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Abstract

We propose a simple procedure for evaluating the marginal likelihood in uni-
variate Structural Time Series (STS) models. For this we exploit the statistical
properties of STS models and the results in Dickey (1968) to obtain the likeli-
hood function marginally to the variance parameters. This strategy applies under
normal-inverted gamma-2 prior distributions for the structural shocks and associ-
ated variances. For trend plus noise models such as the local level and the local
linear trend, it yields the marginal likelihood by simple or double integration over
the (0,1)-support. For trend plus cycle models, we show that marginalizing out
the variance parameters greatly improves the accuracy of the Laplace method. We
apply this methodology to the analysis of US and euro area NAIRU.
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1 Introduction

In this paper we propose a simple procedure for evaluating the marginal likelihood in

univariate Structural Time Series (STS) models. For this we exploit the statistical

properties of STS models and the results in Dickey (1968) to obtain the likelihood func-

tion marginally to the variance parameters. Our strategy applies under normal-inverted

gamma-2 prior distributions for the structural shocks and associated variances, an as-

sumption that is quite common in the time series literature (see Fruhwirth-Schnatter,

1994; Chib and Greenberg, 1994). For trend plus noise models such as the local level and

the local linear trend, it yields the marginal likelihood by simple or double integration

over the (0,1)-support, without any MCMC sampling. For trend plus cycle models, we

show that marginalizing out the variance parameters greatly improves the accuracy of

the Laplace method.

Since the first studies in the 1970’s (see Pagan, 1975), STS models have become quite

widespread in empirical macroeconomics. Researchers typically resort to structural com-

ponents for describing potential output (Clark, 1987), technological growth (Hansen,

1997), reservation wage (Planas, Roeger and Rossi, 2007), permanent income (Hall and

Mishkin, 1982) and trend inflation (Cogley and Sargent, 2005; Stock and Watson, 2007).

Not always however the prior information is sufficient for isolating a particular model,

and in some cases discriminating between different specifications can be a difficult task.

For instance, inferring about a stationary against an integrated process for the trend

slope is not immediate. Moreover in the STS framework classical hypothesis testing

does not apply straightforwardly because the null hypothesis often lies on the boundary

of the parameter space, like for testing for a deterministic component (see Harvey, 2001).

Also the null and alternative hypothesis may not be nested. Through the marginal likeli-

hood, the Bayesian framework offer a conceptually simple answer to the model selection

problem (see Kass and Raftery, 1995), with the important advantage of involving exact

finite sample distributions instead of asymptotic assumptions. The drawback, however,

is that evaluating the marginal likelihood is cumbersome: the number of parameters

to be integrated out is usually relevant and the likelihood function is typically highly

concentrated with respect to the prior distribution (see Fruhwirth-Schnatter, 2005).

The approach we propose here takes advantage of the properties of STS models to

simplify the marginal likelihood computation. For trend plus noise decompositions, the

result is a simple tool for the selection of trend models, as we shall see in Section 2.
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For trend plus cycle models, we suggest in Section 3 to apply the Laplace method on

the posterior density defined marginally to variance parameters. We show through a

simulation study in Section 4 that our procedure greatly improves over the traditional

Laplace marginal likelihood estimates (Tierney and Kadane, 1986), and that it is com-

parable with bridge sampling (Meng and Wong, 1996) although it does not involve any

importance sampling. Finally, in Section 5 we apply this methodology to the analysis

of the NAIRU in US and in the euro area. We focus on the NAIRU as the European

Commission uses it for estimating the potential growth of Member State economies (see

Denis, Grenouilleau, Mc Morrow and Roeger, 2006). There have been some debate

about the US NAIRU characteristics (see for instance Staiger, Stock and Watson, 1997;

Stiglitz, 1997; Ball and Mankiw, 2002). Our methodology enables us to discriminate

between twenty seven models for the US and the euro area NAIRU, and to end up with

recommendation for practitioners. Section 6 concludes.
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2 The marginal likelihood of trend plus noise STS

models with IG-variance parameters

2.1 Background

The results we present in this Section are based on the following Theorem:

Theorem 2 (Dickey, 1968, p.1623) Let τ1,...,τK have independent standard qk-dimensional

multivariate t distributions with ν1,...,νK degrees of freedom (centers 0, matrices ν−1
k Iqk

).

Then the random r-vector δ,

δ =
∑

Bkτk

has the representation

δ = (
∑

u−1
k νkBkB

′
k)

1/2z

where the uk are independently chi-squared distributed with νk degrees of freedom, and z

is an independent r-dimensional standard normal vector. Consequently, δ has the further

representation

δ = (
∑

v−1
k (νk/ν)BkB

′
k)

1/2τ

where, with ν =
∑

νk, the vk = uk/
∑

uk, v1,...,vK are jointly Dirichlet distributed:

vk > 0,
∑

vk = 1, with density Γ(ν/2)
∏

k v
νk/2−1
k /Γ(νk/2) in v1,...,vK−1, and τ has an r-

dimensional standard multivariate t distribution with ν degrees of freedom. If the matrix
∑

BkB
′
k is non singular, the distribution of δ is non degenerate with the density function

f(δ) = Γ(
ν + r

2
)π−r/2/

∏

k

Γ(νk/2)×
∫

σ

∏

k

v
νk/2−1
k | ∑

v−1
k νkBkB

′
k) |−1/2 [1 + δ′(

∑
v−1

k νkBkB
′
k)
−1 δ]−

ν+r
2 dv1 · · · dvK−1

the range σ of the vk as above.

