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Forecasting linear dynamical systems using

subspace methods

Abstract

A new procedure to predict with subspace methods is presented in this

paper. It is based on combining multiple forecasts obtained from setting a

range of values for a specific parameter that is typically fixed by the user in

the subspace methods literature. An algorithm to compute these predictions

and to obtain a suitable number of combinations is provided. The procedure

is illustrated by forecasting the German gross domestic product.
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1 Introduction

Since the seminal work of Ho and Kalman (1966) system identification has con-

centrated in modeling a data set using a state-space representation with no a

priori restrictions. From the 90s, system identification has been led by new tech-

niques known as subspace methods. These algorithms have a wide use in fields like

engineering and physics and have been recently adapted to the particular charac-

teristics of the economic and financial data, see, for instance, Bauer and Wagner

(2002); Bauer (2005); Garćıa-Hiernaux et al. (2009a,b).

In comparison with the common time series analysis, see Box and Jenkins

(1976) for the univariate case or Tiao and Tsay (1989) for multiple series, the

main advantages of these procedures are: a) the univariate and multivariate cases

are treated in the same way, b) they allow one to specify a general linear model

directly from the data, without a priori knowledge of the process structure, c)
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they are based on robust and computationally efficient algebraic tools and, conse-

quently, d) iterations are not required, avoiding convergence problems.

However, despite the extensive literature about the statistic properties of these

procedures and its increasing use with different purposes (Kapetanios, 2004; Kascha

and Mertens, 2009), the matter of forecasting with subspace methods still remains

quite unexplored. The scarce references, as Mossberg (2007), just use the state-

space model estimated with these techniques to extrapolate, but do not exploit

the subspace properties in order to improve the forecasts.

This paper explores the forecasting in- and out-of-sample properties of the sub-

space methods and suggests a procedure based on combining multiple forecasts,

obtained from setting a range of values for a specific parameter that is typically

fixed by the user in the subspace methods literature. The proposal is compared

against alternatives and tested with real data, finding good results in one-step-

ahead and mid-term out-of-sample forecasts.

The plan of the paper is as follows. Subspace identification techniques are

described in Section 2. A procedure that improves the in-sample forecasts obtained

through subspace methods is presented in Section 3. The usefulness of the proposal

for making high quality forecasts is illustrated in Section 4 with the German Gross

Domestic Product (GDP). Finally, some concluding remarks are given in Section

5.

2 Model set and subspace estimation

Consider a linear fixed-coefficients system that can be described by the State Space

(SS) model,

xt+1 = Φxt +Eψt (1a)

zt = Hxt +ψt (1b)
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where xt is a state n-vector, being n the true order of the system. In addition, zt

is an observable output m-vector, which is assumed to be zero-mean without loss

of generality, ψt is a noise m-vector (known as innovations), while Φ, E and H

are parametric matrices. Model (1a-1b) is called an “innovations model”, used as

it is simple and general, in the sense that any fixed-coefficients SS model can be

written in this specific form (see e.g., Casals et al., 1999, Theorem 1). Moreover,

some assumptions about the system and the noise must be established.

Assumptions A.1. Let ψt be a sequence of independent and identically distributed

random variable with E(ψt) = 0 and E(ψ′tψt) = Q, being Q a positive definite

matrix. A.2. Let (1a-1b) be a non-explosive system, that is all the eigenvalues of Φ

lie in or inside the unit circle, which fulfills the strictly minimum-phase condition,

i.e. all the eigenvalues of (Φ−EH) lie inside the unit circle.

Now we will show that the subspace methods can derive from the innovations

model. By substituting (1b) into (1a) in ψt and solving by recursion we have:

xt = (Φ−EH)tx0 +
t∑

j=1

(Φ−EH)t−jEzj−1 (2)

so that the states in time t depend on the initial state and past values of the

output. We will use this equation afterward.

