Structure and uniqueness of the ($81,20,1,6$) strongly regular graph

A.E. Brouwer
Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, Postbus $513,5600 \mathrm{MB}$ Eindhoven, Netherlands

W.H. Haemers

Faculteit der Econometry, Universiteit Tilburg, Postbus 90153, 5000 LE Tilburg, Netherlands
Received 12 November 1991
Reviscd 4 March 1992

Abstract

Brouwer, A.E, W.H. Haemers, Structure and uniqueness of the (81, 20, 1, 6) strongly regular graph, Discrete Mathematics 106/107 (1992) 77-82.

We prove that there is a unique graph (on 81 vertices) with spectrum $20^{1} 2^{60}(-7)^{20}$. We give several descriptions of this graph, and study its structure.

Let $\Gamma=(X, E)$ be a strongly regular graph with parameters $(v, k, \lambda, \mu)=$ ($81,20,1,6$). Then Γ (that is, its $0-1$ adjacency matrix A) has spectrum $20^{1} 2^{60}(-7)^{20}$, where the exponents denote multiplicities. We will show that up to isomorphism there is a unique such graph Γ. More generally we give a short proof for the fact (due to Ivanov and Shpectorov [9]) that a strongly regular graph with parameters $(v, k, \lambda, \mu)=\left(q^{4},\left(q^{2}+1\right)(q-1), q-2, q(q-1)\right)$ that is the collinearity graph of a partial quadrangle (that is, in which all maximal cliques have size q) is the second subconstituent of the collinearity graph of a generalized quadrangle $\operatorname{GQ}\left(q, q^{2}\right)$. In the special case $q=3$ this will imply our previous claim, since $\lambda=1$ implies that all maximal cliques have size 3 , and it is known (see Cameron et al. [5]) that there is a unique generalized quadrangle $\operatorname{GQ}(3,9)$ (and this generalized quadrangle has an automorphism group transitive on the points). The proof will use spectral techniques very much like those found in

[^0]Haemers [7] and Brouwer and Haemers [3]. For completeness let us explicitly formulate the tools we use.

Tool 1. Let A and B be real symmetric matrices of orders n and m (where $m \leqslant n$) and with eigenvalues $\theta_{1} \geqslant \cdots \geqslant \theta_{n}$ and $\eta_{1} \geqslant \cdots \geqslant \eta_{m}$, respectively. We say that the eigenvalues of B interlace those of A when $\theta_{j} \geqslant \eta_{j} \geqslant \theta_{n-m+j}$ for all j $(1 \leqslant j \leqslant m)$. We say that the interlacing is tight when for some integer l we have $\eta_{j}=\theta_{j}$ for $1 \leqslant j \leqslant l$ and $\eta_{j}=\theta_{n-m+j}$ for $l+1 \leqslant j \leqslant m$. If B is a principal submatrix of A then the eigenvalues of B interlace those of A. Another case of interlacing is the following result: Given a symmetric partition of the rows and columns of a symmetric matrix A, let B be the matrix with as entries the average row sums of the parts of A. Then the eigenvalues of B interlace those of A, and when the interlacing is tight, the parts of A have constant row sums.

Tool 2. Given a symmetric partition of a symmetric matrix A with two eigenvalues into four submatrices:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right),
$$

the eigenvalues of A_{22} can be computed from those of A_{11} : If A has eigenvalues α and β (where $\alpha>\beta$) with multiplicities f and $n-f$, respectively, and A_{11} (of order m) has eigenvalues $\theta_{1} \geqslant \cdots \geqslant \theta_{m}$, then A_{22} (of order $n-m$) has eigenvalues $\eta_{1} \geqslant \cdots \geqslant \eta_{n-m}$, where

$$
\eta_{i}= \begin{cases}\alpha & \text { if } 1 \leqslant i \leqslant f-m \\ \beta & \text { if } f+1 \leqslant i \leqslant n-m \\ \alpha+\beta-\theta_{f-i+1} & \text { otherwise }\end{cases}
$$

For undefined concepts and notation, see Brouwer et al. [2]. For surveys on strongly regular graphs, see Hubaut [8] and Brouwer and van Lint [4].

