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Université Libre de Bruxelles

Tilburg University

August 23, 2004

Abstract

We consider estimation of the tail index parameter from i.i.d. observations in Pareto
and Weibull type models, using a local and asymptotic approach. The slowly varying
function describing the non-tail behavior of the distribution is considered as an infinite
dimensional nuisance parameter. Without further regularity conditions, we derive a
Local Asymptotic Normality (LAN) result for suitably chosen parametric submodels of
the full semiparametric model. From this result, we immediately obtain the optimal
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1 Introduction

Consider an i.i.d. sequence of random variables X1, . . . , Xn with common distribution func-
tion F . In this paper we assume that F is either of the Pareto type or of the Weibull type.
More precisely, F is said to be of the Pareto type if

1− F (x) = [xl(x)]−1/γ , x ≥ 1, (1.1)

where γ > 0 is called the (Pareto) tail index parameter and l(·) is some slowly varying
function in the neighborhood of infinity. Similarly, we say that F is of the Weibull type if

− log [1− F (x)] = [xl(x)]−1/τ , x ≥ 1, (1.2)

where τ > 0 is called the Weibull tail index parameter and, as before, l(·) is some slowly
varying function in the neighborhood of infinity. In this paper, we will be interested in the
behavior of the distributions near infinity. We therefore, only require (1.1) and (1.2) for
values of x ≥ 1.

We analyze the Pareto and Weibull type models from a semiparametric point of view in
which we take the tail index parameter (γ for the Pareto case and τ for the Weibull model)
as the parameter of interest and l(·) as a (functional) nuisance parameter. A natural
approach might be to use the tangent space arguments for semiparametric models with
i.i.d. observations as set out in, e.g., Bickel, Klaassen, Ritov, and Wellner (1993). However,
these results are not applicable in the model under study due to the non-smoothness of
the parameter of interest as functional of the underlying distribution. The tangent space
reasonings are based on pathwise differentiability of the parameter of interest with respect
to the underlying distribution against the tangent spaces. This differentiability, however,
does not hold for the extreme value index.

The present paper offers the following contributions. First, we unify several known
results concerning the optimal rate of convergence for tail index estimators (notably, the
results of Hall and Welsh (1984) and Drees (1998) for the Pareto model). Without imposing
further restrictions to (1.1) or (1.2), we construct alternatives that are locally asymptotically
normal with respect to some fixed distribution (which is not necessarily the strict Pareto)
and that converge at an arbitrary rate. Subsequently, we show that the extra smoothness
conditions imposed on the distribution in, e.g., Hall and Welsh (1984) or Drees (1998), in-
duce immediately a bound on the rate of convergence any (uniformly consistent) estimator
can achieve. Given a rate of convergence (we define precisely what we mean by this in Sec-
tion 5), one may wonder what is the minimal limiting variance of estimators attaining this
rate, i.e. a Cramer-Rao type bound. We introduce suitably chosen parametric submodels
that are Locally Asymptotically Normal (LAN). The convolution theorem (see, e.g, Le Cam
and Yang, 1990) then gives lower bounds for the (asymptotic) precision with which the tail
index parameter can be estimated when using estimators that are regular with respect to
these parametric submodels. For the Pareto model, we show that the widely-used Hill esti-
mator has a limiting variance which equals the lower bound obtained from the convolution
theorem. In these discussions we do not consider a possible adaptive choice of the rate of
convergence, see, e.g., Hall and Welsh (1985).

We also consider Weibull type distributions. These distributions are much less studied
than the Pareto type distributions. However, the Weibull model offers some properties that
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are very useful in specific applications. We again give a LAN result (for suitably chosen
local alternatives for the slowly varying nuisance function) and show that, under some
conditions, an estimator provided in Beirlant et al. (1995) has a limiting variance which
equals the lower bound induced by the convolution theorem in our parametric submodels.

Related work on lower bounds for the speed of convergence can be found in the papers
of Hall and Welsh (1984) and Drees (1998). Hall and Welsh (1984) establish the optimal
rate of convergence for a specific semiparametric model. Drees (1998) expands these results
to a more general class of models and to other maximal domains of attraction (i.e., allowing
γ ∈ IR). We unify the aforementioned results for the positive γ case. Other papers using the
LAN paradigm in the case of extreme value index estimation are Falk (1995), Wei (1995),
and Marohn (1997). In these papers, a LAN condition is derived for the largest order
statistics. We also find that inference can be based on the largest values observed, since
only these observations appear in the central sequence of our parametric submodels. Both
Wei (1995) and Marohn (1997) assume that the upper-tail of the distribution essentially
belongs to a parametric family. Drees (2001) considers the estimation problem from the
related point of view of convergence of experiments. While that paper is concerned with
minimax bounds, we consider convolution theorem variance bounds. Compared to minimax
results, results based on the convolution theorem are stronger, but only apply to estimators
that are regular for the model under consideration. Proposition 2.1 of Drees (2001) can be
used to obtain convolution theorem bounds in the vicinity of the strict Pareto distribution.
We consider local alternatives to all distribution functions of the semiparametric model of
interest.

The setup of the paper is as follows. In Section 2, we consider the Pareto model and
obtain a LAN result for appropriately defined local alternatives. The LAN property yields
lower bounds on the speed of convergence and on the asymptotic dispersion of estimators
that are regular with respect to the parametric models introduced. This is detailed in
Section 3. Applications of the general results to more specific Pareto type models are
provided in Section 4. In Section 5, we show that the Hill estimator attains the variance
lower bound induced by the convolution theorem applied to our parametric submodels.
In Section 6 and 7 we prove similar results for the Weibull model. Finally, the appendix
gathers some technical proofs.

2 Local Asymptotic Normality of the Pareto Model

Consider a fixed continuous distribution function F0 of the Pareto type (1.1) with param-
eters γ0 > 0 and l0(·), i.e.,

1− F0(x) = [xl0(x)]−1/γ0 , x ≥ 1. (2.1)

As mentioned in the introduction, in this paper we take a semiparametric point of view and
are interested in the estimation of the Pareto tail index γ0, while considering the slowly
varying function l0(·) as nuisance. In this section, we derive a Local Asymptotic Normality
(LAN) result for appropriately defined local alternatives of the distribution function F0.
This allows us not only to discuss optimal rates of convergence for semiparametric estima-
tors, but also to discuss estimators in terms of their asymptotic variance. Formal results in
this direction are discussed in general in Section 3 and in Section 4 in particular.
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The LAN condition describes the asymptotic behavior of the likelihood ratio of local
alternatives with respect to F0. The rate of convergence is defined through an arbitrary
positive sequence (δn) with δn → 0 and

√
nδn →∞, n →∞. As long as no further assump-

tions (like those discussed in Section 4) are made on the set of Pareto-type distributions,
the sequence (δn) is arbitrary.

