conventional

single equation unit root tests when incidental trends are present.   In fact, Breitung (2000) noted

that for many popular panel unit root tests, including Im, Pesaran and Shin (2003) and Levin, Lin

and Chu (2002), the power of the tests is very low when incidental trends are included, and in

some cases have almost zero power against local alternatives.

Another important issue that often arises for panel unit root tests is that many of the

popular ones are based on the assumption of independence across members of the panel.  In

practice, much of the correlation can be absorbed by common time effects.  However, it is often

the case that additional correlation remains.  For example, if individual members do not all
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respond in the same fashion to common disturbances, or if the series for individual members are

correlated with one another over time rather than just contemporaneously, then many of the

popular panel unit roots tests such as Im, Pesaran and Shin (2003) or Levin, Lin and Chu (2002)

are no longer valid in the sense that the limiting distributions depend on nuisance parameters

associated with these dependencies.  Consequently, we also construct the tests presented in this

section in a way that ensures that the limiting distributions are invariant to such cross sectional

dependency.

In particular, the tests that we present in this section are based on multivariate

generalizations of tests that are designed to be robust to the presence of incidental trends, and do

not require independence across individual members of the panel.   The first test is based on a

generalization of the J test studied in Park (1990) and Park and Choi (1988) for the conventional

time series case.  We refer to the generalized version of the test as the multivariate J-trace

statistic.   The second test that we introduce in this section is based on a generalization of a test

studied in Breitung (2002) for the conventional time series case.  We refer to the generalized

version of this test as the multivariate B-trace statistic.  The latter test is also closely related to

the weighted pooled variance ratio test that we studied in the first section of this paper. 

Specifically, it can be thought of as a multivariate version of the inverse of the pooled variance

ratio test that is designed for the case in which incidental trends are estimated.

For both tests, we construct the sum of squared residuals from two different regressions,

one that includes incidental trends, and one that includes the incidental trends plus a higher order

polynomial time trend.   Specifically, the first regression with incidental trends takes the form
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which is estimated by OLS individually equation by equation.   The second regression with the

higher order polynomial trend function takes the form 

     .

The sum of squared residuals from these are used to construct the multivariate J-trace statistic. 

For the multivariate B-trace statistic, the sum of the squared partial sums of the residuals from

the first regression are used to construct a variance ratio with sum of squared residuals of the

second regression.   The precise form of the test statistics is given as follows.    

Definition 2:  Consider the OLS regressions  

 

done equation by equation for each member of a panel of time series  ,  for  ,

.  Define the partial sums , and stack the estimated residuals and partial

sums into T x N  matrices such that ,  , and

.  Then the multivariate J-trace statistic and the multivariate B-trace statistic

are defined as follows
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    - multivariate J-trace statistic

            - multivariate B-trace statistic

where tr[ . ] is the trace operator.

For the special case in which N = 1, the tests reduce to the conventional single series unit root

tests, which are designed to work well in the presence of trends.   By constructing the

multivariate version of the test and taking the trace, we construct a version of the test that can be

used in panels with incidental trends and cross sectional correlation.   Specifically, the limiting

distributions are invariant to the presence of higher order serial correlation as well as dynamic

cross sectional dependence.   The results are summarized in the following proposition.  Again, a

more formal proof of the result is sketched in the technical appendix.

Proposition 2.    Consider the data generating process   for  ,

  where  .   Stack the  into an N x 1 vector of time series such that

 and take  to be subject to standard regularity conditions such that for the

partial sums,   as  for , where  is an N x 1 vector

of independent standard Wiener processes and where   is

defined as the long run covariance of , such that  is positive definite.  Then under the

null hypothesis    for each 
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as  for a given N, where ,  denote the residuals of the projection of  onto the

spaces spanned by   and   respectively, and where

.   Furthermore, under the alternative hypothesis,     for each , 

 and  as  for a given N.

Notice that the limiting distributions for these test statistics are nonstandard.  Specifically, they

depend on the distributions that correspond to the projection of standard Wiener processes onto

spaces spanned by polynomials of the Wiener process index, r, that correspond to the

polynomials of the time trend.   Furthermore, since these are vector processes, the distributions

depend on the dimensionality of the vectors, which is determined by the cross sectional

dimension of the panel, N.  The important point about these distributions, however, is that they

are not only invariant to the presence of incidental trends and heterogeneous higher order serial

correlation, but that they are also invariant to dynamic cross sectional dependencies that may be

present in the data.  This can be seen by virtue of the fact that while the member specific

residuals in the vector  are linked dynamically via the off-diagonals of the long run covariance

matrix , this covariance matrix does not show up in the limiting distribution of the trace

statistics.   This occurs without the need to directly estimate the nuisance parameters associated
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with , and holds because the trace operation eliminates any dependencies associated with  in

the limiting distribution.   