Dickey’s Theorem 2 expresses the density of a linear combination of independently dis-

tributed multivariate t vectors as an integral of dimension one less than the number of

summands. Assuming standardized t-distributions for the τk vectors, the density of δ is

obtained as a function of the degrees of freedom νk and of the products νkBkB
′
k. As we

turn to see, this result greatly simplifies the computation of the marginal likelihood of

STS models with inverted gamma-2 (IG) priors on the variance parameters.
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2.2 First-order random walk trends

We first consider the case of a time series yt that is made up of a random walk pt plus a

noise ct like in:

yt = pt + ct

∆pt = apt apt|Vp ∼ N(0, Vp)

ct = act act|Vc ∼ N(0, Vc) (2.1)

where ∆ ≡ 1− L and L is the lag operator. Model (2.1) is also known as the local level

model (see Durbin and Koopman, 2001, Chap.2). Given their respective variance, the

structural shocks act and apt are independent and Normally distributed. The variance

parameters Vc and Vp are assumed to be random variables with IG prior distribution:

V` ∼ IG(s`0, ν`0) ` = c, p. (2.2)

For easing exposition, we shall denote xT
k ≡ (xk, · · · , xT )′ and in short x ≡ xT

1 . IG-priors

for variance parameters have been intensively used in time series analysis (see for instance

Chib, 1993; Chib and Greenberg, 1994). This assumption lets the corresponding shocks

marginally distributed according to the Student density:

f(a`) = t(0, s`0, IT , ν`0) ` = c, p

where IT is the T × T identity matrix. The structural shocks can be expressed as

a` = (s`0/ν`0)
1/2τ`, where τ` is the random variable with standard t-distribution:

f(τ`) = t(0, 1, IT /ν`0, ν`0) ` = c, p (2.3)

Let us define D1 the T −1×T first-difference matrix, i.e. D1(i, i) = −1, D1(i, i+1) = 1,

and 0 elsewhere. The stationary transformation of the observed process y verifies:

D1y = (sp0/νp0)
1/2τp + (sc0/νc0)

1/2D1τc

= Bpτp + Bcτc

The local level model is thus a particular case of Theorem 2 with Bp = (sp0/νp0)
1/2IT−1

and Bc = (sc0/νc0)
1/2D1. We get:
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Lemma 1 The marginal likelihood of the local level model (2.1) with IG-prior (2.2) on

the variance parameters is such that:

fD(y) = π−
T−1

2 Γ(
ν

2
)Γ(

νp0

2
)−1Γ(

νc0

2
)−1

×
∫ 1

0
uνp0/2−1(1− u)νc0/2−1 | sp0

u
Mp +

sc0

1− u
Mc |−1/2

× [1 + (D1y − µy)
′(

sp0

u
Mp +

sc0

1− u
Mc)

−1(D1y − µy)]
− ν

2 du (2.4)

with ν = νp0 + νc0 + T − 1, Mp = IT−1, Mc = D1D
′
1, and µy = 0.

Lemma 1 reduces the problem of evaluating the marginal likelihood of T observations

in the local level model to a scalar integration over the support (0, 1), the bounds being

excluded. Notice that for such a model with only variance parameters, evaluating the

marginal likelihood does not require any MCMC simulation. Some numerical tools can

however help. In particular, the diagonalization Mc = PcΛcP
′
c, where Pc and Λc denote

the eigenvectors and eigenvalues matrices of dimension T − 1, yields:

(
sp0

u
Mp +

sc0

1− u
Mc)

−1 = Pc{sp0

u
IT−1 +

sc0

1− u
Λc}−1P ′

c (2.5)

since for the random walk Mp = IT−1. Expression (2.5) is advantageous as the central

term is a diagonal matrix and as the eigenvectors do not depend on u. Since | Pc |= 1,

it also simplifies the computation of the determinant.

In empirical macroeconomics, a constant slope is often added to the trend (see for

instance Stock and Watson, 1988):

∆pt = µp + apt (2.6)

Considering the standard assumption that µp, Vp are jointly NIG-distributed like in

f(µp|Vp) = N(µp0, Vpvµ0), (2.7)

the distribution of the trend growth marginally to the parameters µp and Vp becomes:

f(D1p) = t(µp0, sp0, (IT−1 + 1T−1vµ0)
−1, νp0)
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where 1k is the k × k matrix of ones (see Bauwens et al., 1999, p.300, 304). In terms

of the standardized t-variables defined in (2.3), we have now τp = (sp0/νp0)
−1/2(IT−1 +

1T−1vµ0)
−1/2ap. The stationary transformation of the observed series verifies:

D1y = µp0 + (sp0/νp0)
1/2(IT−1 + 1T−1vµ0)

1/2τp + (sc0/νc0)
1/2D1τc

We can thus state:

Lemma 2 The marginal likelihood of the random walk with drift plus noise model with

NIG prior distributions (2.2) and (2.7) is like in Lemma 1, equation (2.4), with Mp =

IT−1 + 1T−1vµ0, Mc = D1D
′
1, and µy = µp0.