The LAN condition effectively gives the likelihood ratio for a model that contains a
parameter u ∈ IR that is used to localize the parameter of interest γ0. More precisely, for
every u ∈ IR, we define, for all n ≥ n0 := min{m ∈ IN : γ0 + uδn > 0, ∀ n ≥ m},

γn = γ0 + uδn. (2.2)

We also define local alternatives for the nuisance function l0(·) as follows

ln(x) =

{
xγn/γ0−1l0(x)γn/γ0 , 1 ≤ x ≤ tn
l0(x)(nδ2

n)γn−γ0 , x > tn
, (2.3)

where n ≥ n1 := n0∨min{m ∈ IN : nδ2
n > 1, ∀n ≥ m} and tn := U0(nδ2

n) →∞, as n →∞,
with U0(t) = F−1

0 (1 − 1/t) := inf{s ∈ IR : F0(s) = 1 − 1/t}. Since, F0 is continuous, we
have

1− F0(tn) =
1

nδ2
n

. (2.4)

Remark 2.1 The alternatives constructed through (2.2) and (2.3) are introduced here in
an ad hoc way. However, they are specific in the sense that the Hill estimator is regular
with respect to these alternatives and, at the same time, has a limiting variance which
equals that of the lower bound induced by the convolution theorem for the alternatives.
Details are discussed in Section 4.

Remark 2.2 Drees (2001) introduces alternatives around the strict Pareto distribution
(i.e., fixing l0(·) = 1) of the form

F−1
n (1− t) = t−γ0 exp

(
uδn

∫ 1

t

h(nδ2
ns)

s
ds

)
,

where h is a function satisfying appropriate conditions. It remains an open question whether
his results with the strict Pareto as center of localization can be extended to more general
centers of localization as in (2.3).

The distribution function corresponding to γn and ln(·) is given by, for n ≥ n1,

1− Fn(x) = [xln(x)]−1/γn =

{
1− F0(x), 1 ≤ x ≤ tn
[1− F0(x)]γ0/γn [1− F0(tn)]1−γ0/γn , x > tn

. (2.5)

It is obvious that, for each fixed n ≥ n1, Fn defines a continuous distribution function such
that 1−Fn is regularly varying at infinity with index −1/γn. Furthermore, note that Fn is
absolutely continuous w.r.t. F0 and density

dFn

dF0
(x) =





1, 1 ≤ x ≤ tn
γ0

γn

[
1−F0(x)
1−F0(tn)

]γ0/γn−1
, x > tn

. (2.6)
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The following theorem gives the quadratic approximation of the likelihood ratio of Fn

with respect to F0 for n i.i.d. copies X1, . . . , Xn of X with cdf F0. It proves that the
alternatives constructed are, without further regularity conditions, LAN and identifies the
so-called central sequence (∆(n) below).

Theorem 2.1 The log-likelihood ratio

Λ(n) = Λ(n)(X1, ..., Xn) =
n∑

i=1

log
dFn(Xi)
dF0(Xi)

of Fn with respect to F0 for n i.i.d. copies X1, . . . , Xn of X with cdf F0, satisfies

Λ(n) = u∆(n) − 1
2

u2

γ2
0

+ oIP(1), (2.7)

where

∆(n) = −δn

γ0

n∑

i=1

(
1 + log

1− F0(Xi)
1− F0(tn)

)
I{Xi > tn} L−→ N (0, 1/γ2

0). (2.8)

Thus, the Fisher information is given by 1/γ2
0 .

The proof of this LAN result relies on a simple lemma.

Lemma 2.1 Given F0 that is continuous, we have, for all k ∈ IN,
∫ ∞

tn

(
log

1− F0(x)
1− F0(tn)

)k

dF0(x) = (−1)kk![1− F0(tn)].

Proof: Using the transformation v = (1−F0(x))/(1−F0(tn)) the integral is reduced to
a Gamma integral. 2

Proof of Theorem 2.1: Since nδ2
n[1 − F0(tn)] = 1, an application of Chebychev’s

inequality shows that, under F0,

δ2
n

n∑

i=1

I{Xi > tn} = 1 + oIP(1),

and likewise, using Lemma 2.1 with k = 1 and k = 2,

δ2
n

n∑

i=1

log
[
1− F0(Xi)
1− F0(tn)

]
I{Xi > tn} = −1 + oIP(1).

The quadratic approximation (2.7) now follows immediately, since, under F0, we have

Λ(n) =
n∑

i=1

(
log

γ0

γn
+

[
γ0

γn
− 1

]
log

1− F0(Xi)
1− F0(tn)

)
I{Xi > tn}

= −uδn

γ0

n∑

i=1

I{Xi > tn}+
u2

2γ2
0

− uδn

γ0

n∑

i=1

log
[
1− F0(Xi)
1− F0(tn)

]
I{Xi > tn} − u2

γ2
0

+ oIP(1)

= u∆(n) − 1
2

u2

γ2
0

+ oIP(1)
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It remains to show the convergence in distribution of the central sequence ∆(n) in (2.8). To
this extent, define, for 1 ≤ i ≤ n,

ξni = −δn

(
1 + log

1− F0(Xi)
1− F0(tn)

)
I{Xi > tn} := −δn(1 + a)I{Xi > tn},

where a ≤ 0 when Xi > tn. For fixed n sufficiently large, the ξni, i = 1, . . . , n, are
independent random variables. Under F0, using (2.4) and Lemma 2.1, we get

EI{Xi > tn} = 1− F0(tn) = 1/(nδn),
E|a|I{Xi > tn} = −E(aI{Xi > tn}) = 1− F0(tn),

E|a|2I{Xi > tn} = 2(1− F0(tn)),
E|a|3I{Xi > tn} = −E(a3I{Xi > tn}) = 6(1− F0(tn)).

Therefore, making use of |1 + a|3 ≤ (1 + |a|)3, we find

Eξni = 0,
Var ξni = Eξ2

ni = δ2
n(1− 2 + 2)[1− F0(tn)] = n−1,

E|ξni|3 ≤ δ3
n(1 + 3 + 6 + 6)[1− F0(tn)] = 16n−1δn.

Since, for n →∞, ∑n
i=1 E|ξni|3

(
∑n

i=1 Var ξni)
3/2

≤ 16δn → 0,

the Liapunov Central Limit Theorem implies

∆(n) =
1
γ0

n∑

i=1

ξni
L−→ N (0, 1/γ2

0).

