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Abstract

The auctioning rule in Japanese flower markets is a slightly modi-

fied version of that of the original Dutch flower auction. At Japanese

flower markets, there is an additional stage, called “mari”, where

buyers who lost in the previous auction can apply for purchasing the

remainder of flowers at the same price as in the previous auction. We

investigate the role of “mari” in multi-unit descending auction, and

show that “mari” extensively speeds up the market procedure at the

cost of sufficiently small loss of efficiency, compared to the original

Dutch sequential auction.

1 Introduction

Descending price auction (or, Dutch auction) is widely used at wholesale

flower markets in countries such as the Netherlands and Japan among

others. The Dutch market is leading in the worldwide market share, and

Ota Floriculture Auction in Tokyo is the second largest1. The Dutch style

of the flower auction originates in the Netherlands (as is clear from the

name) and was imported into Japan, but in the process of adoption of the

descending style, many of flower markets in Japan, including Ota, made a

slight modification to the original rule. In this paper we call the modified

rule in Japan as mari, which comes from marketmen’s jargon referring to the

modification. This paper investigates both advantages and disadvantages

of mari, and shows that mari extensively speeds up the market procedure

at the cost of sufficiently small loss of efficiency, compared to the original

1Two organizations of flower auctions, Flora Holland and Aalsmeer, were competing
in the Netherlands until 2007. In 2008, Flora Holland and Aalsmeer merged, and then
Ota Floriculture in Tokyo became the second largest.
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Dutch sequential auction.2

The key instrument at those markets is the “auction clock”, beginning

with a high price which is then gradually lowered. If a buyer desires to

buy the good at the price on the clock, he pushes the button then the clock

stops. The good is won by the buyer who was the first to stop the clock,

and the winner pays the price displayed on the clock to the auctioneer.

When several identical goods are for sale, some options are open to the

seller, even when the market sticks to the descending price style as the basic

procedure. For instance, the seller must decide how to sell the remainder

of the goods after some buyer has won one good. The remainder is brought

up to the auction again at the Ducth flower auctions,3 whereas at many

wholesale flower markets in Japan, the remainder is sold by the peculiar

method called mari.

Roughly speaking, mari allows other buyers who did not win the good

at the previous auction to apply for purchasing the remainder (if any) at the

same price as the winner in the previous auction paid. If the number of appli-

cants is less than the number of the remainder then all the applications are

accepted, while the remainder is randomly allocated between applicants

if the number of applicants exceeds the number of the remainder.

This paper investigates the effect of mari to the equilibrium outcome

of the auction. One interesting nature would be that when the number of

applicants exceeds the number of the remainder, the random allocation in

mari may cause inefficiency: that is, some portion of the remaining goods

2In an interview at the Ota Floriculture Auction, a director who organizes the infor-
mation system of the auctioning room pointed out that they acutally have a “feeling” that
mari contributes to the economy of time at the market.

3Such situations in which the goods are sold sequentially are called “sequential auc-
tions” in the literature. The analysis of sequential auctions originates with Milgrom and
Weber [3] and Weber [4].
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may be allocated to the buyer whose value is lower among the applicants.

On the other hand, mari may contribute to the economy of time in the sense

that it decreases the number of auctions that should be held until all of the

remainder be sold out. The purpose of the paper is to show that addition of

mari to the sequential descending auction extensively reduces the number

of auctions to be held, while the loss of efficiency is sufficiently small.

In investigating the relationship between efficiency and economy of

time, there can be various ways of evaluating the trade-off. In this paper,

we define two measures, “efficiency loss rate” (LR) and “round reduction

rate” (RR), and examines the asymtotic property of LR and RR when the

numbers of buyers and goods increase to infinity. LR is defined as the ratio

of the expected welfare loss in mari to the expected welfare if the goods

were to be allocated efficiently. If such LR is closer to zero, we see that the

loss of efficiency is smaller. RR, on the other hand, is defined as the ratio of

the expected number of goods sold in mari to the number of the remainder.

We regard that the mari contributes more to the economy of time when RR

is closer to one. Our result actually shows that LR converges to 0 while RR

converges to 1 when the number of buyers and that of goods increase to

infinity (Theorem in page 19).

The rest of the paper is organised as follows. We formulate the sequen-

tial descending auction with mari in Section 2. In Section 3, we investigate

the symmetric equilibrium of the game and provide some characteristics.

Main result on the trade-off between efficiency and economy of time is

presented in Section 4, in which we argue that mari extensively reduces the

number of auctions while the loss of efficiency is sufficiently small. Section

5 provides concluding remarks.
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2 The Model

In this section, we introduce the sequential descending auction model with

mari.

To formulate the problem, suppose that there are k identical goods for

sale and N buyers. We assume that each buyer can buy only one item; that

is, we limit our attention to the unit-demand case. The goods are to be sold

in the following procedure:

1. The “auction clock” starts from a sufficiently high price and goes

down until one of the buyers stops it.