On the other hand, by recursive substitution in (1a) and replacing the result

into the observation equation (1b), we get:

zt = HΦtx0 +H
t−1∑
j=0

ΦjEψt−j−1 +ψt (3)

which means that the endogenous variable, zt, depends on the initial state vector,

x0, and past and present innovations, ψt. Equation (3) can be written in matrix

form as,

Zp = OX0 + VΨp (4)
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where the subscript p is an integer that denotes the dimension of the row space of

Zp, see Bauer (2005) for a complete discussion about p. In the following, we will

define the matrices in equation (4):

1) Block-Hankel Matrices (BHM), which dimensions are determined by the

integers p and f , such that:

Zp =


z1 z2 . . . zT−p−f+1

z2 z3 . . . zT−p−f+2

...
...

...

zp zp+1 . . . zT−f

 ; Zf =


zp+1 zp+2 . . . zT−f+1

zp+2 zp+3 . . . zT−f+2

...
...

...

zp+f zp+f+1 . . . zT

 (5)

In (4), Ψp is as Zp but with ψt instead of zt. For simplicity, in the following we

will assume that the dimension of the past and future information sets is the same,

i.e., p = f = i.

2) The state sequence which is defined asX t = (xt xt+1 xt+2 . . . xt+T−2i).

Specially, we will use the past and future state sequences, denoted, respectively,

by Xp = X0 and Xf = X i.

3) The Extended Observability matrix, which is:

O =
(
H ′ (HΦ)′ (HΦ2)′ . . . (HΦi−1)′

)′
im×n

(6)

4) The lower block triangular Toeplitz matrix, defined as:

V =



Im 0 0 . . . 0

HE Im 0 . . . 0

HΦE HE Im . . . 0
...

...
...

...
...

HΦi−2E HΦi−3E HΦi−4E . . . Im


im

(7)

Given assumption A.2. and for large values of t, the first addend in equation
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(2) is negligible and Xf is to a close approximation representable as a linear

combination of the past of the output, MZp. Shifting time subscripts in (4) and

substituting Xf by MZp lead to,

Zf = OMZp + VΨf (8)

where Zf , Zp and Ψf are as in (5), and O and V , respectively, as in (6) and (7).

There are different algorithms within the subspace methods but equality (8) is

the common starting point to all of them. Here we use the Canonical Correlation

Analysis (CCA) algorithm, which is briefly described in the following steps:

1. Choose the integer i (or p and f).

2. Solve the reduced-rank weighted least square problem:

min
{Ô,M̂}

∥∥∥W 1

(
Zf − ÔM̂Zp

)
W 2

∥∥∥2

F
(9)

where ‖ · ‖F denotes de Frobenius norm. Note that the order, n, and the

weightings matrices, W 1 andW 2, have to be specified (see, Katayama, 2005,

for different weightings). Compute the states as X̂f = M̂ZpW 2.

3. Regress zt onto x̂t, t = i, ..., T − i, obtaining Ĥ and the residuals, ψ̂t, as in

equation (1b).

4. Regress x̂t+1 onto x̂t and ψ̂t, t = i, ..., T − i − 1, obtaining Φ̂ and Ê as in

equation (1a).

5. Check the minimum-phase condition (A.2). If A.2 does not hold, a refac-

torization is needed to ensure it (see, Hannan and Deistler, 1988, Theorem

1.3.3).

3 Forecasting by exploiting different values of i

It has been proved that for i ≥ i0, the estimates Θ̂ = {Φ̂, Ê, Ĥ} obtained by the

CCA algorithm are consistent, where i0 = int(dρ̂bic) which is the integer closer to
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the product of d and the optimal lag length for an autoregressive approximation

of zt, chosen by using the Schwarz (1978) criterion over 0 ≤ ρ ≤ (log T )a for

some constant 0 < a < ∞. In the stationary case, d > 1 is a sufficient condition

(Deistler et al., 1995) whereas d > 2 is required in the integrated case (Bauer,

2005). However, Θ̂i, which is the set of matrices estimated with a specific integer

i, differ one from another in finite samples. This fact presents two sensible choices

in order to improve the forecasts: a) choose the value of i in accordance with an

in-sample forecasting criterion, or b) combine several predictions generated from

different i.