Because Mp has lost the identity structure, the simple diagonalisation (2.5) cannot be

used anymore for speeding up the integration. One must instead resort to the simulta-

neous diagonalization such that Q′MpQ = IT−1 and Q′McQ = Λc, where Λc is a diagonal

matrix (see Magnus and Neudecker, 1988, p.22). This yields:

(
sp0

u
Mp +

sc0

1− u
Mc)

−1 = Q{sp0

u
IT−1 +

sc0

1− u
Λc}−1Q′

The matrix Q is obtained as Q = PpΛ
−1/2
p Pc, where Pp and Λp are the eigenvectors

and eigenvalues matrices related to Mp, and Pc is the eigenvector matrix of the product

(PpΛ
−1/2
p )′McPpΛ

−1/2
p .

Before turning to trend models with stochastic slope, we briefly discuss a consequence

of the IG-variance priors:

Corollary 1 Marginally to the variance parameters, the posterior distribution of the in-

crements D1p is the poly-t 2-0 density:

f(D1p|y) ∝ t(0, sp0, IT−1, νp0)× t(D1y, sc0, {D1D
′
1}−1, νc0)

for the local level model (2.1) and

f(D1p|y) ∝ t(µp0, {sp0, IT−1 + 1T−1vµ0}−1, νp0)× t(D1y, sc0, {D1D
′
1}−1, νc0)

for the random walk with drift plus noise model (2.6)-(2.7).

In the two equations above, the first t-kernel corresponds to the prior distribution of

D1p = µy + ap while the second term is the prior distribution of D1c evaluated at

7



D1c = D1y −D1p. Trivially, in the two-component model f(D1c|y) = f(D1p|y). Given

Corollary 1, the complete posterior distribution of the latent variables c and p can be

easily retrieved. By convolution, it is proportional to the product of the marginal prior

distributions of c and p evaluated at p+ c = y, i.e. f(c|y) ∝ f(c)× f(D1p = D1y−D1c).

Since f(c|y) = f(c1|D1c, y) × f(D1c|y), it can be seen that given the increments D1c,

the data do not bring further information about the starting point c1, i.e. f(c1|D1c, y) =

f(c1|D1c). Given the t marginal prior for c, the term f(c1|D1c) can be obtained as a

Student density. Multiplying it by the distribution in Corollary 1 yields the kernel of

the posterior distribution of the unobserved components.

This makes possible the use of Richard and Tompa’s (1980) results to draw posterior

samples of the unobservables marginally to the variance parameters in two steps: first

the increments, for instance following Appendix B.4.6 in Bauwens et al. (1999, p.321),

and then the starting point given the increments. Program simplicity would be the main

appeal: neither diffuse Kalman Filter initialization (see deJong, 1991) nor smoothing

algorithm is needed. The cost however would be a substantial computing time delay

due to the resorting to matrix computations. If the sampling of the state variable is

inserted into a MCMC scheme, for instance when Corollary 1 holds conditionally on any

other random quantity, such a delay can become prohibitive. For these cases, a recursive

scheme such as the Carter and Kohn (1994) state-sampler remains preferable. At least

so long a procedure for factorizing poly-t 2-0 densities is not available.

2.3 Second-order random walk trends

For some macroeconomic variables like unemployment, the hypothesis of constant growth

is unrealistic. Letting the slope be an integrated process gives more flexibility. The trend

equation becomes:

∆pt = µt−1 + apt apt|Vp ∼ N(0, Vp)

∆µt = aµt aµt|Vµ ∼ N(0, Vµ) (2.8)

Model (2.8) is known as the local linear trend (see Harvey, 2006). If Vp = 0, it reduces

to the I(2) plus noise process that is implicitly considered in Hodrick-Prescott (HP)

filtering (see Hodrick and Prescott, 1997, and Harvey and Jaeger, 1993). Equation (2.8)

introduces one more latent variable, µt with associated variance parameter Vµ for which
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we assume the IG-prior distribution:

Vµ ∼ IG(sµ0, νµ0) (2.9)

Like previously, the IG-prior hypothesis implies that marginally to the variance param-

eters, the slope’s shocks aµ re-scaled as τµ = aµ(sµ0/νµ0)
−1/2 follow a standard t-density.

Let D2 denote the T − 2× T second-difference matrix. In terms of the τ -variables, the

measurement equation can be written as:

D2y = (sµ0/νµ0)
1/2τµ + (sp0/νp0)

1/2D1τp + (sc0/νc0)
1/2D2τc

Clearly, for such I(2) models the D1-matrix dimension is lessened to T − 2× T − 1. We

have now:

Lemma 3 The marginal likelihood of the local linear trend (2.1)-(2.8) with IG-priors (2.2)

and (2.9) verifies:

fD(y) = π−
T−2

2 Γ(
ν

2
)Γ(

νµ0

2
)−1Γ(

νp0

2
)−1Γ(

νc0

2
)−1

×
∫ 1

0

∫ 1

0
u

νµ0/2−1
1 u

νp0/2−1
2 (1− u1 − u2)

νc0/2−1

× | sµ0

u1

Mµ +
sp0

u2

Mp +
sc0

1− u1 − u2

Mc |−1/2

× [1 + D2y
′(

sµ0

u1

Mµ +
sp0

u2

Mp +
sc0

1− u1 − u2

Mc)
−1D2y]−

ν
2 du1du2

(2.10)

with ν = νµ0 + νp0 + νc0 + T − 2, Mµ = IT−2, Mp = D1D
′
1, and Mc = D2D

′
2.

