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Abstract 

Brouwer, A.E, W.H. Haemers, Structure and uniqueness of the (81,20, 1.6) strongly regular 

graph, Discrete Mathematics 106/107 (1992) 77-82. 

We prove that there is a unique graph (on 81 vertices) with spectrum 20’2”‘(-7)*“. We give 

several descriptions of this graph, and study its structure. 

Let r = (X, E) be a strongly regular graph with parameters (v, k, ;1, p) = 

(81, 20, 1, 6). Then r (that is, its O-l adjacency matrix A) has spectrum 
201260(-7)20, where the exponents denote multiplicities. We will show that up to 
isomorphism there is a unique such graph K More generally we give a short proof 
for the fact (due to Ivanov and Shpectorov [9]) that a strongly regular graph with 
parameters (v, k, A, p) = (q4, (q2 + l)(q - l), q - 2, q(q - 1)) that is the col- 
linearity graph of a partial quadrangle (that is, in which all maximal cliques have 
size q) is the second subconstituent of the collinearity graph of a generalized 
quadrangle GQ(q, q*). In the special case q = 3 this will imply our previous 
claim, since A = 1 implies that all maximal cliques have size 3, and it is known 
(see Cameron et al. [5]) that there is a unique generalized quadrangle GQ(3,9) 
(and this generalized quadrangle has an automorphism group transitive on the 
points). The proof will use spectral techniques very much like those found in 
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Haemers [7] and Brouwer and Haemers [3]. For completeness 
formulate the tools we use. 

let us explicitly 

Tool 1. Let A and B be real symmetric matrices of orders 12 and m (where m s n) 
and with eigenvalues O1 2, . . .a 8, and r], 2 * - - 2 qm, respectively. We say that 
the eigenvalues of B interlace those of A when O,> qj 2 On_m+j for all j 
(1 ~j s m). We say that the interlacing is tight when for some integer I we have 
qj = 0, for 1 c j < 1 and qj = 8,_,+j for 1 + 1 s j c m. If B is a principal submatrix 
of A then the eigenvalues of B interlace those of A. Another case of interlacing is 
the following result: Given a symmetric partition of the rows and columns of a 
symmetric matrix A, let B be the matrix with as entries the average row sums of the 
parts of A. Then the eigenvalues of B interlace those of A, and when the interlacing 
is tight, the parts of A have constant row sums. 

Tool 2. Given a symmetric partition of a symmetric matrix A with two 
eigenvalues into four submatrices: 

the eigenvalues of AZ2 can be computed from those of A,,: Zf A has eigenvalues a 
and /3 (where (Y > p) with multiplicities f and n - f, respectively, and AlI (of order 
m) has eigenvalues 8,~ - . .? tl,, then AZ2 (of order n - m) has eigenvalues 
q,a * - . * q,,_,,,, where 

i 

ff if l<iCf -m, 

r);= P iff +lSi<n-mm, 

a + p - Ot_i+l otherwise. 

For undefined concepts and notation, see Brouwer et al. [2]. For surveys on 
strongly regular graphs, see Hubaut [S] and Brouwer and van Lint [4]. 

Let us first give a few descriptions of our graph on 81 vertices. 
(A) Let X be the point set of AG(4,3), the 4-dimensional affine space over IF3, 

and join two points when the line connecting them hits the hyperplane at infinity 
(a PG(3,3)) in a fixed elliptic quadric Q. This description shows immediately that 
v = 81 and k = 20 (since I&I = 10). Also k = 1 since no line meets Q in more than 
two points, so that the affine lines are the only triangles. Finally p = 6, since a 
point outside Q in PG(3,3) lies on 4 tangents, 3 secants and 6 exterior lines with 
respect to Q, and each secant contributes 2 to p. We find that the group of 
automorphisms contains G = 34. PGOT(3). 2, where the last factor 2 accounts 
for the linear transformations that do not preserve the quadratic form Q, but 
multiply it by a constant. In fact this is the full group, as will be clear from the 
uniqueness proof. 
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(B) A more symmetric form of this construction is found by starting with 
X = ll/(l) in F$ provided with the standard bilinear form. The corresponding 
quadratic form (Q(x) = wt(x), the number of nonzero coordinates of x) is elliptic, 
and if we join two vertices x + (l), y + (1) of X when Q(x - y) = 0, i.e., when 
their difference has weight 3, we find the same graph as under A. This 
construction shows that the automorphism group contains G = 34 * (2 x 

Sym(6)) - 2, and again this is the full group. 
(C) There is a unique strongly regular graph 2 with parameters (v, k, A, p) = 

(112, 30,2, IO), the collinearity graph of the unique generalized quadrangle with 
parameters GQ(3, 9). Its second subconstituent is strongly regular (since _Z is a 
Smith graph), and hence is isomorphic to our graph r (See Cameron et al. [5].) 
We find that Aut r contains (and in fact it equals) the point stabilizer in 
U4(3) - II8 acting on GQ(3,9). 