Let us first give a few descriptions of our graph on 81 vertices.
(A) Let X be the point set of $\mathrm{AG}(4,3)$, the 4 -dimensional affine space over \mathbb{F}_{3}, and join two points when the line connecting them hits the hyperplane at infinity (a $\operatorname{PG}(3,3)$) in a fixed elliptic quadric Q. This description shows immediately that $v=81$ and $k=20$ (since $|Q|=10$). Also $\lambda=1$ since no line meets Q in more than two points, so that the affine lines are the only triangles. Finally $\mu=6$, since a point outside Q in $\operatorname{PG}(3,3)$ lies on 4 tangents, 3 secants and 6 exterior lines with respect to Q, and each secant contributes 2 to μ. We find that the group of automorphisms contains $G=3^{4} \cdot \mathrm{PGO}_{4}^{-}(3) \cdot 2$, where the last factor 2 accounts for the linear transformations that do not preserve the quadratic form Q, but multiply it by a constant. In fact this is the full group, as will be clear from the uniqueness proof.
(B) A more symmetric form of this construction is found by starting with $X=\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle$ in \boldsymbol{F}_{3}^{6} provided with the standard bilinear form. The corresponding quadratic form $(Q(x)=\mathrm{wt}(x)$, the number of nonzero coordinates of x) is elliptic, and if we join two vertices $x+\langle\mathbf{1}\rangle, y+\langle\mathbf{1}\rangle$ of X when $Q(x-y)=0$, i.e., when their difference has weight 3 , we find the same graph as under A. This construction shows that the automorphism group contains $G=3^{4} \cdot(2 \times$ $\operatorname{Sym}(6)) \cdot 2$, and again this is the full group.
(C) There is a unique strongly regular graph Σ with parameters $(v, k, \lambda, \mu)=$ ($112,30,2,10$), the collinearity graph of the unique generalized quadrangle with parameters GQ(3,9). Its second subconstituent is strongly regular (since Σ is a Smith graph), and hence is isomorphic to our graph Γ. (See Cameron et al. [5].) We find that Aut Γ contains (and in fact it equals) the point stabilizer in $U_{4}(3) \cdot D_{8}$ acting on $G Q(3,9)$.
(D) In the McLaughlin graph Λ (the unique strongly regular graph with parameters $(v, k, \lambda, \mu)=(275,112,30,56))$ let x, y be two adjacent vertices. The subgraph of Λ induced by the neighbours of y is isomorphic to Σ; the subgraph T induced by the nonneighbours of y is the unique strongly regular graph with parameters $(v, k, \lambda, \mu)=(162,56,10,24)$. (Again, see Cameron et al [5].) Thus, by (C) above, we may identify Γ with the subgraph of Λ induced by the vertices adjacent to y but not to x. Let Γ^{\prime} be the subgraph induced by the vertices nonadjacent to both x and y, so that T is partitioned by the vertex sets of Γ and Γ^{\prime}. Then also Γ^{\prime} is a strongly regular graph with parameters $(v, k, \lambda, \mu)=$ $(81,20,1,6)$ (its spectrum can be computed from that of T and that of Γ). We find that Aut Γ^{\prime} contains the edge stabilizer in Aut $\Lambda=\mathrm{McL} \cdot 2$-in fact as an index 2 subgroup.
(E) The graph Γ is the coset graph of the truncated ternary Golay code C : take the 3^{4} cosets of C and join two cosets when they contain vectors differing in only one place.
(F) The graph Γ is the Hermitean forms graph on \boldsymbol{F}_{9}^{2}; more generally, take the q^{4} matrices M over $\boldsymbol{F}_{q^{2}}$ satisfying $M^{\mathrm{T}}=\bar{M}$, where ${ }^{-}$denotes the field automorphism $x \mapsto x^{q}$ (applied entrywise), and join two matrices when their difference has rank 1 . This will give us a strongly regular graph with parameters $(v, k, \lambda, \mu)=$ $\left(q^{4},\left(q^{2}+1\right)(q-1), q-2, q(q-1)\right)$.
(G) The graph Γ is the graph with vertex set \boldsymbol{F}_{81}, where two vertices are joined when their difference is a fourth power. (This construction was given by Van Lint and Schrijver [10].)
Now let us embark upon the uniqueness proof. Let $\Gamma=(X, E)$ be a strongly regular graph with parameters $(v, k, \lambda, \mu)=\left(q^{4},\left(q^{2}+1\right)(q-1), q-2, q(q-1)\right)$ and assume that all maximal cliques (we shall just call them lines) of Γ have size q.

Let Γ have adjacency matrix A. Using the spectrum of A-it is $k^{1}(q-1)^{f}(q-$ $\left.1-q^{2}\right)^{g}$, where $f=q(q-1)\left(q^{2}+1\right)$ and $g=(q-1)\left(q^{2}+1\right)$-we can obtain some structure information. Let \boldsymbol{T} be the collection of subsets of X of cardinality q^{3} inducing a subgraph that is regular of degree $q-1$.