Because simultaneous diagonalisations do not extend to the three-matrix case, the double-

integration over (0, 1) is computationally more demanding than for first-order random

walk models. The marginal likelihood for the I(2) plus noise model is obtained by impos-

ing Mp = 0T−2, the integration reducing to one dimension. Lemma 3 can be generalized

to the m-th order trend plus noise models discussed by Harvey and Trimbur (2003), but

we do not develop this point here as these models have been proposed as tools for signal

extraction rather than for fitting data.
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In the second-order random walk plus noise model, the posterior distribution of the

unobservable components marginally to the variance parameters remains a poly-t 2-0

density only when conditioning on one unobservable. Their joint posterior distribution

is of unknown form: Corollary 1 does not extend straightforwardly. It is one reason

why we prefer to use Dickey’s results instead of Richard and Tompa (1980)’s work about

poly-t densities. We now turn to STS models with autoregressive dynamics.

3 Dickey-Laplace marginal likelihood for STS mod-

els with autoregressive dynamics and IG-variance

parameters

When the structural processes contain some autoregressive dynamics, Lemmas 1-3 give

the marginal likelihood only conditionally on some parameters. For instance, the damped

trend model assumes a stationary 0-mean autoregressive slope such as (see Harvey, 1989,

p.46):

µt = φµµt−1 + aµt

Let Σµ denote the variance-covariance matrix of the slope up to Vµ, i.e. Σµ = V (µT−1
1 )/Vµ.

The distribution of µ given φµ marginally to Vµ is a Student density with precision matrix

Σ−1
µ . We have in this case:

Lemma 4 For the damped trend plus noise model with IG-variance priors (2.2) and (2.9),

the marginal likelihood of y conditional on φµ is like in Lemma 3, equation (2.10), with

Mp = IT−1, Mc = D1D
′
1, Mµ = Σµ, and using D1y instead of D2y.

More often however the dynamic is introduced in the short-term component. Indeed

many macroeconomic series display recurrent short-term movements, usually in rela-

tionship with the business cycle, and for such series the STS model must complement

the long-term trend with a cyclical component. The regularity of the cyclical fluctuations

can be reproduced using an AR(2) process with complex roots parameterized in terms

of amplitude A and periodicity Per as in:

(1− 2A cos
2π

Per
L + A2L2)ct = act act|Vc ∼ N(0, Vc) (3.1)
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This specification is closely related to the stochastic cycle discussed in Harvey (1989,

p.46). The amplitude-periodicity parameterization is appealing as it suits well the prior

information available about the business cycle (see Planas, Rossi and Fiorentini, 2007).

Here we can let undefined the prior distribution of the polar coordinates, only the dis-

tribution of Vc needs to be specified; we keep the assumption (2.2). Let Σc denote the

variance-covariance matrix of the cycle up to Vc, i.e. Σc = V (c)/Vc. Its inverse gives

the precision matrix of the t-marginal distribution of c given A and Per. The following

lemma extends the previous results to models with short-term dynamics.

Lemma 5 For STS models such as first and second-order random walk trends plus AR(2)-

cycle with IG-variance priors, the marginal likelihood of y given the polar coordinates A

and Per is like in Lemmas 1-3 with either Mc = D1ΣcD
′
1 or Mc = D2ΣcD

′
2 according to

the model integration order. For the damped trend plus AR(2)-cycle model, the marginal

likelihood of y given A, Per and φµ is like in Lemma 4 with Mc = D1ΣcD
′
1.

We thus obtain the marginal likelihood for trend plus cycle decompositions by simple

integration over (0, 1), conditionally on the autoregressive parameters, say Λ = (A,Per)

or (A,Per, φµ). For integrating Λ out, we suggest to adapt the Laplace method (see

Tierney and Kadane, 1986). This method has been used in the STS context for instance

by Harvey et al. (2007). It solves the marginal likelihood integral in the neighborhood of

the posterior mode using a normal estimates of the posterior density: the more precise

the normal approximation around the mode, the better the marginal likelihood evalu-

ation. The strategy we put forward here aims at improving the normal approximation

by integrating out the variance parameters using Lemmas 1-5. An improvement is ex-

pected because variance parameters are typically the main responsible for the posteriors’

departure from normality (see for instance Figure 2 in Harvey et al., 2007). Of course,

given the asymptotics at work, the smaller the sample size the larger should be the gain

in accuracy compared to standard Laplace applications.

A requirement is that posterior samples of model parameters are available. They can

be obtained following the MCMC schemes proposed for instance in Harvey et al. (2007)

or in Planas et al. (2007). Let Λ̃ denote the posterior mode of the parameters Λ and let

Σ(Λ̃) represent minus the inverted Hessian matrix of the logarithm of the non-normalized

marginal posterior fD(y|Λ)f(Λ) evaluated at Λ̃:
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Σ(Λ̃) = −[
∂2 log{fD(y|Λ)f(Λ)}

∂Λ′∂Λ
|θ=Λ̃]−1 (3.2)

For normal posteriors, (3.2) coincides with the parameters variance-covariance matrix.