Notice that since  is a long run covariance matrix, the type of cross sectional

dependencies that are permitted are much more general than the usual contemporaneous

dependency that is considered.    For example, provided that  is nonsingular, members of the

panel are permitted to depend on each other over time, as one would expect in a more general

VECM setting.    However, since the parameters need not be estimated, the tests perform very

well even when the cross sectional dimension, N, is relatively large.   This is in sharp contrast to

the case in which the parameters are modeled parametrically as one would do for example in a

VECM setup, in which case it quickly becomes infeasible to allow such general forms of cross

sectional dependency when N becomes even moderately large.  In the next section we examine

the properties of these tests when  is singular.  In section 5 we provide Monte Carlo evidence to

demonstrate that these statistics perform well in small samples even in the presence of incidental

trends and cross sectional dependency.

4.  Robust cointegration rank tests and the treatment of incidental trends and cross

sectional dependency.

The tests developed in the previous section were designed to be robust in the presence of

incidental trends and cross sectional dependency that allowed for very general forms of short run

dynamic dependency among the members of the panel.  The general form of short run cross

sectional dependency was characterized by an N x N  long run covariance matrix, , that
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reflected the dynamic dependency among the individuals members of the panel.  However, the

fact that this was restricted to be non-singular, and thus full rank, excluded the possibility that

there were long run cointegrating relationships running across the individual members of the

panels.  Thus, the dependency was transitory in nature rather than permanent, as would be the

case when the individual series are also cointegrated.   

This leads us in this section to consider the properties of the tests when the individual

members are cointegrated.   This is likely to be of substantial importance in practice, since

nonstationary panels often contain such cross member cointegrating relationships.   In this case,

it is natural to ask whether such cointegrating relationships are present, and furthermore whether

it is possible to test whether the individual members of the panel are best characterized as being

driven by a relatively large or small number of unit root processes that are cointegrated.   In a

sense, one can ask how many separate unit roots are responsible for determining the long run

properties of an N dimensional panel of time series.  This is equivalent to testing the rank of the

cointegration space that describes the N dimensional panel.

As one might expect, the limiting distributions for a given value N dimension are no

longer appropriate for the multivariate J-trace and B-trace statistics when under the null

hypothesis some of the unit roots are no longer asymptotically independent of one another due to

the presence of cointegrating relationships.  Rather, the appropriate limiting distribution is

determined by total number of independent unit roots, hence the rank of the system.   This will in

general be unknown a priori.  However, we can use the  fact that the null hypothesis depends on

the unknown cointegration rank to our advantage to construct a suitable rank test.   The

following proposition summarizes this result
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Proposition 3.   Consider the same data generating process as in proposition 2, except that now

 is no longer required to be non-singular, so that the individual member series  are

potentially cointegrated with one another.   Suppose that  so that there exist 

 cointegrating relationships among the series  .   Then under the null hypothesis

,  

as  for a given N, where ,  denote the residuals of the projection of the g x 1 

vector  onto the spaces spanned by   and  

respectively, and where .   Furthermore, under the alternative hypothesis,  

 ,  

as  for a given N, with analogously defined vectors of dimension .

The proof of this result is contained in the technical appendix.  Intuitively, the proof works by
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partitioning the N-dimensional panel into its equivalent, but a priori unknown triangular form,

with h columns of stationary cointegrating relationships and g columns of nonstationary

independent unit roots.  The proof then demonstrates that the impact of the partition with the h

columns of cointegrating relationships on the null distribution vanishes asymptotically as T

grows large for a given N.  The resulting limiting distribution then depends only g columns of

asymptotically independent unit roots, which reveals the number of independent unit roots that

drive the long run properties of the panel, or equivalently the rank of the panel.  

What is significant about the results is that these tests can easily be implemented even

when the panel dimension, N, is quite large.  This is in stark contrast to unrestricted VECM

based approaches, which require the N dimension to be relatively small, even for cases with very

long time series.  For panels with larger N dimensions, the number of coefficients to be

estimated grows too large, and unrestricted VECMs become infeasible.  To accommodate this

property of VECMs, panel approaches based on VECMs have been required to make fairly

strong assumptions on the degree of permissible cross sectional dependence.  

By contrast, the approach described here allows for very general forms of cross sectional

dependence, consistent with the level of generality associated with an unrestricted VECM.  Yet,

the technique can be implemented successfully even when N becomes as large as 30.  The key

reason for this is because the nuisance parameters associated with the cross sectional dependency

do not need to be estimated, since they are eliminated from the limiting distribution by virtue of

the trace operation.  In this way, the approach described in this section can also be thought of as

a potentially attractive approach to testing for cointegration rank in relatively large systems of

equations.  In the next section we describe some preliminary small sample Monte Carlo results
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for each of the tests described in this paper.

5.  Monte Carlo results for small samples. (preliminary)

In this section we discuss results from some preliminary Monte Carlo experiments regarding the

small sample properties of the various test statistics that we have proposed.   Among the pooled

variance ratio tests described in section 2, the weighted panel variance ratio test performed

substantially better in small samples than the unweighted panel variance ratio .  So we focus here

on presenting some of the small sample Monte Carlo results for the weighted version of the test. 