This completes the proof. 2

The central sequence ∆(n) obtained in Theorem 2.1, is of the peak-over-threshold (POT)
type. This means that we only look at observations that exceed the deterministic threshold
tn. We will later be interested in the behavior of Hill type estimators, where the threshold
tn is replaced by an appropriate empirical quantile of the observations. The following LAN
result formalizes this. Let Xi:n denote the i-th order statistic of X1, . . . , Xn. Moreover,
define the Hill estimator for a sequence (kn), with kn →∞ and 1 ≤ kn < n, as

H
(n)
k =

1
kn

kn∑

i=1

log
Xn−i+1:n

Xn−kn:n
. (2.9)

Theorem 2.2 Let (kn) be a sequence of integers tending to infinity. Consider the sequence
δn = 1/

√
kn and the corresponding central sequence ∆(n) as defined in (2.8). Then, still

assuming
√

nδn →∞ (i.e., kn/n → 0), we have, under F0,

γ2
0∆(n) = − γ0√

kn

kn∑

i=1

(
1 + log

1− F0(Xn−i+1:n)
1− F0(Xn−kn:n)

)
+ oIP(1), (2.10)
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or, equivalently,

γ2
0∆(n) −

√
kn(H(n)

kn
− γ0) =

1√
kn

kn∑

i=1

log
l0(Xn−i+1:n)
l0(Xn−kn:n)

+ oIP(1). (2.11)

The proof being more technical, it is left for the appendix.

3 LAN, optimal rates of convergence, and the convolution
theorem

A LAN condition as in Theorem 2.1 or 2.2 allows for the derivation of bounds on the optimal
rate of convergence of “reasonable” estimators for the tail-index parameter γ. For various
specific models (see, e.g., Hall and Welsh, 1984, and Drees, 1998) such optimal rates of
convergence are already known and Section 4 discusses in detail how these known results
can easily be obtained in the present framework. But the LAN condition allows for more
precise lower bounds on the asymptotic behavior of estimators regular in the parametric
model than the rate of convergence alone. Through the so-called convolution theorem,
one obtains lower bounds for the asymptotic distribution of these estimators whose rate
of convergence is optimal. In particular, this gives a lower bound for the variance of the
asymptotic distribution. All general consequences of the LAN condition discussed in this
section are well known, but repeated for the reader’s convenience. A proof of all results can
be found in, e.g., Le Cam and Yang (1990) or Bickel et al. (1993).

Optimal rates of convergence follow from the fact that sequences of probability measures
that are LAN, are automatically contiguous.

Lemma 3.1 If the product measures based on i.i.d. copies of Fn and F0 are LAN (as in
Theorem 2.1 and 2.2), then they are contiguous.

We use contiguity in this paper in the sense of Theorem 3.1.1.b of Le Cam and Yang (1990),
i.e. for any sequence of random variables rn = rn(X1, . . . , Xn), we have rn = OIP(1), under
Fn, if and only if rn = OIP(1), under F0.

Let P denote an arbitrary class of distributions of the Pareto type (2.1). More specific
examples for the Pareto case will be considered in Section 4. Fix a distribution F0 ∈ P
and a sequence (δn) such that

√
nδn →∞. The sequence (δn) provides an upper bound on

the rate of convergence of an estimator, provided that the local alternatives Fn constructed
from γn in (2.2) and ln(·) in (2.3) belong to the model P and provided that we require the
estimator to be uniformly consistent over P.

Theorem 3.1 Suppose that the local alternatives Fn constructed in (2.2) and (2.3) are
such that Fn ∈ P. Let γ̂n be an estimator of γ for which

lim
M→∞

lim sup
n→∞

sup
F∈P

IPF {αn|γ̂n − γ| > M} = 0, (3.1)

then
αn = O(δ−1

n ). (3.2)
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Proof: The consistency condition (3.1) implies in particular that αn(γ̂n − γn) = OIP(1),
under Fn. By the contiguity following from Lemma 3.1, this implies that αn(γ̂n − γn) =
OIP(1) under F0. Since we obviously also have from (3.1) that αn(γ̂n − γ0) = OIP(1) under
F0, we obtain immediately αn(γn − γ0) = O(1). Using (2.2), this completes the proof. 2

If the model P is taken as all distribution functions of the form (2.1), then, as we have
seen in Section 2, the alternatives Fn belong to P whatever the sequence (δn). Thus, given a
possible sequence (αn), one can always find a sequence (δn), converging to zero very slowly,
such that (3.2) does not hold, i.e., such that lim supn→∞ αnδn = ∞. This implies that
there cannot exist a uniformly consistent estimator of γ in the full Pareto model, no matter
how weak the consistency requirement in (3.1), i.e., no matter how slowly (αn) converges
to infinity. Even if P is taken as a subset of the full semiparametric model consisting of
all distribution functions of the form (2.1), uniformly consistent estimation is not possible
if the interior of P (with respect to the variational distance) is not empty. This follows
along the same lines as the proof of Theorem 3.1 upon noting that the variational distance
between Fn and F0 is bounded by 2[1 − F0(tn)] and, hence, converges to zero. The same
result can easily be obtained by direct methods, but it is also an immediate consequence
of our general LAN result. Concluding, if meaningful optimal rates of convergence are to
be found, one must restrict the model by imposing extra regularity on the slowly varying
function l(·) in (2.1). This will be considered for previously studied models in Section 4.

Another important consequence of the LAN property is the so-called convolution theo-
rem (see, e.g., Le Cam and Yang (1990), page 85). This theorem gives a lower bound for
the asymptotic variance of regular estimators, given a fixed rate of convergence αn = δ−1

n .

Theorem 3.2 Suppose that the product measures based on i.i.d. copies of Fn and F0 are
LAN (as in Theorem 2.1 and 2.2). Suppose, moreover, that γ̂n is a regular estimator for γ
in the sense, for n →∞,

δ−1
n (γ̂n − γ0)

L−→ U, under F0, and (3.3)

δ−1
n (γ̂n − γn) L−→ U, under Fn,

where U denotes an arbitrary random variable. Then, we have, under F0,
(

γ2
0∆(n)

δ−1
n (γ̂n − γ0)− γ2

0∆(n)

)
L−→

(
V
Z

)
, (3.4)

where V ∼ N(0, γ2
0) and Z are independently distributed. Under Fn, the same convergenec

of the sequence of vectors in (3.4) holds, but with V ∼ N(u, γ2
0).