The second-order expansion of the non-normalized log-posterior around its mode is such

that:

log {fD(y|Λ)f(Λ)} ' log {fD(y|Λ̃)f(Λ̃)} − 1

2
(Λ− Λ̃)Σ(Λ̃)−1(Λ− Λ̃)′

The last term above takes the form of the kernel of a normal distribution with mean Λ̃

and variance-covariance matrix Σ(Λ̃). Exponentiating and integrating out Λ yields:

fDL(y) = (2π)d/2|Σ(Λ̃)|1/2fD(y|Λ̃)f(Λ̃) (3.3)

where d is the dimension of Λ. We shall refer to equation (3.3) as the Dickey-Laplace

marginal likelihood estimates. In (3.3), the term f(Λ̃) assigns a prior weight to the

posterior mode while fD(y|Λ̃) is the model likelihood marginally to the IG-variance

parameters as given by Lemmas 1-5.

4 Comparison with bridge sampling

We evaluate the Dickey (D), Laplace (LP), and Dickey-Laplace (D-LP) marginal likeli-

hoods against the Meng-Wong (MW, 1996) estimates in a simulation exercise. During

these last two decades, econometricians have often resorted to importance sampling for

computing marginal likelihoods (see Kloek and Van Dijck, 1978; Geweke, 1989). MW’s

technique is an extension that re-weights both the importance function and the poste-

rior density through a bridge function. Given that a consensus seems to be emerging

about the potential superiority of MW’s technique over the other estimators available,

we adopt here this method as benchmark (see Meng and Schilling, 1996; diCiccio et al.,

1997; and Fruhwirth-Schnatter, 2004).

Let S and Sq denote the support of the parameter posterior distribution and of an

importance function, say q(θ). Let also h(θ) represent a function defined over S
⋂

Sq.

The MW marginal likelihood estimate is obtained from (see also Gelman and Wong,

1998):

f(y) =

∫
Sq

h(θ)
q(θ)

dq(θ)
∫
S

h(θ)
f(y|θ)f(θ)

df(θ|y)
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Equivalent formulations are sometimes given in terms of a function γ(θ) such that

γ(θ)q(θ)f(θ|y) = h(θ) (see Fruhwirth-Schnatter, 2004). The bridge function h(θ) reduces

the estimation error when located at an intermediate position between the importance

function and the parameter posterior distribution. MW propose as optimal choice a

recursive procedure based on:

h(θ) ∝ q(θ)f(θ|y)

nqq(θ) + nyf(θ|y)

where the constants nq and ny refer to the number of draws from the importance function

and from the posterior density, respectively. The recursions are introduced through

the term f(θ|y) that involves a preliminary marginal likelihood estimate. We initialize

the algorithm using the Laplace approximation and then iterate for ten rounds; no

further sampling is needed for iterating. The MW estimator can also be built around

likelihood functions marginal to the variance coefficients, i.e. using fD(y|Λ) in place of

f(y|θ). Because Dickey’s integral would need to be evaluated for every sample out of

the importance function, we discard this possibility for its computational cost.

We simulate three series of respective length T = 50, 100, 250 from a random walk

with drift plus AR(2) cycle like in (2.6)-(3.1). The coefficients are set to µp = .1,

A = .8, Per = 10, Vp = .01 and Vc = .05. The marginal likelihood of the simulated

series is estimated using the LP, D-LP and MW methods for eight models obtained as

combinations of four trend models, i.e. I(2), integrated random walk (irw), random

walk plus drift (rw), and damped trend (dt), with two models for the cycle, i.e. the

white noise (wn) and the autoregressive model (ar2) in (3.1). The prior distributions

are omitted for the sake of space. For each model, we record two thousand samples

from the parameters posterior distribution out of two hundred thousands simulations

using the Gibbs sampling scheme detailed in Planas et al. (2007), after a burn-in of ten

thousand iterations. The sparse recording serves at lowering correlations. This MCMC

output is then used to compute the marginal likelihoods, and the whole computations

are repeated twenty times in order to get numerical averages and standard deviations.

Lemmas 1-5 integrals are calculated over grids of one thousand points in dimension one,

and over squares of four hundred points in each side in dimension two; their standard

deviation is neglected as of irrelevant size. Notice that when the STS model includes some

autoregressive dynamics, the normalizing constants of the full conditional distributions

are not entirely known, so Chib (1995)’s marginal likelihood estimator does not apply.
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Table 1 displays the results. The average marginal likelihoods are reported with a

minus sign and the numerical standard deviations lie between brackets. The models

are ranked in increasing number of parameters, from the I(2) plus noise model with 2

parameters to the damped trend plus AR(2) cycle with 6 parameters. For models with

only variance coefficients, Dickey and MW estimates are in close agreement: the differ-

ences are of the three-digit order, whatever the sample size. When dynamic parameters

are introduced, the deviations get to the one-digit order. The error in the LP estimates

can instead reach a unit, especially in short sample. As can be seen, marginalizing out

the variance parameters always improves the approximation. For the models and sam-

ple sizes considered, the improvement is such as to make the D-LP estimate almost as

accurate as the MW one. This result is interesting because no further sampling from an

importance function is needed with the D-LP approach.