First, in Table 1 we report the finite sample size properties when there is higher order serial

correlation present that is heterogeneous across members of the panel.  Asymptotically, the

nuisance parameters are eliminated from the distribution.  But for small samples it is helpful to

know how large of an impact this feature has on the distribution.  To model this heterogeneity

we introduced member specific serial correlation under the null hypothesis by including a

moving average component with the MA(1) coefficient varied across members of the panel.  

Specifically, we drew 10,000 realizations from the data generating process given by

    ,    where    ,    

,   

so that the heterogeneous moving average coefficient  was drawn from a uniform distribution

ranging from 0.0 and 0.5.   The regressions are estimated with fixed effects, but since the actual
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presence of a nonzero intercepts plays no role in the distribution, we set the initial conditions to

zero and generate the DGP without intercepts.  The DGP enables us to introduce a good degree

of heterogeneity into the serial correlation process.  Unit root tests often run into size distortions

problems in the  presence of moving average components, but as we can see from Table 1, the

tests do fairly well even when the panel dimensions are very modest.    The table reports biases,

standard errors and empirical sizes for the 2.5% and 5% asymptotic p-value tests for varying

panel dimensions running from N=10 to N=30 and T=10 to T=100.  Generally, when the T

dimension is small, the tests are undersized, so that they represent very conservative tests.  As

the T dimension grows larger, the empirical sizes come close to the nominal sizes, and only

barely become oversized if N is large relative to T in this range.  Thus, despite the fact that there

is considerable cross sectional heterogeneity and no truncation choices were needed to fit the

serial correlation, the tests perform well and rejections from the tests can be interpreted as

reliable at these significance levels.

The next set of results, presented in Table 2, examine the small sample power of the test

against a stationary alternative.  Specifically, we examine the power of the test against the null

hypothesis that the series are stationary, but with a very high degree of persistence given by an

autoregressive coefficient of 0.95.   Thus, for the Table 2, the data generating process is given as

    ,    where     ,   

Again, all regressions are estimated with fixed effects.  The table reports small sample power at

for the 2.5% and 5% nominal tests under the alternative when  for all i, for various
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combinations of the panel dimensions N and T.    With only T=100 time series observations

conventional single time series tests have almost no power to distinguish a unit root against a

very persistent stationary process with an autoregressive coefficient so close to unity.  Yet for

these tests, once cross sectional dimension rises to N=30, the 5% tests have over 96% power to

reject the alternative.  Even at N=20, the same tests have almost 89% power to reject the

alternative when .   Consequently, the tests can be used fairly reliably in realistically

dimensioned data sets to reject a unit root even for stationary processes that are very persistent.

The next set of tables report on the small sample properties of the two multivariate trace

statistics that are designed for panels with incidental trends and cross sectional dependency.  

Since both of these test statistics have nonstandard distributions which depend on the cross

sectional size, N, of the panel, we first report critical values for each of the tests for various

values of N ranging from N=1 through N=30 in columns 1 and 3 of Table 3.   These are

approximate asymptotic critical values which are generated by simulating the Weiner process

projections for large T samples under the null hypothesis of a unit root.  Specifically, we

simulated these based on 10,000 draws of i.i.d. series of length T=1000, for the various values of

N .    Studies of the J-test for conventional single time series tests in Vogelsang (1998) revealed

that empirically the J-test appears to have strongly rising power up until P=9 for the polynomial

time trend, after which the increments to power dropped off.  Consequently, these critical values

and all Monte Carlo simulations for the multivariate J-test are reported for the case with P=9. 

Next, we simulated panels of small sample i.i.d. unit root series with T=100 to see how

well the asymptotic approximations performed.   In columns 2 and 5 we report the corresponding

critical values for the finite sample T values.  These are systematically higher in value than the
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asymptotic critical values.  This is good news because it implies that the finite sample tests will

tend to be undersized rather than oversized in small samples.  This implies that the tests will

behave as conservative tests, so that the tests under reject rather than over reject.  Columns 3 and

6 confirm this and report the finite sample empirical sizes for the nominal 5% tests.  It is

interesting to note that the tests become increasingly undersized for fixed T as N grows large. 

This implies that the tests will tend to err on the side of being conservative precisely when they

can most afford the luxury, since the power of tests will be increasing as N increases.

Table 4 investigates the small sample power of the tests to reject the null hypothesis

when the true process is stationary with an autoregressive coefficient of  for all i. 

Columns 1 and 3 report the raw power of the multivariate J-trace test and the multivariate B-

trace test when T=100 and  for various sizes of the cross sectional dimension, N.  With

such short time series conventional single time series tests have a difficult time rejecting a unit

root against a very persistent stationary process, particularly when a trend is included in the

estimation.   This is confirmed also for the J test and the B test when N=1, and the raw power is

around 20% and 17% respectively.   But what is remarkable is that by the time N=10, the

multivariate J-trace and B-trace statistics that we propose in this study already have over 95%

and 84% raw power respectively.  By the time N=15 the J-trace statistic has almost 99% power

and the B-trace statistic has almost 93% power.   Finally, since the tests are undersized in small

samples, the power is even greater when we take into account the small sample critical values. 