2. The buyer who stopped the clock wins the good at the price on the

clock.

3. Other buyers can apply to purchasing the remaining goods at the

same price being paid by the winner in step 2 (mari).

(a) If the number of buyers who applied to the purchase is greater

than the number of remaining goods (that is, k − 1), then the

goods are allocated randomly between the applying buyers. Put

another way, if the number of applying buyers is j ≥ k − 1, then

each buyer wins the good with (ex ante) probability j/(k − 1).

(b) Otherwise, all the applying buyers can win the good.

4. The remaining goods will be sold in the usual sequential descending

auction without mari.4

4In the real Japanese flower auctions, mari may happen for several times. That is, after
mari (step 3), the auctioning procedure simply goes back to step 1. The existence of mari
in and after the second round may affect how mari in the first round works. In order to
avoid such effects, in this paper we focus on a simplified game in which mari can come
up only in the first round.
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We let ti denote ith buyer’s type (value), and assume that the types are

independently drawn from the uniform distribution on [0, 1]. Each buyer

attains the payoff of ti− p if the buyer wins the good and the winning price

is p, and the payoff of 0 if the buyer fails to win the good. We assume that

the buyers are risk-neutral.

The strategy of the buyers comprises following components. One is the

decision about on what price the buyer stops the “auction clock” in the first

round (depending on her type t), another is the decision about whether to

apply in mari (depending on the price p in the first round and on her type

t), and the other is how to act in the sequential auction for the remaining

goods if she either does not apply or loses in mari (depending on the price

p, her type t, and the numbers of remaining buyers and remaining goods).

In this paper we focus on the symmetric equilibrium as in the following

form: there exist βN,k and µN,k such that (i) type-t buyer stops the clock at

βN,kt in the first round, (ii) if the clock stopped at the price p = βN,kt̄ in

the first round, then other buyers participate in mari if and only if the type

t is higher than µN,kt̄, and (iii) the buyers follow symmetric equilibrium

strategies in the sequential descending auction in 4.

3 Equilibrium Strategy

In this section, we investigate the equilibrium strategy of buyers in the

auction with mari. We also provide some equations characterizing µN,k and

βN,k in the equilibrium, which will be extensively used in exlopring analysis

of the trade-off between efficiency and economy of time in the next section.

In the beginning, we should obtain the symmetric equilibrium strategy

in the auctions after mari when there is still remainder of the goods. It
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is easily shown that the bidding strategy in the equilibrium after mari is

identical to that in the equilibrium of the usual sequential auction without

mari, which is provided as

bM,ℓ(t) =
M − ℓ

M
t, (1)

where M is the number of remaining buyers and ℓ is that of remaining

goods.5

Given the equilibrium strategy in the auctions after mari, bM,ℓ(t), we

investigate the buyers’ decision about whether to apply in mari, for ar-

bitrarily fixed bidding strategy in the first round, β. Suppose that type-t̄

buyer won the good in the first round, that is, the winner bid βt̄ and won

the good with payment βt̄. Then, in mari, each of remaining N − 1 buy-

ers, whose types are independently distributed uniformly on [0, t̄), has a

chance to apply for purchasing the good at the price βt̄.

As was noted in the previous section, we are now interested in the linear

symmetric equilibrium in which each buyer apply in mari if and only if the

buyer’s type is no less than µt̄. To investigate the symmetric equilibrium,

in the following, we study one typical buyer’s decision whether to apply

in mari, given other N − 2 buyers’ strategy µ.

If the buyer decides to apply in mari, the probability of winning the good

depends on the number of other applicants, j. If j < k − 1, the buyer will

be able to win the good with probability one, whereas the buyer wins with

probability (k− 1)/( j+ 1) if j ≥ k− 1. As each of other buyers apply in mari

with probability of 1 − µ ex ante, the probability that the number of other

applicants equals to j is
(N−2

j

)
(1 − µ) jµN−2− j, and therefore the probability

5See Milgrom and Weber [3] and Weber [4].
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that the buyer wins the good can be written as

k−2∑
i=0

(
N − 2

i

)
(1 − µ)iµN−2−i +

N−2∑
i=k−1

(
N − 2

i

)
(1 − µ)iµN−2−i k − 1

i + 1
.

In the economy of notation, we write the expression as

E
1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]

in the following, where the function E1−µ
m [ f ( j)] is defined as6

E
1−µ
m [ f ( j)] ≡

m∑
i=0

(
m
i

)
(1 − µ)iµm−i f (i), (2)

and 1 is the indicator function.

To summarize, if the other buyers are following the mari participation

strategy µ, then the expected payoff of the buyer with type t who decides

to apply in mari, denoted by πm(t) would be

πm(t) = (t − βt̄)E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
, (3)

where t − βt̄ is the ex post payoff when the buyer successfully wins the

good in mari and theE thing represents the probability that the buyer wins

the good in mari.