All marginal likelihood estimates point to the random walk with drift plus AR(2) cycle

as the most adequate model. Mispecifying the short-term dynamics implies quite a large

drop in the marginal likelihood. It could be argued that the Laplace estimator remains

useful for model discrimination in spite of the approximation errors, but such a conclusion

depends on the discrepancies between the alternatives considered. We shall see in the

next Section that discriminating between models with comparable properties can become

difficult with this estimator. Moreover, when the model misses some important pattern

such as the short-term dynamic, the mispecification can yield posterior distributions with

bi-modal characteristics. In such cases the LP marginal likelihood is unreliable. For this

experiment we contained this problem by carefully tuning the prior distributions and, in

a few cases, by trimming the output.
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Table 1 Minus average log marginal likelihood

Trend Cycle n = 25
MW LP D-LP

i2 wn 23.772 [ .015 ] 23.143 [ .092 ] 23.765 [ — ]
irw wn 23.200 [ .022 ] 20.925 [ .101 ] 23.202 [ — ]
rw wn 21.378 [ .021 ] 19.510 [ .169 ] 21.378 [ — ]
dt wn 21.368 [ .023 ] 19.484 [ .123 ] 21.504 [ .088 ]
i2 ar2 11.012 [ .025 ] 9.693 [ .106 ] 10.286 [ .084 ]
irw ar2 11.230 [ .027 ] 9.113 [ .138 ] 10.532 [ .084 ]
rw ar2 9.075 [ .026 ] 7.406 [ .179 ] 8.383 [ .084 ]
dt ar2 9.700 [ .028 ] 7.915 [ .115 ] 9.170 [ .090 ]

n = 100
MW LP D-LP

i2 wn 77.607 [ .011 ] 77.512 [ .079 ] 77.606 [ — ]
irw wn 68.518 [ .014 ] 68.009 [ .298 ] 68.518 [ — ]
rw wn 64.946 [ .011 ] 64.840 [ .058 ] 64.946 [ — ]
dt wn 66.744 [ .080 ] 64.191 [ .311 ] 66.930 [ .140 ]
i2 ar2 21.893 [ .016 ] 21.428 [ .116 ] 21.707 [ .080 ]
irw ar2 21.702 [ .021 ] 20.872 [ .090 ] 21.551 [ .090 ]
rw ar2 15.627 [ .021 ] 14.928 [ .148 ] 15.492 [ .076 ]
dt ar2 24.612 [ .021 ] 23.270 [ .176 ] 24.230 [ .132 ]

n = 250
MW LP D-LP

i2 wn 141.749 [ .009 ] 141.763 [ .082 ] 141.746 [ — ]
irw wn 124.670 [ .013 ] 124.444 [ .077 ] 124.697 [ — ]
rw wn 114.732 [ .011 ] 114.751 [ .109 ] 114.730 [ — ]
dt wn 114.727 [ .018 ] 114.348 [ .119 ] 114.717 [ .034 ]
i2 ar2 54.653 [ .015 ] 54.345 [ .131 ] 54.468 [ .080 ]
irw ar2 54.817 [ .018 ] 54.192 [ .158 ] 54.720 [ .125 ]
rw ar2 37.354 [ .016 ] 36.860 [ .100 ] 37.251 [ .084 ]
dt ar2 57.289 [ .019 ] 56.439 [ .174 ] 57.065 [ .091 ]

Notes: MW Meng-Wong, LP Laplace, D-LP Dickey-Laplace. Models: rw random walk, irw integrated

rw, i2 I(2), dt damped trend, wn white noise. Standard deviations between brackets.
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5 Application to the euro area and US NAIRUs

We apply this methodology to the analysis of the NAIRU in the euro area and in the US.

The NAIRU is of particular interest because it is related to the imperfect equilibrium

of the labor market. The European Commission uses it for evaluating the potential

growth of Member States and for the cyclical adjustment of their budget balances, in

application of the Stability and Growth Pact (see Denis, Grenouilleau, Mc Morrow and

Roeger, 2006). Central Banks also scrutinize the NAIRU but for assessing the inflation

pressures, following Phillips curve theory (see for instance Stiglitz, 1997, and Ball and

Mankiw, 2004).

Characterizing the NAIRU is however difficult, mainly because of its unobserved and

changing nature. Staiger, Stock and Watson (1997) underlined the lack of precision

of estimates obtained with standard specifications. Also, although its changing nature

is now well-accepted, not much is known about its actual variability. For instance,

the widely-used HP filter requires a prior hypothesis about the signal to noise ratio,

but this hypothesis is rarely confronted to the data. Here we take advantage of the

Bayesian framework to address the following questions: which STS models best describe

the euro area and the US NAIRUs? How smooth are they? And how precise can be

their univariate STS estimates?

The euro area unemployment series has been collected from AMECO, the national

accounts database of the EC Directorate General Economic and Financial Affairs, avail-

able at europa.eu.int/comm/economy finance following the link Indicators. The US

data have been downloaded from the Bureau of Labor Statistics web-site www.bls.gov.