The first idea is included in the MatLab System Identification Toolbox (Ljung,

1999) and consists of: a) selecting a range of possible values, b) estimate the corre-

sponding state space model, c) calculate for each model an information criterion,

and d) select the model which minimizes that criterion. However, the alternative

seems to be more sensible and promising. This is the main idea of the paper that

proposes to combine the predictions obtained from a range of possible values for i.

Firstly, it should be noted that whichever procedure you choose to predict, the

results about consistency restrict the lower bound of the range of possible values

for i to i0.

Now, consider the I − i0 + 1 estimated models:

x̂i
t+1 = Φ̂ix̂

i
t + Êiψt (10a)

ẑi
t = Ĥ ix̂

i
t +ψt (10b)

where i = i0, ..., I, being I deterministically chosen by the user. Clearly, ẑi
t are

highly correlated and, as a consequence of consistency, the correlations will increase

as the sample size grows. This suggests that the improvement of combining will

be more considerable in small than in large samples. Further, let zs
t be a vector

containing the in-sample predictions ẑi
t, i = i0, ..., I, but sorted in a particular
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way that will be explained later. Finally, consider a vector of weights such that

Π = [π0 π1 ... πI−i0+1]
′. From all of this, one can solve the ordinary least squares

problem:

min
{Π̂}

∥∥∥zt −
[
1 zs

t

]
· Π̂
∥∥∥2

F
(11)

getting, as a result, ẑ∗t = [1 zs
t ] · Π̂, which is the optimal linear prediction of zt

given the range of i (see, i.e., Granger and Ramanathan, 1984).

However, if we let the user choose I as bigger as she wants, the information

given by the set of explanatory variables will be extremely redundant due to the

high correlations among ẑi
t, i = i0, ..., I. In order to reduce the number of inputs

in regression (11), we suggest increasing the dimension of zs
t one by one and using

the AIC (Akaike, 1976) to select the best model. I will now motivate why zs
t

has a specific structure. Vector zs
t is organized such that the first component

is the ẑi
t which presents a lower correlation with the others, the second element

is the second less correlated and so on. In this way, the reduction of the sum-

squared-error of regression (11) will be, in principle, higher when adding the first

zs
t components than when adding the last ones, as, by construction, most of the

information brought by the last variables will already be in the model. In short,

the algorithm to compute the final out-of-sample forecasts may be described as

follows:

1. Find i0 as the integer closer to dρ̂bic and choose I.

2. Estimate Θ̂i for i = i0, ..., I and compute the corresponding in- and out-of-

sample forecasts.

3. Create zs
t with the in-sample forecasts obtained in step 2, sorted from that

which is less correlated (to the rest) to that which is more correlated.

4. Regress zt onto [1 zs
t ], I− i0 + 1 times, increasing zs

t by one component each

time and calculating the AIC in each regression. Keep the weights Π̂.

5. Compute the combined out-of-sample forecasts as ẑ∗t+f = [1 zs
t+f ]·Π̂, where f
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is the prediction horizon. The number of columns of zs
t+f will be determined

by minimizing AIC in the previous step.

It is straightforward to see that the proposal presents lower in-sample mean

squared error than any common subspace forecast with a fixed value of i in the

range (i0, I). However, although it could be expectable, this does not guarantee

more accurate out-of-sample prediction.

4 An empirical application

In this section we illustrate the methodology by modeling and forecasting the

growth rate of the German GDP, hereafter zt. Specifically, data used corresponds

to the quarterly German GDP in constant prices of year 2000. The sample period

goes from 1991:01 until 2008:03. The exercise is divided in two parts. Firstly, a

one-step-ahead forecast evaluation will be made over the period 2006:02 to 2008:03,

updating the models each time with the new data. Secondly, a mid-term predic-

tion analysis is presented by fitting the models for the period of 1991:01 to 2006:01

and forecasting 10 periods, from 2006:02 to 2008:03.