Step 1. If $T \in \mathbf{T}$, then each point of $X \backslash T$ is adjacent to q^{2} points of T.
Look at the matrix B of average row sums of A, with sets of rows and columns partitioned according to $\{T, X \backslash T\}$. We have

$$
B=\left(\begin{array}{cc}
q-1 & q^{2}(q-1) \\
q^{2} & k-q^{2}
\end{array}\right)
$$

with eigenvalues $k, q-1-q^{2}$, so interlacing is tight, and by Tool 1 it follows that the row sums are constant in each block of A.

Step 2. Given a line L, there is a unique $T_{L} \in \boldsymbol{T}$ containing L.
Let Z be the set of vertices in $X \backslash L$ without a neighbour in L. Then $|Z|=q^{4}-q-q(k-q+1)=q^{3}-q$. Let $T=L \cup Z$. Each vertex of Z is adjacent to $q \mu=q^{2}(q-1)$ vertices with a neighbour in L, so T induces a subgraph that is regular of degree $q-1$.

Step 3. If $T \in T$ and $x \in X \backslash T$, then x is on at least one line L disjoint from T, and T_{L} is disjoint from T for any such line L.

The point x is on $q^{2}+1$ lines, but has only q^{2} neighbours in T. Each point of L has q^{2} neighbours in T, so each point of T has a neighbour on L and hence is not in T_{L}.

Step 4. Any $T \in \boldsymbol{T}$ induces a subgraph Δ isomorphic to $q^{2} K_{q}$.
It suffices to show that the multiplicity m of the eigenvalue $q-1$ of Δ is (at least) q^{2} (it cannot be more). By interlacing we find $m \geqslant q^{2}-q$, so we need some additional work. Let $M:=A-\left(q-1 / q^{2}\right) J$. Then M has spectrum $(q-1)^{f+1}(q-$ $\left.1-q^{2}\right)^{g}$, and we want that M_{T}, the submatrix of M with rows and columns indexed by T, has eigenvalue $q-1$ with multiplicity (at least) $q^{2}-1$, or, equivalently (by Tool 2), that $M_{X \backslash T}$ has eigenvalue $q-1-q^{2}$ with multiplicity (at least) $q-2$. But for each $U \in T$ with $U \cap T=\emptyset$ we find an eigenvector $x_{U}:=(2-q) \chi_{U}+\chi_{X \backslash(T \cup U)}$ of $M_{X \backslash T}$ with eigenvalue $q-1-q^{2}$. A collection $\left\{x_{U} \mid U \in \boldsymbol{U}\right\}$ of such eigenvectors cannot be linearly dependent when $\boldsymbol{U}=$ $\left\{U_{1}, U_{2}, \ldots\right\}$ can be ordered such that $U_{i} \nsubseteq \bigcup_{j<i} U_{j}$ and $\cup \boldsymbol{U} \neq X \backslash T$, so we can find (using Step 3) at least $q-2$ linearly independent such eigenvectors, and we are done.

Step 5. Any $T \in \boldsymbol{T}$ determines a unique partition of X into members of \boldsymbol{T}.
Indeed, we saw this in the proof of the previous step.
Let Π be the collection of partitions of X into members of T. We have $|\boldsymbol{T}|=q\left(q^{2}+1\right)$ and $|\Pi|=q^{2}+1$. Construct a generalized quadrangle $\operatorname{GQ}\left(q, q^{2}\right)$ with point set $\{\infty\} \cup \boldsymbol{T} \cup X$ as follows: The $q^{2}+1$ lines on ∞ are $\{\infty\} \cup \pi$ for $\pi \in \Pi$. The q^{2} remaining lines on each $T \in T$ are $\{T\} \cup L$ for $L \subseteq T$. It is completely straightforward to check that we really have a generalized quadrangle $\mathrm{GQ}\left(q, q^{2}\right)$.