Both series are annual averages over 1960-2007, the last figure being preliminary. Fol-

lowing standard practice in the NAIRU literature, we describe these two series as made

up of a cycle plus a trend. The cyclical dynamics are represented with an AR(2) process

parameterized as in (3.1), with amplitude and periodicity parameters assumed to be

Beta-distributed. The prior distribution of the former is tuned so as to yield an average

amplitude of 0.8 for the euro-area and of 0.7 for the US, in agreement with empirical

business cycle studies (see for instance Kuttner, 1994, Gerlach and Smets, 1999). The

standard deviations are set to one-tenth of the mean so as to not impose too much

precision. Namely, we use a Beta(19.2, 4.8) for the euro-area cycle amplitude and a

Beta(29.3, 12.6) for the US one. The periodicity parameter is also assumed to be Beta-

distributed, with support translated to [2, 48] given the sample length. Still according
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to business cycle studies, we tune the periodicity prior distribution so as to get cycles

of mean length 9 years for the euro-area and 8 years for the US, with standard devi-

ations of 2 and 1.5 time periods, respectively. This is obtained with the distributions

(Per − 2)/(48 − 2) ∼ Beta(10.2, 57) for the euro-area and Beta(13.8, 91.9) for the US.

Finally, the IG-distribution for the short-term shocks variance has been set so as to add

a mean deviation of 0.5 for euro and 0.7 for US, with the distributions IG(1.9, 9.6) and

IG(2.6, 7.1) respectively.

For the NAIRU we consider the four specifications discussed in Section 2, namely the

driftless random walk, the I(2), the integrated random walk and the damped trend. Three

different prior distributions are used for the variance parameters Vp and Vµ: IG(.08,6),

IG(.28,6) and IG(.80,6). These three priors imply increasing means at 0.02, 0.07, and

0.20; we shall refer to them as low (L), medium (M) and high (H). As can be seen in

Figure 1, they cover quite a wide range of patterns. For its empirical relevance we also let

the damped trend model have no level shocks, i.e. Vp = 0. Finally, the prior for the slope

autoregressive parameter φµ has been set to the Normal distribution N(.85, 1/30)I(0,1)

truncated to the stationary positive region. Altogether, the combination of the four

trend specifications with the different variance priors yields twenty-seven models for the

NAIRU.

Table 2 reports the posterior probabilities of each model marginally to the model

parameters, i.e. p(Mi|Y ), i = 1, ...27. These posterior probabilities have been computed

using the Dickey-Laplace approximation to the marginal likelihood discussed in Section

3. Table 2 displays the models in decreasing order of relevance. For both euro area and

US series, the first five models receive a total posterior weight greater than 50%. Of these

best fitting models, all but one are integrated of order 1: the data strongly support the

I(1) hypothesis. With all I(2) models ranked last, the evidence is particularly striking

for the US. This result can be related to the failure of I(2) models to produce reasonable

long-term forecasts of unemployment rate series. The data also express an overwhelming

preference for the damped trend model, i.e. the model that accounts for a time-varying

slope with moderate persistence. Finally, the euro area NAIRU seems to have received

larger shocks on its slope than on its level, perhaps explaining why for euro area some

I(2) models receive a relevant posterior weight. On the contrary, the shocks on US

structural unemployment seem to have hit mostly its level, an observation that would

plead against the use of the HP filter for inferring about the US NAIRU.
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Table 2 Posterior model probabilities

euro-area US
Rank Trend Vp-Vµ p(Mi|Y ) Trend Vp-Vµ p(Mi|Y )

1 dt 0-M .126 rw H-0 .141
2 dt 0-L .114 dt H-L .113
3 dt L-L .108 dt M-L .098
4 dt L-M .102 dt L-L .085
5 i2 0-L .089 dt 0-L .081
6 irw L-L .081 rw M-0 .065
7 dt M-L .058 dt 0-M .064
8 dt M-M .052 dt M-M .062
9 irw M-L .047 dt H-M .061
10 dt 0-H .043 dt L-M .055
11 i2 0-M .034 dt L-H .027
12 irw L-M .033 dt M-H .024
13 dt L-H .029 dt 0-H .024
14 irw M-M .017 rw L-0 .019
15 dt M-H .014 dt H-H .019
16 dt H-L .014 irw H-L .012
17 irw H-L .010 irw M-L .011
18 dt H-M .010 irw L-L .011
19 i2 0-H .006 i2 0-L .010
20 irw L-H .005 irw M-M .004
21 irw H-M .003 irw H-M .004
22 dt H-H .002 irw L-M .003
23 irw M-H .002 i2 0-M .003
24 irw H-H .000 irw M-H .001
25 rw H-0 .000 irw L-H .001
26 rw M-0 .000 irw H-H .001
27 rw L-0 .000 i2 0-H .001

Notes: Priors for variance parameters: for ` = p, µ, L ⇔ V` ∼ IG(.08, 6); M ⇔ V` ∼ IG(.28, 6); H ⇔
V` ∼ IG(.80, 6).
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Given Section 3 simulations, the robustness of the model classification to the marginal

likelihood estimator is worth verifying. For the first five models, Table 3 reports the

posterior weights and rankings obtained with the MW and LP estimators. The D-LP

results are also displayed for easing comparison. As can be seen, D-LP and MW are in

close agreement: the differences between the posterior weights are less than 10% of the

estimates and the classification is changed only in one occasion, two successive models

being permuted. We can thus be confident about Table 2 results. The LP outcome is

instead quite different: the posterior weights show variations that can reach 100% of the

estimates and the ranking is upset. Hence for these models we consider the LP marginal

likelihood as unreliable. Probably because the series sample size is not large enough to

make the posterior distribution of the variance parameters approximately Normal.