(D) In the McLaughlin graph A (the unique strongly regular graph with 
parameters (u, k, h, cl) = (275, 112, 30, 56)) let x, y be two adjacent vertices. The 
subgraph of A induced by the neighbours of y is isomorphic to 2’; the subgraph T 

induced by the nonneighbours of y is the unique strongly regular graph with 
parameters (v, k, A, p) = (162, 56, 10, 24). (Again, see Cameron et al [.5].) Thus, 
by (C) above, we may identify r with the subgraph of A induced by the vertices 
adjacent to y but not to x. Let r’ be the subgraph induced by the vertices 
nonadjacent to both x and y, so that T is partitioned by the vertex sets of r and 
r’. Then also I” is a strongly regular graph with parameters (v, k, A, ,LA) = 

(81, 20, 1, 6) (its spectrum can be computed from that of T and that of r). We 
find that Aut r’ contains the edge stabilizer in Aut A = McL.2-in fact as an 
index 2 subgroup. 

(E) The graph Tis the coset graph of the truncated ternary Golay code C: take 
the 34 cosets of C and join two cosets when they contain vectors differing in only 
one place. 

(F) The graph I’is the Hermitean forms graph on F$; more generally, take the 
q4 matrices it4 over Fqz satisfying MT = a, where - denotes the field automorph- 
ism x-x4 (applied entrywise), and join two matrices when their difference has 
rank 1. This will give us a strongly regular graph with parameters (v, k, A, cl) = 

(q4, (q2 + l)(q - 1)s 4 - 2, q(q - 1)). 
(G) The graph I’is the graph with vertex set FgI, where two vertices are joined 

when their difference is a fourth power. (This construction was given by Van Lint 
and Schrijver [lo].) 

Now let us embark upon the uniqueness proof. Let r = (X, E) be a strongly 
regular graph with parameters (v, k, h, p) = (q4, (q2 + l)(q - I), q - 2, q(q - 1)) 
and assume that all maximal cliques (we shall just call them lines) of r have size 

4. 
Let rhave adjacency matrix A. Using the spectrum of A-it is k’(q - l)f(q - 

1 - q2)g, where f = q(q - l)(q* + 1) and g = (q - l)(q* + l)--we can obtain some 
structure information. Let T be the collection of subsets of X of cardinality q3 

inducing a subgraph that is regular of degree q - 1. 
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Step 1. Zf T E T, then each point of X\ T is adjacent to q2 points of T. 
Look at the matrix B of average row sums of A, with sets of rows and columns 

partitioned according to {T, X \ T}. We have 

4 -1 9*c9 - 1) 
4* k-q* 

with eigenvalues k, q - 1 - q*, so interlacing is tight, and by Tool 1 it follows that 
the row sums are constant in each block of A. 

Step 2. Given a line L, there is a unique TL E T containing L. 
Let Z be the set of vertices in X\ L without a neighbour in L. Then 

IZI = q4 - q - q(k - q + 1) = q3 - q. Let T = L U Z. Each vertex of Z is adjacent 
to qu = q*(q - 1) vertices with a neighbour in L, so T induces a subgraph that is 
regular of degree q - 1. 

Step 3. Zf T E T and x E X\ T, then x is on at least one line L disjoint from T, 
and TL is disjoint from Tfor any such line L. 

The point x is on q2 + 1 lines, but has only q2 neighbours in T. Each point of L 
has q2 neighbours in T, so each point of T has a neighbour on L and hence is not 
in TL. 