The convolution theorem states that, given regularity of the estimator as defined above,
the most concentrated limiting distribution possible for estimating γ, is a N(0, γ2

0) distri-
bution. All regular estimators have a limiting distribution that is the convolution of this
N(0, γ2

0) and some other distribution. If this other distribution is not degenerated, the
limiting distribution is more spread out than the N(0, γ2

0) distribution, in the sense that
it gives rise to a larger asymptotic variance. In Section 5, we show that the Hill estima-
tor with kn = δ

−1/2
n is, under some conditions, regular for the alternatives introduced and

has a limiting variance equal to γ2
0 . Section 7 shows the analogous result for an estimator

introduced in Beirlant et al. (1995) for the Weibull model.
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4 More specific Pareto type models

We illustrate the general theory of the previous sections by reviewing two examples from
the literature. In these examples, more specific assumptions are made on the slowly varying
function l(·). We will consider in this section the models introduced in Hall and Welsh (1984)
and Drees (1998).

Example 4.1 Hall and Welsh (1984) consider the model described by all densities of the
form

f(x) = C
x1/γ−1

γ
[1 + r(x)], γ > 0, C > 0. (4.1)

The model P considered in Hall and Welsh (1984) is defined starting from fixed γ0 > 0,
ρ > 0, C0 > 0, and ε > 0, as the set of distribution functions, satisfying (4.1), for which
|γ − γ0| ≤ ε, |C − C0| ≤ ε, and

sup
x
|xρ/γr(x)|, (4.2)

is bounded over P. For this model, estimators which are uniformly consistent in the sense
of (3.1) can be constructed, provided that αn converges not too quickly to infinity (i.e., if
δn converges not too slowly to zero).

To be precise, consider the alternatives Fn constructed around the strict Pareto distri-
bution, i.e.,

1− F0(x) = x−1/γ0 , x ≥ 1, (4.3)

for some γ0 > 0. In the notation of (4.1), we have C0 = 1 and r0(x) = 0. One easily verifies
that the alternatives Fn as constructed in (2.2) and (2.3) are such that (4.1) holds with

rn(x) =

{
γn

γ0
(x/tn)1/γn−1/γ0 − 1, 1 ≤ x ≤ tn

0 x > tn
. (4.4)

Since
sup

x
|xρ/γnrn(x)| = O

(
tρ/γn
n

∣∣∣∣
1
γn
− 1

γ0

∣∣∣∣
)

we find that supx |xρ/γnrn(x)| remains bounded (as n →∞) if and only if t
ρ/γn
n δn = O(1),

i.e., if and only if
δn = O(n−

ρ
2ρ+1 ), n →∞.

From Theorem 3.1 we now obtain that αn(γ̂n − γ) = OIP(1) uniformly over the Hall and
Welsh (1984) model implies

αn = O(n
ρ

2ρ+1 ), n →∞. (4.5)

In this example, we assumed that l0(x) = C0 = 1, but it can easily be extended to cover
the case l0(x) = C0 6= 1.

Example 4.2 Drees (1998) imposes that the slowly varying function l(·) is normalized,
i.e., for some η : [1,∞) → IR,

l(x) = C exp
(∫ x

1
η(z)/zdz

)
. (4.6)
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The model P considered in Drees (1998) is now defined as all distributions satisfying (2.1)
and (4.6) such that

sup
z≥1

|η(z)|/h(z) (4.7)

is bounded over P for some given continuous, positive, and decreasing function h. As in
the Hall and Welsh (1984) model, this model does allow for uniformly consistent estimators
in the sense of (3.1).

Fix F0, C0 > 0, γ0 > 0, and η0 according to (4.6). The alternatives Fn constructed
in (2.2) and (2.3) now also satisfy (4.6) with Cn = C0 and

ηn(z) =
[
γ0

γn
+

(
1− γ0

γn

)
I{z ≤ tn}

]
η0(z) +

(
1
γn
− 1

γ0

)
I{z ≤ tn}. (4.8)

Since h is decreasing, we find

sup
z

|ηn(z)|
h(z)

≤ max{1,
γ0

γn
} sup

z

|η0(z)|
h(z)

+
∣∣∣∣

1
γn
− 1

γ0

∣∣∣∣
1

h(tn)

The first term on the right-hand side is bounded as n →∞. In order that the second term
is bounded as n →∞, we need

δn/h(tn) = O(1), n →∞. (4.9)

In the special case that h(z) = z−ρ/γ0 and η0(z) = 0, the condition (4.9) translates to
the requirement that δn/[nδ2

n]−ρ is bounded, i.e.,

δn = O(n−
ρ

2ρ+1 ) (4.10)

The present example is in fact a variation of the Drees (1998) model. Drees (1998)
imposes the conditions (4.6) and (4.7) on the slowly varying part of the function U as
defined in Section 2. It is possible to consider exactly Drees’ (1998) model in our framework
in the neighborhood of the strict Pareto distribution. More precisely, consider U0(t) =
F−1

0 (1 − 1/t) = tγ0 , t ≥ 1. The function Un defined by Un(t) = F−1
n (1 − 1/t), t ≥ 1, with

Fn defined in (2.5), for given sequence (δn), γn = γ0 + uδn, and tn = (nδ2
n)γ0 , is then easily

seen to be given by

Un(t) = tγn exp
(∫ t

1

ηn(z)
z

dz

)
,

with

ηn(z) =

{
γ0 − γn , 1 ≤ z ≤ nδ2

n

0 , z > nδ2
n

.

In this case, the condition that supz≥1 |ηn(z)|/h(z) remains bounded (as n → ∞) implies
that

δn

h(nδ2
n)

= O(1), n →∞.

For h(z) = z−ρ we find the same condition (4.10). Note that Drees (1998) considers the
non-Pareto case, i.e., where the tail-index γ may be zero or negative. This is a non-trivial
extension that is not covered by our present results.
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5 The Hill estimator

Section 2 provides a LAN result for suitably chosen parametric families of the semiparamet-
ric Pareto type model. In the previous section, we have seen how this result immediately
yields the optimal rates of convergence in more specific Pareto type models, like those of
Hall and Welsh (1984) and a model inspired by Drees (1998). Furthermore, the LAN result,
via the convolution theorem, gives a lower bound on the asymptotic variance of estimators
which are regular for the alternatives introduced. In this section, we show that, given a
fixed rate of convergence, and apart from a well-known asymptotic bias, the Hill estimator,
under a regularity condition, attains this lower bound. Thus, throughout this section, we
fix a sequence of nonnegative integers (kn) with kn →∞ and kn/n → 0 as n →∞ and the
corresponding sequence δn = 1/

√
kn.