Thus, columns 2 and 4 report the power of the tests when the critical values from columns 2 and

5 of table 3 are used.  

Finally, since these multivariate trace statistics are designed to perform well in the
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presence of cross sectional dependency, in Table 5 we present the results for the small sample

empirical sizes of the tests when the members of the panel are cross sectionally dependent. 

Specifically, for this case we introduced cross sectional dependency by allowing for a covariance

matrix relating the individual members of the panel.  We generated the covariance matrix

randomly by filling an NxN matrix L with coefficients drawn randomly from a standard normal. 

We then computed the NxN covariance matrix for the panel as  to ensure that the

covariance matrix was positive definite yet had enough variation in the off-diagonal elements to

be interesting.   We then drew 10,000 realizations of a panel of unit root series of length T=100

with the dependencies across the members given by this covariance matrix.   Columns 1 and 2 of

Table 5 report the small sample empirical sizes for varying values of the cross sectional

dimension of the panel, N, for this particular form of dependency based on the asymptotic

critical values for the nominal 5% tests.  Both tests continue to perform well and remain

undersized so that they continue to be conservative tests that are reliable even in the presence of

cross sectional dependency.   Finally, columns 3 and 4 report the empirical sizes for the 5% tests

based on the critical values obtained for the i.i.d. case reported in columns 2 and 5 of table 3.  

The resulting empirical sizes are impressively close to the nominal sizes of 5% for virtually all

values of N.  This bodes well for using the small T critical values, since it implies that the tests

that are designed to be robust to the presence of incidental trends continue to be reliable and well

sized even in the presence of cross sectional dependencies.

Finally, we describe briefly some preliminary results for the small sample properties of

the multivariate J-trace and B-trace statistics when they are used to test for the cointegrating rank

of the panel.  The critical values in table 3 could in principle be used to construct left tailed tests
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which test the alternative hypothesis that the rank is smaller than a given value.  However, in

practice we find that the small sample power of the tests appears to be much greater when they

are employed as a right tailed to test against the alternative that the rank is larger than a given

value, as described in proposition 3 of section 4.  Table 6 presents the critical values for such a

test.  They are presented in a form that is analogous to table 3.  Specifically, the first column for

each of the trace statistics presents the asymptotic (large T) critical values based on simulations

with varying rank for T=1000.  The next column in each case presents the corresponding critical

value for smaller samples based on T=100.   The empirical size reported in the third column

reflects the size distortion that is encountered when using the large sample critical values for a

small sample with T=100.   Notice that in contrast to table 3, the results in table 6 show that the

tests become potentially oversized as the rank under the null grows larger if one uses the

asymptotic critical values rather than small sample critical values, particularly so for the B-trace

test.  Consequently, for these tests, if one is testing for rank greater than 15 or so, one may wish

to adjust the critical values for sample length.  At ranks less than 10, this form of size distortion

does not appear to be as much of an issue.

In preliminary small scale Monte Carlos designed to study the small sample power of the

tests when T=100 (not yet reported in tabular form), raw power was universally high,

particularly for the B-trace statistic.  However, one must be careful here, since the tests tend to

become oversized as the rank grows larger.  Taking this into account, one finds that the power

still remains high against alternatives where the true rank is two or three values above the value

under the null, with values generally in the 80 to 95% range.  When the difference between the

null and alternative is as small as one, then as one might expect, the power appears to decline, in
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many cases to as low as 30 to 40% depending on the difference between the dimensionality of

the panel and the rank.  Generally, the larger the difference between the dimensionality N of the

panel and the rank under the null and alternative, the greater the small sample power.  Large

scale simulations for the rank test are also currently under way and will be reported in

subsequent revisions.

6.   Concluding Remarks

 
We have shown in this paper how it is possible to construct unit root tests that do not require the

choice of lag truncation or autocovariance truncation through choice of bandwidth.  Rather, by

using all available sample autocovariances it is possible to construct simple and powerful tests

that are robust to heterogenous serial correlation and avoid sensitivity to truncation choices.  We

have also demonstrated how to extend these concepts to panel tests that have high small sample

power in the presence of incidental trends, and which are invariant to the presence of cross

sectional dependency.  Finally, we have shown how these tests can also be used to test for

cointegration rank in panels and large systems with dimensions that are much greater than can be

handled with unrestricted VECM approaches.  The approach used in this paper should also

extend in a straightforward manner to residual based tests for the null of no cointegration in the

spirit of Pedroni (2004).
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Technical Appendix

Proposition 1.   Let   and let  where

 is demeaned Brownian motion and .  We know from

standard limit theory that under the null hypothesis  

 

as  for any given i.  Thus  as  for any given i and .  