If the buyer does not apply in mari, on the other hand, the expected

6E
1−µ
m [ f ( j)] can be understood as the expectation of function f ( j) when j follows the

binomial distribution with parameters 1 − µ and m.
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payoff, denoted by πw(t), can be written as

πw(t) =


E

1−µ
N−2

[(
t − bN−1− j,k−1− j(µt̄)

)
1 j<k−1

]
if t ≥ µt̄,

E
1−µ
N−2

[(∫ t

0
xN−1− j,k−1− j

(
s
µt̄

)
ds

)
1 j<k−1

]
if t < µt̄.

(4)

We shall explain the two expressions in due order. For case of t ≥ µt̄,

the buyer’s optimal action in the auctions after mari (if any) is to act as if

type-µt̄ buyer in the equilibrium. This is because there are no other buyers

with types more than µt̄ in the auctions after mari as long as other buyers

are following µ. Moreover, this buyer will win with probability one in the

auction just after mari (if any). Hence, the expected payoffwhen this buyer

does not participate in mari can be written as in (4), where bM,ℓ(t) is the

equilibrium strategy in the auctions after mari as given in (1).

For case of t < µt̄, we define xM,ℓ(s) is as

xM,ℓ(s) ≡
ℓ−1∑
i=0

(
M − 1

i

)
(1 − s)isM−1−i. (5)

That is, xM,ℓ(s) denotes the probability that type-s buyer is at least ℓ-highest

among M buyers whose types are independently drawn from the uniform

distribution over [0, 1].7

Here we have the following characterization of µ in the equilibrium in

mari stage.

7Conceptually, the expected payoff from deferring participation in mari is written in
more complex form than the one given in (4). In calculating the expected payoff, we must
take into consideration all of the possibilities that the buyer wins the first after mari, the
buyer loses the first but wins the second after mari, and so forth. Given the symmetric
equilibrium strategy in the usual sequential descending auction following mari, which
is already given in (1), we can rewrite the (complex) expected payoff as the simple form
given in (4).

9



Proposition 1. Suppose that the buyers are taking first-round bidding strategy

β and type-t̄ buyer won the good in the first round. Then there exists unique

linear symmetric equilibrium in mari stage in which each of the remaining buyers

participates in mari if and only if the buyer’s type is no less than µt̄, where µ is

given as follows.

1. If β ≥ (N − k)/(N − 1), then µ = 1.

2. If 0 < β < (N − k)/(N − 1), then µ is the unique solution of

(1 − β)E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
=

k − 1
N − 1

. (6)

Proof. (Necessity). If µ constitutes an equilibrium when 0 < β < (N−k)/(N−
1), it must be that the expected payoff of applying in mari and that of not

applying ((3) and (4), respectively) are indifferent when the buyer’s type

is µt̄. That is,

(µt̄ − βt̄)E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
= µt̄E1−µ

N−2

[
k − 1 − j
N − 1 − j

1 j<k−1

]
. (7)

Applying Lemma 2 in the Appendix, we have

µE1−µ
N−2

[
k − 1 − j
N − 1 − j

1 j<k−1

]
=

1
N − 1

E
1−µ
N−1

[
(k − 1 − j)1 j<k−1

]
,

and

µE1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
= E

1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
− 1

N − 1
E

1−µ
N−1

[
j1 j≤k−1 + (k − 1)1 j>k−1

]
.

10



Substituting these two equations into (7) and rearranging yields

(1 − β)E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
=

1
N − 1

E
1−µ
N−1

[
(k − 1)1 j<k−1 + j1 j=k−1 + (k − 1)1 j>k−1

]
=

k − 1
N − 1

.

Thus we have equation (6). As the left-hand side is increasing in µ by

applying Lemma 3 in the Appendix, and

E1
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
=

k − 1
N − 1

, E0
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
= 1,

equation (6) has a unique solution for µ in (0, 1) as long as 0 < β < (N −
k)/(N − 1). For β ≥ (N − k)/(N − 1), µ = 1 follows from that the unique

solution for (6) is µ = 1 when β = (N − k)/(N − 1).

(Sufficiency). Next we show that the buyer whose type is more than

µt̄ actually participates in mari as long as other buyers are following the

equilibrium strategy given in (6). If this buyer does not participate in mari,

the expected payoff is (from (4))

πw(t) = t × E1−µ
N−2

[
1 j<k−1

]
+ B1,

where B1 is the term irrelevant of t. If this buyer decides to participate in

mari, on the other hand, the expected payoff is (from (3))

πm(t) = t × E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
+ B2,
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where B2 is again the term irrelevant of t. Thus, we have that

∂
∂t
πm(t) >

∂
∂t
πw(t)

for all t > µt̄. As the two payoffs are indifferent for type-µt̄ buyer (that is,

πm(µt̄) = πw(µt̄) as shown in the necessity part), we have πm(t) > πw(t) for

all t > µt̄, and thus we can conclude that the buyer whose type is more

than µt̄ cannot be better off by absenting mari as long as other buyers are

following µ.