Let P denote an arbitrary class of distributions of the Pareto type (2.1). Consider a
Pareto type distribution F ∈ P. We may decompose the inverse of 1/(1− F ) as follows:

(
1

1− F

)−1

(t) := inf{s : F (s) = 1− 1/t} = tγL(t), t > 1, (5.1)

with L(·) slowly varying at infinity. In order to study the asymptotic behavior of the Hill
estimator, we have to impose (like Smith (1982)) a second order condition which specifies
the rate of convergence of L(tx)/L(t) to 1. More precisely, let c be some constant and
g : (0,∞) → (0,∞) a ρ-varying function with ρ ≤ 0. Consider the following asymptotic
condition

(SR2) ∀x > 1 :
L(tx)
L(t)

= 1 + cg(t)
∫ x

1
vρ−1dv + o(g(t)), as t →∞. (5.2)

The SR2-condition is widely accepted as an appropriate condition to specify the slowly
varying part of the model (1.1) in a semi-parametric way. Under the SR2-condition, we
have the following result.

Theorem 5.1 Suppose that F is of the Pareto type (1.1) and satisfies the SR2-condition
with √

kng(n/kn) → A, (5.3)

for some A ∈ IR. Then, under the local alternatives defined by γn = γ0 + uδn and (2.3),
with δn = 1/

√
kn, we have

√
kn(H(n)

kn
− γ0)

L−→ N(cA/(1− ρ) + u, γ2
0),

and √
kn(H(n)

kn
− γn) L−→ N(cA/(1− ρ), γ2

0).

The limiting behavior of the Hill estimator for u = 0, i.e., under F0 in Theorem 5.1 is well-
known (see, e.g., Hall, 1982, Haeusler and Teugels, 1985, or the more recent papers Csörgő
and Viharos, 1998, de Haan and Resnick, 1998, and de Haan and Peng, 1998). However,
we describe its behavior under our local alternatives as well. We provide a proof in the
appendix that is effectively based on Theorem 2.2. Note that Theorem 5.1 is not at odds
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with Theorem 2.2 of Drees (1998) which considers the estimator H
(n)

k̃n
with k̃n/kn → ∞.

Such an estimator is not regular at the rate δn = 1/
√

kn that we consider.
Observe that, if the SR2-condition is satisfied, then it is also satisfied by the local

alternatives constructed in Section 2. More precisely, if the inverse of 1/(1− F0) evaluated
in t > 1 can be written as tγL0(t) where L0(·) satisfies the SR2-condition, say

L0(tx)/L0(t) = 1 + c0g0(t)
∫ x

1
uρ0−1du + o(g0(t)),

then the same is true for the alternatives Fn, i.e. the corresponding slowly varying function
Ln(·) can be constructed such that

Ln(tx)/Ln(t) = 1 + cngn(t)
∫ x

1
uρn−1du + o(gn(t)),

with

cn = c0
γn

γ0
,

ρn = ρ0
γn

γ0
,

gn(t) = g0

(
tγn/γ0(nδ2

n)γn/γ0−1
)

.

Note that gn(nδ2
n) = g0(nδ2

n). The above can be proven by noting that the inverse of
1/(1− Fn) is given by (see (2.5))

Un(t) =

{
U0(t) for t ≤ nδ2

n,

U0(tγn/γ0(1− F0(tn))γn/γ0−1) for t > nδ2
n,

where, as before, U0(t) = F−1
0 (1− 1/t). Thus, for t > nδ2

n,

Ln(t) = (nδ2
n)γ0−γnL0

(
tγn/γ0(nδ2

n)1−γn/γ0

)
.

Note, however, that condition (5.3) is not necessarily satisfied by the alternatives Fn.

6 Local Asymptotic Normality of the Weibull Model

The Pareto model, while popular in practice, is not always the best choice in some applica-
tions, see, e.g., Keller and Klüppelberg (1991) or Klüppelberg and Villaseñor (1993). See
furthermore Chapter 4 in the Beirlant, Teugels, Vynckier (1996) monograph.

Fix τ0 > 0 and a slowly varying function l0(·) and consider the distribution F0 given by

− log[1− F0(x)] = [xl0(x)]1/τ0 , x ≥ 1. (6.1)

As for the Pareto type model, we consider local alternatives based on an arbitrary
positive sequence (δn) with δn → 0 and δ−1

n = o(log n) as n → ∞. For every u ∈ IR, we
define the local alternatives Fn through (1.2) with

τn = τ0 + uδn, (6.2)

ln(x) =

{
xτn/τ0−1[l0(x)]τn/τ0 , 1 ≤ x ≤ tn
l0(x)[log(nδ2

n)]τn−τ0 , x > tn
, (6.3)
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where tn is given by − log(1−F0(tn)) = log(nδ2
n). Elementary calculations show that Fn is

absolutely continuous with respect to F0, where Fn and F0 coincide for 1 ≤ x ≤ tn and for
x > tn we have

log
dFn

dF0
(x) = log

τ0

τn
+

(
τ0

τn
− 1

)
log

− log[1− F0(x)]
− log[1− F0(tn)]

− log(1− F0(x))

{
1−

[ − log[1− F0(x)]
− log[1− F0(tn)]

]τ0/τn−1
}

. (6.4)

To state the LAN result for the Weibull model, we define the log-likelihood ratio of the n
i.i.d. variables X1, . . . , Xn of Fn with respect to F0:

Λ(n) = Λ(n)(X1, ..., Xn) =
n∑

i=1

log
[
dFn

dF0
(Xi)

]
.

Theorem 6.1 The log-likelihood ratio Λ(n) satisfies, under F0,

Λ(n) = u∆(n) − 1
2

u2

τ2
0

+ oIP(1), (6.5)

where

∆(n) =
δn

τ0

n∑

i=1

(
− log

1− F0(Xi)
1− F0(tn)

− 1
)

I {Xi > tn} (6.6)

L−→ N (0, 1/τ2
0 ).

The proof of this LAN result is similar to that for the Pareto case. Observe that, from
Lemma 2.1, we obtain

∫ ∞

tn

( − log[1− F0(x)]
− log[1− F0(tn)]

− 1
)k

dF0(x) = k!
1− F0(tn)

(− log[1− F0(tn)])k
, (6.7)

by dividing by (log(1− F0(tn)))k.

Proof of Theorem 6.1 From (6.7), with k = 1 and k = 2, we get

δn

n∑

i=1

(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)

I {Xi > tn} = oIP(1).