Let ,  ,   and define , .  Now to evaluate the

limiting distribution as , expand the unweighted pooled variance ratio statistic as 

.

Notice that as , the summations that appear in curved brackets converge to the means of

the respective random variables by virtue of a law of large numbers.   This leaves the

expressions involving each of the square bracketed terms as a continuously differentiable

transformation of a sum of i.i.d. random variables.  Thus, to evaluate the limiting distribution as

, we can use the delta method, which indicates that for a continuously differential

transformation  of an i.i.d. vector sequence  with vector mean  and covariance ,    as
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where the  element of the vector  is given by the partial derivative .  Thus 

 and    . 

Finally, substituting in the expressions for ,  gives us the results that

 where , and  do

not depend on the nuisance parameter .   

Similarly, expand the unweighted pooled variance ratio statistic as

Thus, by similar arguments, under the null hypothesis , since ,

 where  and .  

Finally, under the alternative hypothesis  , 
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as  where  are the variance and long run variance respectively of the stationary series

.  Thus   goes to a constant as , so that for , 

   at rate   .

Proposition 2.   Let , .  Let  denote the residuals from

the projection of  onto the space spanned by  such that 

We know from standard limit theory that 
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as  for a given N.  Writing the multivariate J-trace statistic as 

we see that 

Similarly, writing the multivariate B-trace statistic as 

we see that

as  for a given N.   

Finally, stack the  into an N x 1 vector of time series such that 

and define    ,   to be the standard covariance and
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long run covariance respectively of the vector time series .  Then under the alternative

hypothesis   , we have 

   ,    

 

as  for a given N.   Consequently, writing the statistics as

we see that under the alternative hypothesis

as  for a given N.
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Proposition 3.    Let B be an N x g matrix such that the N x N matrix  exists for the

partitioned matrix  where A is an N x h matrix with columns that are the cointegrating

vectors for the  ,   series.   Furthermore, let 

,

where, as previously defined,  and  contain the stacked residuals of the restricted and

unrestricted regressions respectively,   contains the stacked partial sums of ,  and 

contains the similarly stacked residuals of the true data generating process.  

The multivariate J-trace statistic can be written as
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To evaluate the limiting distribution, let 

where  ,  are h x h and g x g identity matrices.  Then  

 

as  for a given N, where ,  are the h x h and g x g long run covariance matrices for

,  respectively.  To see this, notice that by construction  and  contain only I(0)

variables, and

 ,    

as  for a given N.  Likewise, by construction   and  contain only I(1) variables that

are not cointegrated.

as  for a given N.   Finally, since  is I(0), while  is I(1),  ,
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, and therefore , , ,  as 

for a given N.

Next, use the partition matrix inverse formula to evaluate the elements of   and

note that

as  for a given N,  where ,  .  Again, to see this, notice

that

      

  

       

all as  for a given N.  
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By employing these limits and rewriting the multivariate J-trace statistic, we have

                   

as  for a given N,  which gives the desired result.
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Next, note that the multivariate B-trace statistic can similarly be written as

                                   

To evaluate the limiting distribution, we use the fact that

as  for a given N.    To see this, notice that

as  for a given N.
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By employing these limits and rewriting the multivariate B-trace statistic as follows, we have

           

as  for a given N,  which gives the desired result.       
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Table 1. Weighted Panel Variance Test
       small sample size when residuals are MA(1)
 with coefficients drawn from U(0.0,0.5) 

          bias        std err 2.5% size 5% size
N = 10
     T = 10 -0.646 0.609 0.002 0.003
     T = 20 -0.320 0.796 0.013 0.022
     T = 30 -0.215 0.856 0.020 0.034
     T = 40 -0.149 0.900 0.026 0.043
     T = 50 -0.133 0.912 0.031 0.048
     T = 60 -0.121 0.911 0.030 0.046
     T = 70 -0.077 0.944 0.036 0.054
     T = 80 -0.089 0.923 0.033 0.051
     T = 90 -0.071 0.959 0.038 0.055
    T = 100 -0.066 0.954 0.039 0.054
N = 20
     T = 10 -0.947 0.599 0.000 0.001
     T = 20 -0.488 0.781 0.006 0.013
     T = 30 -0.329 0.849 0.014 0.024
     T = 40 -0.243 0.894 0.021 0.033
     T = 50 -0.199 0.899 0.021 0.037
     T = 60 -0.184 0.904 0.022 0.039
     T = 70 -0.136 0.941 0.028 0.046
     T = 80 -0.113 0.938 0.029 0.047
     T = 90 -0.124 0.944 0.031 0.048
    T = 100 -0.095 0.964 0.033 0.053
N = 30
     T = 10 -1.118 0.607 0.000 0.000
     T = 20 -0.565 0.796 0.004 0.009
     T = 30 -0.379 0.862 0.011 0.021
     T = 40 -0.278 0.900 0.019 0.033
     T = 50 -0.231 0.902 0.019 0.033
     T = 60 -0.189 0.916 0.022 0.039
     T = 70 -0.159 0.935 0.025 0.041
     T = 80 -0.129 0.940 0.026 0.043
     T = 90 -0.128 0.950 0.028 0.047
    T = 100 -0.110 0.958 0.030 0.049