Finally we show that the buyer whose type t is less than µt̄ does not

participate in mari as long as other buyers are following the symmetric

equilibrium strategy µ. For such t < µt̄, we have

∂
∂t
πw(t) = E1−µ

N−2

[
xN−1− j,k−1− j

(
t
µt̄

)
× 1 j<k−1

]
,

from (4). We should note here that xN−1− j,k−1− j(·) is a sort of probability (see

(5)), and therefore we have

∂
∂t
πw(t) ≤ E1−µ

N−2

[
1 j<k−1

]
(8)

for all t < µt̄. As the two payoffs are indifferent for type-µt̄ buyer (as

shown in the necessity part), we can apply similar discussion as in the case

of t > µt̄, and conclude that the buyer whose type is less than µt̄ cannot

be better off by participating in mari as long as other buyers are following

µ. �

An informal interpretation of the equilibrium is as follows. Without

mari, a buyer who failed to win the good in the first round bids higher

in the next round than in the first, due to the deterioration of available
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supply relative to current demand.8 Hence, the buyer whose value is close

to t̄ would prefer to win the good in mari with price βt̄ (although this is

higher than the buyer’s potential bid in the first round), rather to get into

the next round where the bid higher than βt̄ might be required due to the

raise of competitiveness. This is what happens in 2. of the proposition. On

the other hand, if β is sufficiently high as in 1. of the proposition so that

the bidding higher than βt̄ would not be needed in the following round

after mari even with the raise of competitiveness, then in the equilibrium

no buyers participate in mari (µ = 1).

In what follows, we investigate the bidding strategy β in the first

round in the equilibrium, given the mari participation strategy provided

in Proposition 1. As will be shown in Proposition 2, β is actually less than

(N − k)/(N − 1), and therefore participations in mari occur with positive

probability in the equilibrium.

In the first-period auction the decision problem facing a buyer is slightly

more complex. Again let us take the perspective of one buyer with value t

and suppose that all other buyers are following the first-period strategy β

and mari participation strategy µ.

The equilibrium requires the buyer with type t to bid βt in the first

stage, but consider what happens if the buyer bids βs instead. Then the

buyer’s payoff is

Π(s, t) =


sN−1[t − βs] +

∫ z

s
πm(t | u)duN−1 +

∫ 1

z
πw(t | u)duN−1 if s < z

sN−1[t − βs] +
∫ 1

s
πw(t | u)duN−1 if s ≥ z

, (9)

8This effect is one aspect of martingale price path result in the usual sequential descend-
ing auction without mari. See Milgrom and Weber [3].
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where z = min{t/µ, 1}, and πm(· | u) and πw(· | u) are those payoffs given

in (3) and (4), respectively, emphasizing that the type of the winner in the

first-round, u, is included in the function as t̄ = u. We shall explain the two

expressions in due order.

The first term results from the event that the buyer wins the good in

the first round. The second term of the first line results from the event that

the buyer loses in the first round but participates in mari, and u stands for

the highest type among other N − 1 buyers (that is, the type of the buyer

who wins the good in the first round). The third term is the term resulting

from the event that the buyer loses the first round, does not participate in

mari and then finally wins the good in the auctions after mari.9

It is possible, however, that the buyer might bid sufficiently large price

in the first round so that when the buyer happens to lose in the first round

even with this high bid, it never becomes optimal for him to participate in

mari, as the type of the winner in the first round is supposed to be extremely

high. The second line in the expression (9) corresponds to such biddings.

The first term results from the event that the buyer wins the good in the

first round, and the second term is the event that the buyer loses the first

round, does not (definitely) participate in mari and then finally wins the

good in the auctions after mari.

In the symmetric equilibrium, the buyer with type t bids βt in the first

round and therefore the payoff is calculated according to the first line in (9).

An increase in the bid of this buyer will increase the probability of winning

the good, but at the same time this will reduce the gain from the winning

in the first round (first term) as well as the gain from the event that the

9The buyer with sufficiently large type (t > µ) always finds it optimal to participate in
mari whatsoever the first round price βt̄ could be. For such buyers, the expected payoff
Π(s, t) is calculated with z = 1, and the third term vanishes.
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buyer loses the first round but wins the good in mari (second term). To get

some idea about how these effects balance off, we begin with a heuristic

derivation of symmetric equilibrium strategies.

Differentiating Π(s, t) with respect to s provides us with

∂
∂s
Π(s, t) = (N − 1)sN−2 (t − βs) − βsN−1 − πm(t | s)(N − 1)sN−2

= sN−2 {(N − 1)
[
(t − βs) − πm(t | s)

] − βs}
At a symmetric equilibrium, the first-order condition should be satisfied

in substituting s = t. That is, we have

(N − 1)
{
(t − βt) − πm(t | t)} = βt for all t. (10)

The left-hand side corresponds to the marginal benefit by an increment

of s, whereas the right-hand side corresponds to the marginal cost (the

marginal increment in payment), and the two effects are balanced off at the

point s = t. Substituting πm(t | t) defined in (3), we have

(N − 1)
{

(1 − β) − (1 − β)E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]}
= β, (11)

and by substituting (6), we have β = (N − k)/N.