As a result of the autoregressive approximation of zt, ρ̂bic = 8 and i0 is fixed to

11, assuring the consistency of the estimates. As the sample size is not very large,

we decide to fix I = 20. Consequently, I − i0 + 1 = 10 models are estimated and

used in the prediction exercise. An alternative autoregressive of order 8 (AR(8))

is chosen in order to compare its forecasts with the proposals. Vector AR models

should be fair rivals as they present similar properties to subspace methods: 1)

speed and stability (no iterations are required) and 2) simplicity (both can be

easily automatised).

The forecasting errors are evaluated in terms of Root Mean Squared Error

(RMSE) and the predictive accuracy is tested with the Diebold and Mariano (1995)

test.

9



4.1 One-step-ahead forecast evaluation

Table 1 presents the RMSE, ranking and results of the Diebold and Mariano test of

the one-step-ahead out-of-sample prediction errors obtained from: a) the combina-

tion of the forecasts of the whole vector zs
t (called All combination), b) the sample

mean of the forecasts compute from zs
t (called Mean of all), c) the combination of

the forecasts proposed in Section 3 using the AIC to decrease the dimension of zs
t

(called AIC combination), d) the sample mean of the predictions compute from

this reduced zs
t (called Mean of AIC ), e) the usual subspace methods forecasts got

with i = 11, ..., 20, and f) the alternative AR(8) model.

[TABLE 1 AND FIGURE 1 SHOULD BE AROUND HERE]

The results show that both combination, either with the whole zs
t or with its

reduced form by AIC, clearly outperform the rest of models. The differences be-

tween the combined procedures are not quite significant (7% better in terms of

RMSE) in favour of the All combination. The Diebold and Mariano test suggests

that both forecasts are not statistically different at 10% of significance. This can

also be observed in Figure 1, where the combined predictions move very similarly,

which points out the good behaviour of the AIC combination. On the other hand,

the improvement with respect the rest of the (non-combined) subspace models is

very remarkable, as its RMSEs range from 1.9 to 79 times those of the combined

models. The Diebold and Mariano test considers all these predictions significantly

less precise than those got with the proposed models at 5%. The combined mod-

els also outperform the AR(8) in terms of RMSE and the pvalue related to the

predictive accuracy test also remains relatively small (.049 and .119 for the All

combination and the AIC combination, respectively).

4.2 Mid-term forecast evaluation

In this subsection, 10 out-of-sample forecasts are computed from 2006:02 to 2008:03.

The models are the same used before although this time no update is carried out.

10



Results are depicted in Table 2.

[TABLE 2 AND FIGURE 2 SHOULD BE AROUND HERE]

As in the previous analysis, models that combine several predictions are ranked

in the first positions, presenting almost identical performance. However, in this

case the gain of the combined models is not so substantial with respect to, for

instance, those estimated with i = 14 (see Figure 2) or i = 19. Here the enhance-

ment in terms of RMSE is ranged from 1.05 to 1.91. This result is not unexpected

as the combinations are constructed to minimize the one-step-ahead error. Even

so, the proposals clearly outperform, also from the Diebold and Mariano point of

view, several models such as those estimated with i = 11, 12, 17 and the AR(8).

5 Concluding remarks

A new procedure to forecast linear dynamical systems using subspace methods has

been put forward. It is based on combining multiple predictions obtained from set-

ting a range of values for a parameter that is commonly fixed by the user in the

literature of subspace methods. An algorithm which provides a suitable number of

combinations is also proposed. Finally, an empirical application using the German

GDP shows that the procedures outperform the out-of-sample forecasts got with

subspace methods (as they are so far computed) and with an alternative autore-

gressive model in one-step-ahead and mid-term.

These algorithms are implemented in a MatLab toolbox for time series modeling

called (This information has been deliberately omitted in the blind version). The

source code of this toolbox is freely provided under the terms of the GNU General

Public License and can be downloaded at (This information has been deliberately

omitted in the blind version).
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Tables and Figures

Table 1: Evaluation of the one-step-ahead prediction errors?