This implies
n∑

i=1

(
τ0

τn
− 1) log

− log[1− F0(Xi)]
− log[1− F0(tn)]

I {Xi > tn} = oIP(1).

Moreover, combining the inequality

∀t > 1, ∀a < 2 : |1− ta + a(t− 1)| ≤ |a(a− 1)| (t− 1)2
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with (6.7) for k = 2 and k = 3 gives

n∑

i=1

− log[1− F0(Xi)]

{
1−

(− log[1− F0(Xi)]
− log[1− F0(tn)]

)τ0/τn−1
}

I {Xi > tn}

=
n∑

i=1

− log[1− F0(Xi)](1− τ0

τn
)
(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)

I {Xi > tn}+ oIP(1).

This last expression can be written as the sum of

−(1− τ0

τn
) log[1− F0(tn)]

n∑

i=1

(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)2

I {Xi > tn} ,

and

−(1− τ0

τn
) log[1− F0(tn)]

n∑

i=1

(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)

I {Xi > tn} ,

of which the first part vanishes asymptotically in view of (6.7).
The above results imply that we may write

Λ(n) = −(1− τ0

τn
) log[1− F0(tn)]

n∑

i=1

(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)

I {Xi > tn}

+ log
τ0

τn

n∑

i=1

I {Xi > tn}+ oIP(1).

Note

δ2
n

n∑

i=1

I{Xi > tn} = 1 + oIP(1)

and, in virtue of (6.7),

−δ2
n log[1− F0(tn)]

n∑

i=1

(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)

I {Xi > tn} = 1 + oIP(1),

which proves the quadratic expansion for the log-likelihood ratio.
Let

ξni = δn

(
− log[1− F0(tn)]

(− log[1− F0(Xi)]
− log[1− F0(tn)]

− 1
)
− 1

)
I {Xi > tn} .

The limiting distribution of the central sequence ∆(n) follows from the Liapunov Central
Limit Theorem, using (6.7) to obtain

Eξni = 0,

Var ξni = n−1,

E|ξni|3 ≤ 16|δn|/n.

2
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The LAN result of Theorem 6.1 is based on a central sequence of the POT-type, i.e.
the central sequence consists only of those observations that exceed a given deterministic
threshold tn. As in the Pareto case, we can also for the Weibull model provide a central
sequence based on order statistics.

Theorem 6.2 Let (kn) be a sequence of integers tending to infinity with
√

kn = o(log(n)).
Consider the sequence δn = 1/

√
kn and the corresponding central sequence ∆(n). Then, we

may write

τ2
0 ∆(n) =

τ0√
kn

kn∑

i=1

(
− log

1− F0(Xn−i+1:n)
1− F0(Xn−kn:n)

− 1
)

+ oIP(1),

and

τ2
0 ∆(n) −

√
kn(τ̂ (n)

kn
− τ0) =

log(n/kn)√
kn

kn∑

i=1

Xn−i+1:n

Xn−kn:n

(
l0(Xn−i+1:n)
l0(Xn−kn:n)

− 1
)

+ oIP(1),

where the estimator τ̂
(n)
kn

is defined by

τ̂
(n)
kn

=
log(n/kn)

kn

kn∑

i=1

(
Xn−i+1:n

Xn−kn:n
− 1

)
.

The proof is again left for the appendix.

7 Estimation in the Weibull model

Beirlant et al. (1995) provide the limiting distribution of the estimator

τ̂
(n)
kn

=
log(n/kn)

kn

kn∑

i=1

(
Xn−i+1:n

Xn−kn:n
− 1

)
.

Our results again allow us to study the behavior of this estimator under the local alternatives
constructed. We introduce the following notation. Let K0 denote the generalized inverse
of − log(1− F0). Then, we may write K0(t) = tτ0L0(t) with L0(·) slowly varying.

Theorem 7.1 Suppose L0(·) defined above satisfies SR2. Let (kn) be a sequence of integers
tending to infinity with

√
kn = o(log(n)) and

√
kng(log(n/kn)) → A. Now, under the local

alternatives defined by τn = τ0 + uδn and (6.3), with δn = 1/
√

kn, we find

√
kn(τ̂ (n)

kn
− τ0)

L−→ N (−cA + u, 1/τ2
0 ),

and √
kn(τ̂ (n)

kn
− τn) L−→ N (−cA, 1/τ2

0 ).

Theorem 6.1 and Theorem 7.1 impose 1/δn = o(log n). This implies that the δn are
relatively large and the alternatives Fn are ’far’ from F0. We conjecture, but were unable
to prove formally, that, e.g., geometric rates of convergence can not be obtained in the
Weibull model. This conjecture is based on two considerations. First, a small change in
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the parameter τ in (6.1) leads to a much larger change in the distribution F , than a similar
change in γ in (2.1). As a consequence, inference about τ in the Weibull model is much
more difficult than inference about γ in the Pareto model. Formally, for geometric rates
δn = n−α with α > 0, we expect the log-likelihood ratio in (6.5) to converge to zero.
The second consideration regards the estimator discussed in Theorem 7.1 above. In case
kn = 1/δ2

n is chosen too large, the bias A tends to infinity. This suggest that there is no
convergence in distribution of

√
kn(τ̂ (n)

kn
− τ0).

A Some proofs

This appendix contains three proofs that were omitted from the main text in order to
improve readability.

Proof of Theorem 2.2: Let U1:n ≤ . . . ≤ Un:n be the order statistics of n i.i.d.
uniformly over the interval [0, 1] distributed r.v.’s U1, . . ., Un. Using the quantile transfor-
mation, we obtain

γ2
0∆(n) +

γ0√
kn

kn∑

i=1

(
1 + log

1− F0(Xn−i+1:n)
1− F0(Xn−kn:n)

)

d= − γ0√
kn

n∑

i=1

(
1 + log

1− Ui

kn/n

)
I {Ui > 1− kn/n}

+
γ0√
kn

kn∑

i=1

(
1 + log

1− Un−i+1:n

1− Un−kn:n

)
.

We decompose the latter expression into T
(n)
1 + T

(n)
2 + T

(n)
3 , with

T
(n)
1 = − γ0√

kn

n∑

i=1

log
[
1− Ui

kn/n

]
I{Ui > 1− kn/n}

+
γ0√
kn

kn∑

i=1

log
[
1− Un−i+1:n

kn/n

]
,

T
(n)
2 =

γ0√
kn

(
kn −

n∑

i=1

I{Ui > 1− kn/n}
)

,

T
(n)
3 = −γ0

√
kn log

[
1− Un−kn:n

kn/n

]
.