The derivation of β is only heuristic because (11) is merely a necessary

condition that will be satisfied in the equilibrium. The next proposition

verifies that this constitutes the equilibrium and provides the full charac-

terization of µ.

Proposition 2. Symmetric equilibrium strategies in the sequential descending

auction with mari are given by the bidding strategy in the first roundβ = (N−k)/N

15



and mari participation strategy µ given as the unique solution of

E
1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
=

k − 1
N − 1

N
k
. (12)

Proof. Suppose that the other N−1 buyers follow the strategy β = (N−k)/N.

Consider a buyer with type t who is going to bid an amount βs instead of

βt. We are to show that

Π(t, t) > Π(s, t) for all s , t

by showing

∂
∂s
Π(s, t) > 0 for all s < t,

∂
∂s
Π(s, t) < 0 for all s > t.

For s < t, we have from (9) that

∂
∂s
Π(s, t) = (N − 1)sN−2(t − βs) − βsN−1 − πm(t | s)(N − 1)sN−2

= sN−2 {(N − 1)
[(

t − βs) − πm (t | s)
] − βs}

As long as the other buyers are following the strategy β, (10) is satisfied for

all t, and in particular, βs = (N − 1)
{
(s − βs) − πm(s | s)

}
. Therefore,

∂
∂s
Π(s, t) = (N − 1)sN−2 { fs(t) − fs(s)

}
, (13)

where we defined fs(t) as fs(t) = t − βs − πm(t | s). It is easy to see that

f ′s (t) = 1 − ∂
∂t
πm(t | s)
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= 1 − E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
> 0. (14)

Thus we can conclude that ∂Π(s, t)/∂s > 0 for all s < t.

For t < s ≤ z, the partial derivative is the same form as in (13), and we

have ∂Π(s, t)/∂s < 0 for all t < s ≤ z by (14).

For s > z, we can prove the result in a similar manner. We have the

derivative
∂
∂s
Π(s, t) = (N − 1)sN−2 {gs(t) − gs(s)

}
,

where gs(t) = t − βs − πw(t | s). As t/µ < s in this case, πw(t | s) corresponds

to the second line of the definition in (4), and therefore

∂
∂t
πw(t | s) ≤ E1−µ

N−2

[
1 j<k−1

]
< 1

from (8). Thus we have g′s(t) > 0 for all t, and ∂Π(s, t)/∂s < 0 for all s > z.

We have established that

Π(t, t) > Π(s, t) for all s , t,

that is, the type-t buyer finds it optimal to bid βt as long as other buyers

are following the strategy β.

Substituting β = (N − k)/N into (6) yields the equation (12). �

4 Efficiency vs. Economy of Time

In this section, we argue that mari extensively speeds up the market pro-

cedure at the cost of sufficiently small loss of efficiency.

As shown in Proposition 2, in the symmetric equilibrium, participation
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in mari occurs with strictly positive probability. The possibility of random

allocation in mari causes ex ante inefficiency, whereas selling several goods

at one time in mari may contribute to the economy of time at the market. To

formally evaluate the degree of inefficiency as well as the level of economy

of time, we define two measures, the “efficiency loss rate” (LR, hereafter)

and the “round reduction rate” (RR, hereafter). Formal (mathematical)

definitions of those two concepts will be given in the proof of Theorem

with some relevant notions to smoothen the outset of the proof. In the

following, we present casual definitions of the concepts and argue how the

trade-off of our interest can be investigated mathematically.

We refer to LR as the ratio of the expected efficiency loss in mari to

the expected surplus when the goods are allocated efficiently between the

participants. Thus, LR = 0 says that the goods will be allocated perfectly

efficiently between buyers and hence there will be no loss of surplus in

mari (i.e., first best allocation), whereas LR = 1 would describe the situa-

tion where the latent surplus from the auction is totally vanished and the

resulting surplus is going to be zero.

On the other hand, RR is defined as the ratio of the expected number

of the goods sold in mari to k − 1 (the number of remaining goods in the

beginning of mari). Thus, RR = 1 says that all of the remaining k − 1

goods will be “cleaned up” at one time in mari, whereas RR = 0 refers to

the case where none of the remaining goods will be sold and mari has no

contribution to the economy of time in the auction process.

Figure 1 plots the values of LR and RR for various sets of parameters

2 ≤ k ≤ 10 and k + 1 ≤ n ≤ 5k. The point on the upper-left corner is for

the case of k = 2 and n = 3, while the one on the lower-right corner is

for the case in which k = 10 and n = 11. The figure shows that for most
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Figure 1: LR and RR

of the parameters, the LR tends to be small with relatively large values of

RR. Put in another way, the figure indicates that mari extensively speeds

up the market procedure (high RR) at the cost of sufficiently small loss of

efficiency (low LR). For instance, van den Berg et al. [2] reports that k is

5.98 on average at the Aalsmeer Flower Auction in the Netherlands. The

figure shows for k = 6 that we have more than 80% of RR in exchange for

less than 1.5% of LR.