Notes:   Based on 10,000 independent draws of N x T panel.
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   Table 2. Weighted Panel Variance Test
       small sample power against stationary alternative
 with autoregressive coefficient 0.95 

           bias        std err .5% power   5% power
N = 10
     T = 10 -0.163 0.745 0.010 0.020
     T = 20 0.447 1.016 0.082 0.120
     T = 30 0.792 1.115 0.140 0.190
     T = 40 1.047 1.202 0.193 0.258
     T = 50 1.298 1.256 0.247 0.326
     T = 60 1.538 1.342 0.314 0.400
     T = 70 1.763 1.378 0.385 0.475
     T = 80 1.960 1.447 0.437 0.529
     T = 90 2.158 1.472 0.495 0.590
    T = 100 2.422 1.565 0.565 0.651
N = 20
     T = 10 -0.225 0.735 0.006 0.014
     T = 20 0.622 1.003 0.100 0.151
     T = 30 1.115 1.129 0.202 0.279
     T = 40 1.486 1.192 0.312 0.403
     T = 50 1.838 1.247 0.414 0.517
     T = 60 2.182 1.326 0.527 0.625
     T = 70 2.488 1.389 0.614 0.705
     T = 80 2.802 1.448 0.700 0.780
     T = 90 3.053 1.500 0.760 0.833
    T = 100 3.417 1.573 0.826 0.886
N = 30
     T = 10 -0.277 0.734 0.004 0.010
     T = 20 0.765 0.998 0.119 0.178
     T = 30 1.368 1.116 0.268 0.363
     T = 40 1.822 1.193 0.421 0.520
     T = 50 2.252 1.243 0.562 0.662
     T = 60 2.663 1.314 0.681 0.774
     T = 70 3.035 1.380 0.775 0.847
     T = 80 3.432 1.448 0.849 0.905
     T = 90 3.767 1.510 0.899 0.940
    T = 100 4.184 1.564 0.941 0.965

Notes:   Based on 10,000 independent draws of N x T panel.
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    Table 3.  J-Trace and B-Trace 
        Panel Unit RootTests

       Critical values and small sample size properties

J-trace test B-trace test
 5% crit val 5% crit val    5% test  5% crit val 5% crit val    5% test

   N (asymptotic)    (T=100)  emp size (asymptotic)    (T=100)  emp size
1 0.92 0.93 0.049 0.004 0.003 0.053
2 3.18 3.18 0.050 0.010 0.010 0.052
3 6.09 6.22 0.045 0.017 0.017 0.052
4 9.46 9.82 0.041 0.023 0.023 0.050
5 13.38 13.82 0.042 0.028 0.028 0.047
6 17.54 18.40 0.038 0.032 0.033 0.047
7 22.38 23.25 0.040 0.036 0.036 0.047
8 27.54 28.48 0.040 0.039 0.039 0.045
9 33.14 34.14 0.042 0.042 0.042 0.042

10 38.98 40.21 0.039 0.044 0.044 0.039
11 44.84 46.99 0.035 0.046 0.046 0.039
12 51.37 54.00 0.034 0.047 0.047 0.038
13 58.02 61.55 0.030 0.049 0.049 0.032
14 65.44 69.61 0.030 0.050 0.050 0.029
15 73.33 78.18 0.028 0.051 0.051 0.028
16 81.40 86.90 0.026 0.052 0.052 0.025
17 89.82 96.37 0.026 0.053 0.053 0.020
18 98.50 106.64 0.023 0.053 0.054 0.016
19 107.65 117.03 0.021 0.054 0.054 0.014
20 117.36 128.25 0.020 0.055 0.055 0.013
21 126.55 139.35 0.017 0.055 0.056 0.010
22 137.11 152.65 0.016 0.056 0.056 0.008
23 148.03 165.65 0.016 0.056 0.057 0.005
24 159.44 178.16 0.014 0.057 0.057 0.004
25 171.14 192.69 0.013 0.057 0.058 0.003
26 182.92 207.12 0.013 0.057 0.058 0.001
27 194.64 222.39 0.010 0.058 0.058 0.001
28 206.85 239.18 0.008 0.058 0.059 0.001
29 219.85 255.60 0.006 0.058 0.059 0.000
30 232.25 273.08 0.006 0.058 0.059 0.000

Notes:   Based on 10,000 independent draws of N x T panel.  See text for
discussion.
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       Table 4.  J-Trace and B-Trace 
              Panel Unit Root Tests
      Small Sample Power when , T=100

          J-trace test        B-trace test
    N rawpower adj power raw power    adj  power