Table 3

euro-area

Trend Vp-Vµ D-LP MW LP
Rank P (Mi|Y ) Rank P (Mi|Y ) Rank P (Mi|Y )

dt 0-M 1 .126 1 .132 5 .088
dt 0-L 2 .114 2 .107 3 .112
dt L-L 3 .108 4 .097 1 .167
dt L-M 4 .102 3 .105 2 .121
i2 0-L 5 .089 5 .088 6 .063

US

Trend Vp-Vµ D-LP MW LP
Rank P (Mi|Y ) Rank P (Mi|Y ) Rank P (Mi|Y )

rw H-0 1 .141 1 .138 6 .062
dt H-L 2 .113 2 .106 3 .110
dt M-L 3 .098 3 .101 4 .115
dt L-L 4 .085 4 .088 1 .200
dt 0-L 5 .081 5 .076 7 .061
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The best fitting model is, for euro area, the damped trend with no level shocks and

for US, the random walk without drift. This last has been frequently used in empirical

studies of the US NAIRU, for instance by Staiger, Stock and Watson (1997) and by

Gordon (1998). Figure 2 shows the corresponding estimates. As can be seen, the euro

area NAIRU is continuously decreasing since the mid-1990’s peak. It is tempting to see

here the effect of new regulations for increasing the flexibility of euro area labor markets,

following the European Employment Strategy (1997) within the Lisbon agenda. The

US NAIRU seems to be almost constant in the last ten years, after fifteen years of

steady decrease between 1982 and 1997. As expected given the respective labor markets

flexibility, it embodies more short-term dynamics than the euro-area one.

In order to analyze the respective smoothness, we compare the ratios between the

variance of the cycle and the variance of the trend second difference, i.e. V (ct)/V (∆2pt).

This quantity is a slight generalization of the inverse signal to noise ratio typically

considered in HP filtering. More elaborate measures of smoothness have been proposed

in the literature (see for instance Froeba and Koyak, 1994), but the acquaintance of

economists with the HP filter gives such variance ratios the advantage of immediacy.

Figure 3 shows the posterior distribution of the generalized inverse signal to noise ratio;

the continuous line refers to the best model and the dashed one is obtained marginally to

the model choice. As can be seen, the US NAIRU participates more to the unemployment

fluctuations than the euro area one, and this evidence is strong enough to hold marginally

to the model choice: the variance ratio mode is about 2 for the US against 8.0 for the

euro area with the best model, 5.0 after model marginalizing. These are the ratios we

would recommend should the HP-filter be used for detrending euro area and US annual

unemployment; they are not too far from the values advised by Ravn and Uhlig (2002).

Notice that the posterior distribution of the variance ratio is quite diffuse for the euro

area, perhaps reflecting a substantial time-varying behavior.

Finally, Figure 4 shows the posterior distribution of the 2007 NAIRUs for euro area

and the US. Again, the continuous line refers to the best model and the dashed one

corresponds to the model average. The current NAIRU is measured about 7.5 for euro

area and about 5-5.1 for the US. This result is obtained with both the best model and

marginally to the model specification. A 95% confidence band around the modes covers

about 2.6 points, with the interval (6.2,8.9) for euro area and (3.7,6.3) for the US. This is

comparable with the uncertainty that Staiger et al. (1997) reported for the US NAIRU

in 1991’s first quarter using also inflation data. There is a close matching between the
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posterior distribution obtained with the best model and the one obtained marginally to

the model specification, mainly because the models that receive the highest posterior

weights yield similar NAIRU estimates. Hence, so long a reasonable model is used like

for instance the first five in Table 2, researchers should not worry too much about model

uncertainty.

6 Conclusion

We obtain simple expressions for evaluating the marginal likelihood of STS models by

taking benefit of the model properties and of the results in Dickey (1968). For trend

plus noise models, they only involve an integration over the (0,1)-support. For trend

plus cycle models, we show that coupling this approach with the Laplace method yields

a substantial gain in accuracy with respect to traditional Laplace marginal likelihood

estimator. Overall the precision is comparable to that of the MW estimator, without

requiring any importance sampling.

We apply this discrimination tool to the analysis of the euro area and US NAIRU.

As best model, we found a damped trend for the euro area and the driftless random

walk for the US; these would be our recommendation to practitioners. The NAIRU

smoothness seems in broad agreement with the inverse signal to noise ratio suggested

by Ravhn and Uhlig (2002) for HP-detrending annual data. Model uncertainty does

not seem to add much variation to the NAIRU estimates, at least so long a reasonable

model is used. We could see that conducting this analysis with the traditional version of

the Laplace marginal likelihood gives misleading results, perhaps because of the limited

sample size. The methodology we propose can be extended to STS models including a

third unobserved variable such as the irregular component, and also to bivariate system

such as the Kuttner (1994) Phillips-curve augmented model for output gap.
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Figure 1

Prior distributions for variance parameters Vp and Vµ
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Figure 2

Unemployment, NAIRU (——) and 95% confidence bands (– –)
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Figure 3

Variance ratio V (c)/V (∆2p) posterior distribution
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Figure 4

Posterior distribution of 2007 NAIRU
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