To formally investigate the tradeoff between LR and RR, we have the

following convergence theorem.

Theorem. In the linear symmetric equilibrium of the sequential descending auc-

tion with mari, we have

LR→ 0 and RR→ 1 as N, k→∞ with
k
N
= α.

Proof for LR→ 0. Let W∗
N,k denote the expected surplus when the k − 1

items are allocated efficiently between N − 1 buyers10, and Wm
N,k denote the

10In the beginning of the mari period, one unit out of k items is already sold to one
buyer out of N buyers, and therefore we are interested in how the remaining k − 1 items
are to be allocated between the remaining N − 1 buyers as far as we are concerned with
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expected surplus attained under the mari auction discussed in the paper.

Then the rate LR can be written as (W∗
N,k −Wm

N,k)/W
∗
N,k. In what follows, we

are to prove LR→ 0 by showing 1 − LR =Wm
N,k/W

∗
N,k → 1 in N, k→∞.

In accordance with the definition of W∗
N,k, we let W∗

N,k( j) denote the

expected surplus when j buyers participate in mari and k − 1 goods are

allocated efficiently between them. In a similar way, we let Wm
N,k( j) denote

the expected surplus when j buyers participate in mari and k− 1 goods are

allocated under the mari rule. Note that we have

W∗
N,k = E1−µN,k

N−1

[
W∗

N,k( j)
]

and Wm
N,k = E1−µN,k

N−1

[
Wm

N,k( j)
]
,

where µN,k is the mari-participation threshold strategy in the equilibrium

with N buyers and k items (see Propositions 1 and 2; in what follows we

omit the subscripts N and k).

Our main interest is on j ≥ k − 1, in which case the resulting allocation

would be different between efficient allocation and mari. Suppose that, in

the first round, some buyer with value t̄ has pushed the button and won

the good. Now the values of remaining buyers are distributed on U[0, t̄],

and those buyers with values in [µt̄, t̄] would participate in mari in the

equilibrium. Then for j ≥ k − 1, we have

W∗
N,k( j) = t̄(k − 1)

{
(1 − µ)

(
1 − k

2( j + 1)

)
+ µ

}
,

Wm
N,k( j) = t̄(k − 1)

1 + µ
2
.

The first equation is the expected surplus when k − 1 goods are allocated

the relative efficiency of mari auction.
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efficiently to the top k − 1 buyers out of j participants11, and the second

equation is the expected surplus when k− 1 goods are allocated randomly

between j participants, each of whose type is distributed on U[µt̄, t̄] with

the expected value of t̄(µ + 1)/2.

Firstly, we have
Wm

N,k

W∗
N,k

≥
wm

N,k

W∗
N,k

(15)

as a lower bound for 1 − LR, where wm
N,k denotes the expected surplus

generated by the event j ≤ (1+ϵ)(k−1) in the mari auction for a given small

number ϵ > 0. In what follows, we decompose this lower bound as

wm
N,k

W∗
N,k

=
w∗N,k
W∗

N,k

×
wm

N,k

w∗N,k
, (16)

where w∗N,k is similarly denoted as the expected surplus generated by the

event j ≤ (1 + ϵ)(k − 1) when the goods are allocated efficiently between

j participants, and investigate each term’s further lower bound and its

asymptotic behavior.

For the relationship between w∗N,k and W∗
N,k, we have

W∗
N,k = w∗N,k + E1−µ

N−1

[
W∗

N,k( j)1 j>(1+ϵ)(k−1)

]
11Note that the expectation of ith order statistic in j draws from the uniform distribution

U[µt̄, t̄] is µt̄ + (t̄ − µt̄)( j − i + 1)/( j + 1), and therefore we have

W∗
N,k( j) =

k−1∑
i=0

{
µt̄ + (t̄ − µt̄)

j − i + 1
j + 1

}
= t̄(k − 1)

{
(1 − µ)

(
1 − k

2( j + 1)

)
+ µ

}
.

Note also that the (unconditional) expected surplus if allocated efficiently is calculated as

W∗
N,k = t̄(k − 1)

(
1 − k

2N

)
.

21



by the definition of w∗N,k. For (1+ ϵ)(k− 1) < j ≤ N− 1, it is clear that W∗
N,k( j)

is at most

t̄(k − 1)
{

(1 − µ)
(
1 − k

2N

)
+ µ

}
,

and therefore a lower bound of w∗N,k/W
∗
N,k is given by

w∗N,k
W∗

N,k

≥ 1 −
(1 − µ)

(
1 − k

2N

)
+ µ

1 − k
2N

E1−µ
N−1

[
1 j>(1+ϵ)(k−1)

]
, (17)

where the denominator in the second term comes from the fact that W∗
N,k =

t̄(k − 1)(1 − k/(2N)) (see footnote 11).