Since kn = o(n), we have, by Chebyshev’s inequality,

Un−kn:n = 1− kn/n + OP (
√

kn/n). (A.1)

Since IP{Ui = Uj ; i 6= j} = 0, we have

T
(n)
1

d= − γ0√
kn

n∑

i=1

log
[
1− Ui

kn/n

]
I{Ui > 1− kn/n}

+
γ0√
kn

n∑

i=1

log
[
1− Ui

kn/n

]
I{Ui > Un−kn:n}.
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Now, for any d ∈ (0,∞), put

T
(n)
1 (d) =

γ0√
kn

n∑

i=1

∣∣∣∣log
1− Ui

kn/n

∣∣∣∣ I
{
1− kn/n− d

√
kn/n ≤ Ui ≤ 1− kn/n + d

√
kn/n

}
.

Note that we have, using (A.1),

lim
d→∞

lim sup
n→∞

IP
{∣∣∣T (n)

1

∣∣∣ > T
(n)
1 (d)

}
≤ lim

d→∞
lim sup

n→∞
IP

{
|Un−kn:n − (1− kn/n)| > d

√
kn/n

}
= 0.

Hence, in order to prove
T

(n)
1 = oIP(1),

it is sufficient to show, for each d ∈ (0,∞),

T
(n)
1 (d) = oIP(1). (A.2)

But, (A.2) follows easily from the Markov inequality, since

E
(
T

(n)
1 (d)

)
≤ 2dγ0 max

(
log

[
1 + d/

√
kn

]
,− log

[
1− d/

√
kn

])
→ 0.

It remains to consider T
(n)
2 +T

(n)
3 . We start by rewriting T

(n)
3 . Applying a Taylor series

expansion, we find, for θn between kn/n and 1− Un−kn:n and using (A.1),

T
(n)
3 = −γ0

n√
kn

(1− Un−kn:n − kn/n) +
γ0

2

√
kn

θ2
n

(1− Un−kn:n − kn/n)2

= −γ0
n√
kn

(1− Un−kn:n − kn/n) + oIP(1). (A.3)

To complete the proof, we define the uniform empirical process

αn(s) =
√

n (Gn(s)− s) , for 0 ≤ s ≤ 1,

and the uniform quantile process

βn(s) =
√

n (s− Un(s)) , for 0 ≤ s ≤ 1,

where
Gn(s) =

1
n

#{k : 1 ≤ k ≤ n, Uk ≤ s},
and

Un(s) =

{
Uk:n if (k − 1)/n < s ≤ k/n,
U1:n if s = 0.

Using (A.3), the sum of T
(n)
2 and T

(n)
3 can now be written as

γ0

√
n

kn

(
αn

(
1− kn

n

)
− βn

(
1− kn

n

))
+ oIP(1)

From Corollary 2.3 in Csörgő et al. (1986), with λ = 1, one finds
√

n

kn

(
αn

(
1− kn

n

)
− βn

(
1− kn

n

))
= oIP(1).

This completes the proof of Theorem 2.2. 2
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In order to prove Theorem 5.1, we need two technical lemma’s.

Lemma A.1 Let Y1, . . . , Yn be independent random variables with common distribution
function G(y) = 1− 1/y, y ≥ 1. Let Y1:n, . . . , Yn:n denote the order statistics of Y1, . . . , Yn.
Let (kn) be a sequence of integers with kn ≤ n and kn →∞, n →∞. Then, as n →∞ and
for all β < 1,

1
kn

kn∑

i=1

(
Yn−i+1:n

Yn−kn:n

)β
IP−→ 1

1− β
,

and
1
kn

kn∑

i=1

log
Yn−i+1:n

Yn−kn:n

IP−→ 1.

Proof: The first result is Lemma 2.4 of Dekkers et al. (1989). The second result fol-
lows easily from the law of large numbers upon noting that (log [Yn−i+1:n/Yn−kn:n])kn

i=1 is
distributed as the order statistics of a standard exponential sample of size kn. Hence, the
result follows from the consistency of the Hill estimator for the strict Pareto case. 2

The second lemma we need can be found in Smith (1982).

Lemma A.2 Suppose L(·) satisfies the SR2-condition with ρ ≤ 0. If ρ < 0, then for all
ε > 0 there exists a tε such that we have

∣∣∣∣log
L(tx)
L(t)

− cg(t)
∫ x

1
uρ−1du

∣∣∣∣ ≤ εg(t), (A.4)

whenever t ≥ tε and x > 1. If ρ = 0, then the same result holds with the right-hand side
replaced by εg(t)xε.

We now may prove Theorem 5.1.

Proof of Theorem 5.1: We first consider the behavior of the Hill estimator under
the null hypothesis F0. In the literature, many proofs exist of the asymptotic behavior of
the Hill estimator under the null. We present the proof for completeness only. In virtue of
Theorem 2.2 and using the quantile transformation, we need to prove that

1√
kn

kn∑

i=1

log
l(F−1(Un−i+1:n))
l(F−1(Un−kn:n))

(A.5)

tends to cA/(ρ − 1) in probability, where U1:n, . . . , Un:n denote the order statistics of a
uniform sample of size n. Now

1− t = 1− F (F−1(t))

=
[
F−1(t)l(F−1(t))

]−1/γ

=
[
(1/(1− t))γL(1/(1− t))l(F−1(t))

]−1/γ
,
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implies l(F−1(t)) = 1/L(1/(1− t)). Since (1/(1− Ui:n)n
i=1

d= (Yi:n)n
i=1), we have

(A.5) d= − 1√
kn

kn∑

i=1

log
L(Yn−i+1:n)
L(Yn−kn:n)

.

Moreover, Yn−kn:n = (n/kn)(1 + oIP(1)) and, since g is regularly varying, this implies

g(Yn−kn:n)/g(n/kn) = 1 + oIP(1).

Thus, using Condition (5.3),
√

kng(Yn−kn:n) = A + oIP(1). (A.6)

Provided that
−1

kng(Yn−kn:n)

kn∑

i=1

log
L(Yn−i+1:n)
L(Yn−kn:n)

(A.7)

tends to c/(ρ− 1) in probability, the desired result follows.
In case ρ < 0, since ε is arbitrary in (A.4), it follows that

(A.7) = − 1
kn

kn∑

i=1

c

∫ Yn−i+1:n/Yn−kn:n

1
uρ−1du + oIP(1).

Applying Lemma A.1 for ρ < 0, we indeed find

(A.7) = c/(ρ− 1) + oIP(1).