Other graphs. Some of our arguments can be generalized a little. Given a strongly regular graph $\Gamma=(X, E)$ with parameters (v, k, λ, μ) and spectrum $k^{1} r^{f} s^{g}$, suppose that there is a subset L of X inducing a strongly regular subgraph
of Γ with parameters (u, r, λ, μ). Then $k=r+u \mu$ and $v=u(k-s)$. Each point outside L has at most one neighbour in L. Let Z be the set of points in $X \backslash L$ without neighbour in L. Each point of Z has $u \mu$ neighbours outside Z, and hence Z, and also $T:=L \cup Z$, is regular of valency r. In a few cases one can show using multiplicity arguments that T must consist of a number of copies of L. For example:
(a) Starting with a single point in a complete multipartite graph $K_{m \times n}$ (with spectrum $\left.(m-1) n^{1} 0^{m(n-1)}(-n)^{m-1}\right)$ we find a coclique of size n.
(b) Starting with an edge in the Petersen graph, we find a subgraph $3 K_{2}$. (Likewise, an edge in the complement of the Clebsch graph is contained in a unique $4 K_{2}$, but this is the special case $q=2$ of our result above.)
(c) Starting with a pentagon in the Hoffman-Singleton graph, we find a subgraph $5 C_{5}$.
(d) Starting with a quadrangle in the Gewirtz graph, we find a subgraph $6 C_{4}$. (This was the starting point of Brouwer and Haemers [3]; also the uniqueness of the ($162,56,10,24$) strongly regular graph (Cameron et al. [5]) relies on this fact.)
(e) Starting with a grid 3×3 in the Berlekamp-van Lint-Seidel graph (Berlekamp et al. [1]), we find a subgraph $9(3 \times 3)$. Maybe one could prove uniqueness (for strongly regular graphs with parameters $(v, k, \lambda, \mu)=$ ($243,22,1,2$)) using this?
(f) Starting with a triangle in a $(57,14,1,4)$ graph Γ, we find (under the assumption that Γ does not contain a 15 -coclique) a subgraph $7 K_{3}$. This implies that Γ is embeddable in a non-existing $\mathrm{GQ}(3,6)$ (see Dixmier and Zara [6], or Payne and Thas [11]). Thus, the non-existence proof for Γ in Wilbrink and Brouwer [12] can be shortened considerably.

Our strongly regular graph on 81 vertices might have distance-regular antipodal 2 -, 3- and 6 -covers of diameter 4. Maybe one can prove non-existence for the 2 and 6 -covers and uniqueness for the 3 -cover (e.g., by proving that a grid 3×3 must lift to a grid again)?
p-Rank and Smith normal form. Writing $S(M)$ for the Smith normal form of a matrix M, we find for the adjacency matrix A of our 81 -point graph: $S(A)=$ $\operatorname{diag}\left(1^{20}, 2^{41}, 14^{19}, 140^{1}\right)$ and $S(A-2 I)=\operatorname{diag}\left(1^{19}, 3^{1}, 6^{1}, 0^{60}\right)$ and $S(A+7 I)=$ $\operatorname{diag}\left(1^{19}, 3^{2}, 9^{39}, 27^{1}, 0^{20}\right)$. In particular, $A+I$ has 3 -rank 19.

References

[1] E.R. Berlekamp, J.H. van Lint and J.J. Seidel, A strongly regular graph derived from the perfect ternary Golay code, in: J.N. Srivastava et al., eds., A survey of Combinatorial Theory, Symp. Colorado State Univ., 1971 (North-Holland, Amsterdam, 1973) 25-30.
[2] A.E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs, Ergebn. Math. 3.18 (Springer, Berlin, 1989).
[3] A.E. Brouwer and W.H. Haemers, The Gewirtz graph-an exercise in the theory of graph spectra, Report FEW 486, Tilburg University, 1991, to appear in the Vladimir 1991 proceedings.
[4] A.E. Brouwer and J.H. van Lint, Strongly regular graphs and partial geometries, in: D.M. Jackson and S.A. Vanstone, eds., Enumeration and Design-Proc. Silver Jubilee Conf. on Combinatorics, Waterloo (Academic Press, New York, 1982).
[5] P.J. Cameron, J.-M. Goethals and J.J. Seidel, Strongly regular graphs having strongly regular subconstituents, J. Algebra 55 (1978) 257-280.
[6] S. Dixmier and F. Zara, Etude d'un quadrangle généralisé autour de deux de ses points non liés, preprint, 1976.
[7] W.H. Haemers, Eigenvalue Techniques in Design and Graph Theory (Reidel, Dordrecht, 1980).
[8] X. Hubaut, Strongly regular graplis, Discrete Math. 13 (1975) 357-381.
[9] A.A. Ivanov and S. V. Shpectorov, Characterization of the association schemes of Hermitian forms, J. Math. Soc. Japan 43 (1991) 25-48.
[10] J.H. van Lint and A. Schrijver, Construction of strongly regular graphs, two-weight codes and partial geometries by finite fields, Combinatorica 1 (1981) 63-73.
[11] S. Payne and J.A. Thas, Finite Generalized Quadrangles (Pitman, London, 1985).
[12] H.A. Wilbrink and A.E. Brouwer, A $(57,14,1)$ strongly regular graph does not exist, Indag. Math. 45 (1983) 117-121.

[^0]: Correspondence to: A.E. Brouwer, Faculteit Wiskunde en Informatica, Technische Universiteit Eindhoven, Postbus 513, 5600 MB Eindhoven, Netherlands.