For wm
N,k/w

∗
N,k part in (16), we focus our attention to the event that

j ≤ (1 + ϵ)(k − 1). It is clear that

W∗
N,k( j) ≤ t̄(k − 1)

{
(1 − µ)

(
1 − k

2((1 + ϵ)(k − 1) + 1)

)
+ µ

}
for each j ≤ (1+ϵ)(k−1), and therefore a lower bound for wm

N,k/w
∗
N,k is given

by

wm
N,k

w∗N,k
≥

t̄(k − 1)1+µ
2

t̄(k − 1)
{
(1 − µ)

(
1 − k

2((1+ϵ)(k−1)+1)

)
+ µ

}
= 1

/(
1 +

1 − µ
1 + µ

ϵ(k − 1)
(1 + ϵ)(k − 1) + 1

)
≥ 1

/(
1 +

k/N
2 − k/N

ϵ(k − 1)
(1 + ϵ)(k − 1) + 1

)
, (18)

where the last inequality comes from the condition that µ ≥ β = (N − k)/N

in the equilibrium.
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From (15), (16), (17), and (18), we have

1 − LR ≡
Wm

N,k

W∗
N,k

≥
1 −

(1 − µ)
(
1 − k

2N

)
+ µ

1 − k
2N

E1−µ
N−1

[
1 j>(1+ϵ)(k−1)

]
1 +

k/N
2 − k/N

ϵ(k − 1)
(1 + ϵ)(k − 1) + 1

,

and by applying Lemma 4 in the Appendix,

lim inf
N→∞

(1 − LR) ≥ 1

1 +
α

2 − α
ϵ

1 + ϵ

.

As ϵ > 0 can be arbitrarily small, this completes the proof. �

Proof for RR→ 1. Our proof proceeds as follows: 1. we establish that

lim infN→∞(1−µ)(N− 1)/(k− 1) ≥ 1, and 2. we show that RR→ 1 under the

condition derived in step 1. by applying Arratia-Gordon [1] method as in

the proof for LR→ 0. (that is, the expected number of buyers participating

in mari in the equilibrium, (1 − µ)(N − 1), converges to something slightly

greater than the number of remaining items, k − 1).

1. Firstly we should note that the left-hand side of the equilibrium

condition (12) represents the probability that “a buyer wins the item in

mari if the buyer participates in it” in the equilibrium. Rearranging the

equation in terms of the probability that “a buyer loses in mari if the buyer

participates in it”, we have

1 − E1−µ
N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
= 1 − k − 1

N − 1
N
k
=

1 − α
α

1
N − 1

,

where α = k/N. As the event that “a buyer loses in mari if the buyer
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participates in it” is included in the event that “the number of other buyers

participating in mari is larger than k − 1”,

E
1−µ
N−2

[
1 j≥k−1

]
≥ 1 − E1−µ

N−2

[
1 j<k−1 +

k − 1
j + 1

1 j≥k−1

]
.

Thus we have

E
1−µ
N−2

[
1 j≥k−1

]
≥ 1 − α
α

1
N − 1

. (19)

Given the inequality (19), we can show limN→∞(1 − µ)(N − 2)/(k − 1) ≥ 1

by contradiction. Specifically, we are to show that “if we suppose that

limN→∞(1 − µ)(N − 2)/(k − 1) < 1, then it contradicts the inequality (19)”.

Suppose that we have limN→∞(1 − µ)(N − 2)/(k − 1) < 1. Then we can

apply Lemma 1 (Arratia-Gordon Theorem) by seeing as p := 1 − µ and

α := (k − 1)/(N − 2), and would have

E
1−µ
N−2

[
1 j≥k−1

]
≤ e−(N−2)·H.

This inequality would say that E1−µ
N−2

[
1 j≥k−1

]
is the order of 1/eN, which

contradicts the inequality (19) stating that the left-hand side has no less

order than 1/N. Thus we have

lim
N→∞

(1 − µ)(N − 2)
k − 1

≥ 1.

2. RR can be written as follows:

RR =
E

1−µ
N−1

[
j1 j<k−1

]
+ E

1−µ
N−1

[
(k − 1)1 j≥k−1

]
k − 1

.

The first term in the numerator is regarding the event that j < k − 1 in

which case the number of items sold in mari is only j, whereas the second
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term in the numerator is regarding the event that j ≥ k − 1 in which case

the number of items sold in mari is k− 1, and the sum of these two terms is

divided by the number of remaining goods, k − 1. We are to show RR→ 1

by firstly giving a lower bound for RR and then showing that the lower

bound converges to 1.