1 0.201 0.205 0.177 0.168
2 0.379 0.376 0.288 0.280
3 0.525 0.548 0.384 0.376
4 0.644 0.682 0.471 0.473
5 0.738 0.770 0.559 0.578
6 0.803 0.846 0.655 0.673
7 0.866 0.894 0.725 0.739
8 0.906 0.925 0.773 0.792
9 0.928 0.944 0.821 0.845

10 0.947 0.960 0.844 0.877
11 0.956 0.970 0.873 0.900
12 0.965 0.979 0.900 0.925
13 0.974 0.987 0.908 0.942
14 0.982 0.992 0.923 0.951
15 0.986 0.993 0.927 0.962
16 0.988 0.995 0.929 0.968
17 0.990 0.997 0.934 0.971
18 0.992 0.997 0.932 0.978
19 0.993 0.998 0.931 0.980
20 0.995 0.999 0.930 0.984
21 0.995 0.999 0.923 0.984
22 0.995 1.000 0.924 0.986
23 0.996 1.000 0.911 0.989
24 0.997 0.999 0.902 0.991
25 0.997 0.999 0.884 0.992
26 0.996 0.999 0.868 0.993
27 0.996 1.000 0.846 0.992
28 0.996 1.000 0.813 0.993
29 0.996 0.999 0.779 0.993
30 0.996 1.000 0.736 0.994

Notes:   Based on 10,000 independent draws of N x T panel.  
See text for discussion.
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        Table 5.  J-Trace and B-Trace 
   Panel Unit Root Tests

    Small sample size properties in presence of 
                 cross sectional dependence, T=100

    J-trace test       B-trace test
emp size emp size    emp size emp size

  N (large T critval) (T=100 critval) (large T critval) (T=100 crit val)
1 0.053 0.054 0.053 0.050
2 0.051 0.051 0.052 0.050
3 0.048 0.052 0.052 0.050
4 0.044 0.053 0.049 0.050
5 0.042 0.051 0.042 0.046
6 0.040 0.050 0.044 0.048
7 0.039 0.050 0.043 0.046
8 0.042 0.052 0.042 0.047
9 0.040 0.050 0.040 0.048

10 0.039 0.048 0.036 0.048
11 0.035 0.051 0.038 0.048
12 0.032 0.050 0.035 0.048
13 0.030 0.049 0.034 0.050
14 0.030 0.051 0.031 0.045
15 0.031 0.053 0.024 0.047
16 0.028 0.052 0.022 0.048
17 0.028 0.050 0.019 0.049
18 0.023 0.051 0.017 0.050
19 0.022 0.050 0.014 0.051
20 0.020 0.052 0.012 0.052
21 0.018 0.049 0.010 0.053
22 0.018 0.054 0.008 0.057
23 0.015 0.055 0.005 0.058
24 0.016 0.053 0.004 0.055
25 0.014 0.054 0.002 0.058
26 0.014 0.051 0.002 0.055
27 0.012 0.051 0.002 0.054
28 0.010 0.054 0.001 0.056
29 0.008 0.052 0.000 0.056
30 0.007 0.052 0.000 0.053

Notes:   Based on 10,000 independent draws of N x T cross sectionally dependent
panel.   See text for discussion.
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                     Table 6.  J-Trace and B-Trace 
        Panel Cointegration RankTests

                Critical values and small sample size properties

             J-trace rank test    B-trace rank test
    rank  5% crit val 5% crit val  5% test                                  5% critval  5% crit val    5% test
        g (asymptotic)      (T=100)  emp size                          (asymptotic)       (T=100)   emp size

    1 12.35 12.45 0.051 0.020 0.020 0.053
2 21.45 21.71 0.052 0.028 0.028 0.051
3 30.33 30.48 0.051 0.033 0.033 0.052
4 39.37 39.94 0.055 0.038 0.037 0.049
5 48.72 49.50 0.055 0.041 0.041 0.050
6 58.15 59.50 0.059 0.043 0.043 0.053
7 67.75 70.32 0.064 0.045 0.045 0.062
8 78.10 80.73 0.064 0.047 0.047 0.063
9 89.35 92.95 0.067 0.048 0.048 0.069

10 100.83 106.25 0.071 0.050 0.050 0.075
11 112.65 119.18 0.075 0.051 0.051 0.081
12 124.59 132.30 0.080 0.052 0.052 0.094
13 137.59 146.82 0.085 0.052 0.053 0.107
14 150.33 162.57 0.089 0.053 0.054 0.122
15 162.60 178.14 0.101 0.054 0.054 0.137
16 176.93 194.73 0.104 0.055 0.055 0.151
17 191.25 212.72 0.113 0.055 0.056 0.174
18 206.14 230.45 0.120 0.056 0.056 0.202
19 222.18 249.32 0.125 0.056 0.057 0.242
20 238.20 270.22 0.134 0.056 0.057 0.272
21 255.66 290.42 0.139 0.057 0.057 0.320
22 272.11 312.49 0.152 0.057 0.058 0.373
23 289.59 334.97 0.165 0.058 0.058 0.424
24 307.54 358.32 0.178 0.058 0.059 0.501
25 325.93 384.74 0.193 0.058 0.059 0.561
26 345.14 411.10 0.203 0.058 0.059 0.629
27 363.98 437.32 0.224 0.059 0.059 0.694
28 384.01 466.65 0.239 0.059 0.060 0.759
29 404.05 495.63 0.259 0.059 0.060 0.824
30 423.40 525.46 0.282 0.059 0.060 0.870

Notes:   Based on 10,000 independent draws.  Empirical size represents distortion from using
asymptotic critical values in small sample with T=100.   See text for discussion.