The case ρ = 0 follows similarly using again Lemma A.1 and noting that the extra factor
xε in the right-hand side of (A.4) doesn’t affect the conclusion.

The behavior of the Hill estimator under the local alternatives (2.2) and (2.3) now
follows immediately from Le Cam’s third lemma (see, e.g., Bickel et al. (1993), p. 503). 2

Before proving Theorem 6.2, we first establish the following lemma.

Lemma A.3 Let 0 < kn ≤ n with kn → ∞ and
√

kn = o(log(n/kn)). Let ω1:n, . . ., ωn:n

be order statistics of a sample of size n from the standard exponential distribution. Then,
for m ∈ IN,

1√
kn

kn∑

i=1

(
ωn−i+1:n

ωn−kn:n
− 1

)m

= oIP(1/(log(n/kn))m−1)

Proof: Note that (ωn−i+1:n−ωn−kn:n, i = 1, . . . , kn) are distributed as the order statis-
tics of a standard exponential sample of size kn. Hence, from the law of large numbers we
get

1
kn

kn∑

i=1

(ωn−i+1:n − ωn−kn:n)m IP−→ m!.
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Now,

(log(n/kn))m−1 1√
kn

kn∑

i=1

(
ωn−i+1:n

ωn−kn:n
− 1

)m

=
√

kn

log(n/kn)

(
log(n/kn)
ωn−kn:n

)m 1
kn

kn∑

i=1

(ωn−i+1:n − ωn−kn:n)m ,

and the desired result follows from

ωn−kn:n = log(n/kn) + oIP(1).

2

Proof of Theorem 6.2: The proof will follow the same lines as that of Theorem 2.2.
Using the quantile transformation, we obtain

τ2
0 ∆(n) − τ0√

kn

kn∑

i=1

(
− log

1− F0(Xn−i+1:n)
1− F0(Xn−k:n)

− 1
)

d=
τ0√
kn

n∑

i=1

(− log[1− Ui] + log[kn/n]− 1) I {Ui > 1− kn/n}

− τ0√
kn

kn∑

i=1

(− log[1− Un−i+1:n] + log[1− Un−k:n]− 1) .

We decompose this expression into three terms

T
(n)
1 =

τ0√
kn

n∑

i=1

(− log[1− Ui] + log[kn/n])I{Ui > 1− kn/n}

− τ0√
kn

kn∑

i=1

(− log[1− Un−i+1:n] + log[kn/n]),

T
(n)
2 =

τ0√
kn

(
kn −

n∑

i=1

I{Ui > 1− kn/n}
)

,

T
(n)
3 = −τ0

√
kn(log[1− Un−kn:n]− log[kn/n]).

The terms T
(n)
2 and T

(n)
3 are equal to the terms appearing in the proof of Theorem 2.2.

The term T
(n)
1 is somewhat different, but can be handled analogously. More precisely, for

any d ∈ (0,∞), we define

T
(n)
1 (d) =

τ0√
kn

n∑

i=1

|log[n/kn(1− Ui)]| I
{
1− kn/n− d

√
kn/n ≤ Ui ≤ 1− kn/n + d

√
kn/n

}

Since for each d ∈ (0,∞),
T

(n)
1 (d) = oIP(1),

20



we get
T

(n)
1 = oIP(1).

Furthermore,

τ2
0 ∆(n) −

√
kn(τ̂ (n)

kn
− τ0)− 1√

kn

kn∑

i=1

log(n/kn)
Xn−i+1:n

Xn−kn:n

(
l0(Xn−i+1:n)
l0(Xn−kn:n)

− 1
)

=
τ0√
kn

kn∑

i=1

(− log[1− F0(Xn−i+1:n)] + log[1− F0(Xn−k:n)]− 1)−
√

kn(τ̂ (n)
kn

− τ0)

− 1√
kn

kn∑

i=1

log(n/kn)
Xn−i+1:n

Xn−kn:n

(
l0(Xn−i+1:n)
l0(Xn−kn:n)

− 1
)

+ oIP(1)

which is distributed as

τ0√
kn

kn∑

i=1

(ωn−i+1:n − ωn−k:n − 1)−
√

kn


log(n/kn)

1
kn

kn∑

i=1

(
K0(ωn−i+1:n)
K0(ωn−kn:n)

− 1
)
− τ0




− 1√
kn

kn∑

i=1

log(n/kn)
K0(ωn−i+1:n)
K0(ωn−kn:n)

(
l0(K0(ωn−i+1:n))
l0(K0(ωn−kn:n))

− 1
)

=
τ0√
kn

kn∑

i=1

(ωn−i+1:n − ωn−k:n)− log(n/kn)
1√
kn

kn∑

i=1

(
K0(ωn−i+1:n)l0(K0(ωn−i+1:n))
K0(ωn−kn:n)l0(K0(ωn−kn:n))

− 1
)

.

Since l0(K0(t)) = 1/L0(t), this expression can be simplified into

τ0√
kn

kn∑

i=1

(ωn−i+1:n − ωn−k:n)− log(n/kn)
1√
kn

kn∑

i=1

((
ωn−i+1:n

ωn−kn:n

)τ0

− 1
)

. (A.8)

Applying a Taylor expansion of tτ − 1, for t > 1 and around 1 of order max(bτc, 1) and
using Lemma A.3, we get

(A.8) =
τ0√
kn

kn∑

i=1

(ωn−i+1:n − ωn−k:n)− τ0 log(n/kn)
1√
kn

kn∑

i=1

(
ωn−i+1:n

ωn−kn:n
− 1

)

= τ0(ωn−kn:n − log(n/kn))
1√
kn

kn∑

i=1

(
ωn−i+1:n

ωn−kn:n
− 1

)

= oIP(1).

2

Proof of Theorem 7.1: Again, we start by considering the asymptotic behavior of τ̂n

under the null. Under F0, we need to establish that

1√
kn

kn∑

i=1

log[n/kn]
Xn−i+1:n

Xn−kn:n

(
l0(Xn−i+1:n)
l0(Xn−kn:n)

− 1
)
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converges to −cA, in probability. As before, we use the quantile transformation. Let
ω1:n, . . . , ωn:n be the order statistics of a sample of size n from the standard exponential
distribution. Now,

1√
kn

kn∑

i=1

log[n/kn]
(

ωn−i+1:n

ωn−kn:n

)τ (
1− L0(ωn−i+1:n)

L0(ωn−kn:n)

)

converges to −cA, in probability, in view of the results in the proof of Theorem 3.2(i) of
Beirlant et al. (1995). An application of Le Cam’s third lemma then completes the proof.2
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