RMSE Diebold and Mariano Test
Model Value Relative Rk Rk(1) vs Rk(j) Rk(2) vs Rk(j)

Statistic Pvalue Statistic Pvalue

All combination 0.789 100 1 - - 0.984 0.838
Mean of all 6.960 882 13 -3.333 0.000 -3.284 0.001

AIC combination 0.847 107 2 -0.984 0.162 - -
Mean of AIC 9.855 1249 14 -3.554 0.000 -3.525 0.000

i = 11 62.660 7944 15 -3.499 0.000 -3.499 0.000
i = 12 3.393 430 12 -2.368 0.009 -2.333 0.010
i = 13 2.407 305 7 -1.999 0.023 -1.918 0.028
i = 14 1.745 221 6 -2.805 0.003 -2.664 0.004
i = 15 2.442 310 8 -2.860 0.002 -2.659 0.004
i = 16 2.666 338 9 -2.842 0.002 -2.688 0.004
i = 17 1.677 213 5 -5.102 0.000 -4.383 0.000
i = 18 1.504 191 4 -2.374 0.009 -2.098 0.018
i = 19 2.925 371 10 -2.094 0.018 -2.018 0.022
i = 20 3.245 411 11 -2.080 0.019 -2.019 0.022
AR(8) 0.945 120 3 -1.656 0.049 -1.178 0.119

? Prediction errors are multiplied by 100 in order to facilitate the comparison. Diebold and
Mariano test computed with a squared error loss. Hypothesis defined as H0 : E[(ε1t+1|t)

2] ≥
E[(εjt+1|t)

2] and H1 : E[(ε1t+1|t)
2] < E[(εjt+1|t)

2], where εjt+1|t is the one-step-ahead forecast error
obtained from the model ranked in position j.
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Figure 1: Best one-step-ahead prediction errors. It includes those obtained from
the combined models (All and AIC), i = 18 and AR(8) model.

Table 2: Evaluation of the horizon 1-to-10 prediction errors?

RMSE Diebold and Mariano Test
Model Value Relative Rk Rk(1) vs Rk(j) Rk(2) vs Rk(j)

Statistic Pvalue Statistic Pvalue

All combination 0.819 100 1 - - 0.088 0.535
Mean of all 0.876 107 4 -1.155 0.124 -1.083 0.139

AIC combination 0.829 101 2 -0.088 0.465 - -
Mean of AIC 0.914 112 6 -0.814 0.208 -3.343 0.000

i = 11 1.568 191 15 -2.691 0.004 -2.791 0.003
i = 12 1.081 132 13 -2.269 0.012 -1.408 0.080
i = 13 1.053 128 12 -0.960 0.169 -1.040 0.149
i = 14 0.863 105 3 -0.187 0.426 -0.252 0.400
i = 15 1.046 128 10 -0.954 0.170 -0.975 0.165
i = 16 0.948 116 7 -0.915 0.180 -0.621 0.267
i = 17 1.047 128 11 -1.475 0.070 -1.377 0.084
i = 18 0.990 121 9 -1.260 0.104 -0.840 0.200
i = 19 0.888 108 5 -0.395 0.346 -0.647 0.259
i = 20 0.964 118 8 -1.709 0.044 -0.932 0.176
AR(8) 1.375 168 14 -1.559 0.059 -1.553 0.060

? Prediction errors are multiplied by 100 in order to facilitate the comparison. Diebold and
Mariano test computed with a squared error loss. Hypothesis defined as H0 : E[(ε1t+k|t)

2] ≥
E[(εjt+k|t)

2] and H1 : E[(ε1t+k|t)
2] < E[(εjt+k|t)

2], where εjt+k|t is the one-step-ahead forecast error
obtained from the model ranked in position j and k = 1, 2, ..., 10.
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Figure 2: Best horizon 1-to-10 prediction errors (combined models and i = 14)
compared with those obtained from the AR(8) model.
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