For any arbitrarily given number ϵ > 0, we have

RR ≥
E

1−µ
N−1

[
0 · 1 j<(1−ϵ)(k−1) + (1 − ϵ)(k − 1) · 1 j≥(1−ϵ)(k−1)

]
k − 1

,

= (1 − ϵ)E1−µ
N−1

[
1 j≥(1−ϵ)(k−1)

]
≥ (1 − ϵ)E1−µ

N−2

[
1 j≥(1−ϵ)(k−1)

]
= (1 − ϵ)

{
1 − E1−µ

N−2

[
1 j<(1−ϵ)(k−1)

]}
.

As we have limN→∞(1 − µ)(N − 2)/(k − 1) ≥ 1 established in step 1., we can

apply Lemma 1 (Arratia-Gordon Theorem) and have12

E
1−µ
N−2

[
1 j<(1−ϵ)(k−1)

]
≤ e−(N−2)·H → 0 as N→∞.

As ϵ > 0 can be arbitrarily small, this completes the proof. �

5 Summary

In this paper we introduced the model that formulates sequential descend-

ing auction with mari, and showed that it speeds up the market procedure

at the cost of sufficiently small loss of efficiency.

Such mari rules are used in reality at various wholesale flower mar-

12From the symmetricity of binomial distributions, we can construct the “mirror” of
Arratia-Gordon Theorem as follows: If 0 < α < p < 1, then we haveEp

N

[
1 j≤αN

]
≤ e−N·H(α,p).
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kets in Japan. We believe that the result in the paper provides a partial

justification for the introduction of the rule in other markets.

Appendix

Lemma 1 (Arratia-Gordon). If 0 < p < α < 1, then we have

E
p
N

[
1 j≥αN

]
≤ exp{−N ·H(α, p)},

where H(α, p) is the Kullback-Liebler distance satisfying

H(α, p) ≡ α ln
α
p
+ (1 − α) ln

1 − α
1 − p

.

Proof. See Theorem 1 in Arratia and Gordon [1]. �

Lemma 2. For E1−µ
m [ f ( j)] ≡ ∑m

i=0
(m

i

)
(1 − µ)iµm−i f (i), we have

µE1−µ
m [ f ( j)] =

1
m + 1

E
1−µ
m+1[(m − j + 1) f ( j)],

(1 − µ)E1−µ
m [ f ( j)] =

1
m + 1

E
1−µ
m+1[ j f ( j − 1)].

Proof.

µE1−µ
m [ f ( j)] =

m∑
i=0

(
m
i

)
(1 − µ)iµm−i+1 f (i)

=

m∑
i=0

(
m + 1

i

)
m − i + 1

m + 1
(1 − µ)iµm−i+1 f (i)

=

m+1∑
i=0

(
m + 1

i

)
m − i + 1

m + 1
(1 − µ)iµm−i+1 f (i)

=
1

m + 1
E

1−µ
m+1[(m − j + 1) f ( j)].
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Similarly,

(1 − µ)E1−µ
m [ f ( j)] =

m∑
i=0

(
m
i

)
(1 − µ)i+1µm−i f (i)

=

m∑
i=0

(
m + 1
i + 1

)
i + 1

m + 1
(1 − µ)i+1µm−i f (i)

=

m+1∑
i=1

(
m + 1

i

)
i

m + 1
(1 − µ)iµm+1−i f (i − 1)

=
1

m + 1
E

1−µ
m+1[ j f ( j)].

�

Lemma 3. If f ( j) ≥ f ( j+1) for all j and f ( j) > f ( j+1) for some j, thenE1−µ
m [ f ( j)]

is (strictly) increasing in µ.

Proof.

∂
∂µ
E

1−µ
m [ f ( j)] =

m−1∑
i=1

(
m
i

) {
−(1 − µ)i−1µm−i + (m − i)(1 − µ)iµm−i−1

}
f (i)

+mµm−1 f (0) − (1 − µ)m−1 f (m)

=

m−1∑
i=0

{(
m
i

)
(m − i) f (i) −

(
m

i + 1

)
(i + 1) f (i + 1)

}
(1 − µ)iµm−i−1

=

m−1∑
i=0

m!
i!(m − i − 1)!

(1 − µ)iµm−i−1 [ f (i) − f (i + 1)
]

> 0.

�

Lemma 4. If N is large enough to satisfy k/N < (1+ ϵ)(k−1)/(N−1) for a given

ϵ > 0, then

E1−µ
N−1

[
1 j>(1+ϵ)(k−1)

]
→ 0 as N →∞.
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Proof. In the equilibrium it should be that 1−µ ≤ 1−β = k/N, and therefore

we have

E1−µ
N−1

[
1 j>(1+ϵ)(k−1)

]
≤ Ek/N

N−1

[
1 j>(1+ϵ)(k−1)

]
.

If k/N < (1+ϵ)(k−1)/(N−1), then Lemma 1 can be applied, which provides

us with

Ek/N
N−1

[
1 j>(1+ϵ)(k−1)

]
≤ e−(N−1)·H

( (1+ϵ)(k−1)
N−1 , k

N

)
,

where H is the Kullback-Liebler distance converging to a finite value as

N →∞. �
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