50

References

Bai, J. and S. Ng (2004),  A PANIC Attack on Unit Roots and Cointegration, forthcoming,

Econometrica.

Baltagi, B. and C. Kao (2000) “Nonstationary Panels, Cointegration in Panels and Dynamic

Panels:  A Survey,” Advances in Econometrics:“Nonstationary Panels, Panel Cointegration

and Dynamic Panels”, 15, 7-52.

Banerjee, A. (1999)  Panel Data Unit Roots and Cointegration: An Overview.  Oxford

Bulletin of Economics and Statistics, 61, 607-630.

Banerjee, A., M. Marcellino and C. Osbat (2004) “Some Cautions on the Use of Panel

Methods for Integrated Series of Macro-Economic Data,” forthcoming, Econometrics

Journal.

Breitung, J.  (2000) “The Local Power of Some Unit Root Tests for Panel Data,” Advances in

Econometrics, 15, 161-178.

Breitung, J. (2002) “Nonparametric Tests for Unit Roots and Cointegration,” Journal of

Econometrics, 108, 343-63.

Chang, Y. (2004) “Bootstrap Unit Root Tests in Panels with Cross-Sectional Dependency, 

Journal of Econometrics, 120, 263-93.

Chang, Y. (2002) “Nonlinear IV Unit Root Tests in Panels with Cross Sectional

Dependency, working paper, Rice University.

Gengenbach, C., J.P. Urbain and F. Palm (2004) “Panel Unit Root Tests in the Presence of

cross-sectional Dependencies: Comparison and Implications for Modelling" METEOR



51

Research Memorandum 04039.

Groen, J. and F. Kleibergen (2003), Likelihood-Based Cointegration Analysis in Panels of

Vector Error Correction Models, Journal of Business Economics and Statistics, 21, 295-318.

Harris, R. and R. Sollis (2003) “APPLIED TIME SERIES MODELLING AND

FORECASTING,” Chapter 7, Wiley Press, 2003.

Im, K., H. Pesaran and Y. Shin (2003)  Testing for Unit Roots in heterogeneous Panels. 

Journal of Econometrics, 115, 53-74.

Keifer, N. and T. Vogelsang and H. Brunzel (2000) "Simple Robust Testing of Regression

Hypotheses," Econometrica, 68, 695-714, 2000

Keifer, N. and T. Vogelsang (2002)  "Heteroskedasticity-Autocorrelation Robust Standard

Errors Using the Bartlett Kernel Without Truncation," Econometrica, 70, 2093-95.

Larsson, R., J. Lyhagen, and M. Löthgren (2001)  “Likelihood-Based Cointegration Tests in

Heterogeneous Panels,” Econometrics Journal, 4(1), 41.

Levin, A. , C. Lin and C. Chu  (2002)  Unit Root Tests in Panel Data: Asymptotic and Finite-

Sample Properties. Journal of Econometrics, 108, 1-24.

Moon, H.R. and B. Perron (2003)  “Testing for a Unit Root in Panels with Dynamic Factors,”

UCS, mimeo.

Park, J. (1990) “Testing for Unit Roots and Cointegration by Variable Addition,” Advances

in Econometrics, vol 5. 



52

Pedroni, P. (2000) Fully Modified OLS for Heterogeneous Cointegrated Panels. Advances in

Econometrics, 15, 93-130.

Pedroni, P. (2004) “Panel Cointegration; Asymptotic and Finite Sample Properties of Pooled

Time Series Tests with an Application to the Purchasing Power Parity Hypothesis,”

Econometric Theory, 20, 597-625.

Pedroni, P. and J. Urbain (2005) “THE ECONOMETRICS OF NONSTATIONARY

PANELS,” forthcoming to be published in Oxford University Press Advanced Texts in

Econometrics.

Pesaran, H.  (2004) “Estimation and Inference in Large Heterogeneous Panels with a

Multifactor Error Structure,” working paper, Cambridge University.

Phillips, P.C.B. and D. Sul (2003), “Dynamic Panel Estimation and Homogeneity Testing

Under Cross Section Dependence,” Econometrics Journal, 6, 217-59.

Quah, D.(1994), “Exploiting Cross-Section Variation for Unit Root Inference in Dynamic

Panels,” Economic Letters, 44, 9-19.