Step 4. Any T E T induces a subgraph A isomorphic to q2K,. 
It suffices to show that the multiplicity m of the eigenvalue q - 1 of A is (at 

least) q2 (it cannot be more). By interlacing we find m 3 q2 - q, so we need some 
additional work. Let M := A - (q - l/q*).Z. Then M has spectrum (q - l)f”(q - 
1- q2)g, and we want that M T, the submatrix of M with rows and columns 
indexed by T, has eigenvalue q - 1 with multiplicity (at least) q2 - 1, or, 
equivalently (by Tool 2), that M X\T has eigenvalue q - 1 - q* with multiplicity (at 
least) q - 2. But for each U E T with U II T = 0 we find an eigenvector 
.rU := (2 - q)xo + ~~~~~~~~ of MXIT with eigenvalue q - 1 - q2. A collection 
{xu 1 U E U} of such eigenvectors cannot be linearly dependent when U = 

{U,, u*>. . .> can be ordered such that Vi + IJj<i Ui and U U # X\ T, so we can 
find (using Step 3) at least q - 2 linearly independent such eigenvectors, and we 
are done. 

Step 5. Any T E T determines a unique partition of X into members of T. 
Indeed, we saw this in the proof of the previous step. 
Let ITI be the collection of partitions of X into members of T. We have 

ITI = q(q2 + 1) and InI = q2 + 1. Construct a generalized quadrangle GQ(q, q2) 
with point set {m} U T U X as follows: The q* + 1 lines on CO are {a} U n for 
n E H The q* remaining lines on each T E T are {T} U L for L E T. It is 
completely straightforward to check that we really have a generalized quadrangle 

GQ(q, q*). 

Other graphs. Some of our arguments can be generalized a little. Given a 
strongly regular graph 27 = (X, E) with parameters (v, k, A, u) and spectrum 
k’rfsg, suppose that there is a subset L 0f.X inducing a strongly regular subgraph 
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of r with parameters (u, r, II, p). Then k = r + up and v = u(k -s). Each point 
outside L has at most one neighbour in L. Let 2 be the set of points in X\ L 
without neighbour in L. Each point of 2 has up neighbours outside 2, and hence 
2, and also T : = L U Z, is regular of valency r. In a few cases one can show using 
multiplicity arguments that T must consist of a number of copies of L. For 

example: 
(a) Starting with a single point in a complete multipartite graph K,,, (with 

spectrum (m - l)n’O”(“-I)(-n)“-‘) we find a coclique of size n. 
(b) Starting with an edge in the Petersen graph, we find a subgraph 3K2. 

(Likewise, an edge in the complement of the Clebsch graph is contained in a 
unique 4Kz, but this is the special case q = 2 of our result above.) 

(c) Starting with a pentagon in the Hoffman-Singleton graph, we find a 

subgraph 5Cs. 
(d) Starting with a quadrangle in the Gewirtz graph, we find a subgraph 6C,. 

(This was the starting point of Brouwer and Haemers [3]; also the uniqueness of 
the (162,56,10,24) strongly regular graph (Cameron et al. [5]) relies on this 
fact. ) 

(e) Starting with a grid 3 x 3 in the Berlekamp-van Lint-Seidel graph 
(Berlekamp et al. [l]), we find a subgraph 9 (3 X 3). Maybe one could prove 
uniqueness (for strongly regular graphs with parameters (v, k, A, p) = 

(243, 22, 1, 2)) using this? 
(f) Starting with a triangle in a (57, 14,1,4) graph F, we find (under the 

assumption that F does not contain a 15-coclique) a subgraph 7K3. This implies 
that F is embeddable in a non-existing GQ(3,6) (see Dixmier and Zara [6], or 
Payne and Thas [ll]). Thus, the non-existence proof for F in Wilbrink and 
Brouwer [12] can be shortened considerably. 

Our strongly regular graph on 81 vertices might have distance-regular antipodal 
2-, 3- and 6-covers of diameter 4. Maybe one can prove non-existence for the 2- 
and 6-covers and uniqueness for the 3-cover (e.g., by proving that a grid 3 x 3 
must lift to a grid again)? 

p-Rank and Smith normal form. Writing S(M) for the Smith normal form of a 
matrix M, we find for the adjacency matrix A of our U-point graph: S(A) = 
diag(12’, 241, 14’“, 1401) and S(A - 21) = diag(l”, 3’, 6’, O”‘) and S(A + 71) = 
diag(l”, 32, 939, 27’, 02”). In particular, A + I has 3-rank 19. 
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