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Abstract

We derive a corrected distance metric (DM) test of general restrictions. The correc-

tion factor is a function of the uncorrected statistic, and the new statistic is Bartlett-

type. In the setting of covariance structure models, we show using simulations that the

quality of the new approximation is good and often remarkably good. Especially at

around the 95th percentile, the distribution of the corrected test statistic is strikingly

close to the relevant asymptotic distribution. This is true for various sample sizes, distri-

butions, and degrees of freedom of the model. As a by-product we provide an intuition

for the well-known observation in labor economic applications that using longer panels

results in a reversal of the original inference.
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1 Introduction

The Distance Metric (DM) test of Newey and West (1987) is commonly used in econometrics

to assess competing specifications. This is a simple test – the DM test statistic is usually

calculated as the sample size times the difference in the criterion function evaluated at the

restricted and the unrestricted estimate. At the same time, the test has several advantages

over other classical tests. It is invariant to different but equivalent formulations of the re-

striction unlike, e.g, the Wald test (see, e.g., Breusch and Schmidt, 1988), and robust to

autocorrelation and heteroskedasticity of unknown form provided that the criterion function

uses a heteroskedasticity-consistent estimate of the covariance matrix (see, e.g., Newey and

McFadden, 1994). This makes the test popular among applied researchers. For example,

this test has been widely used in covariance structure analysis in the context of asymptotic

distribution-free estimation (see, e.g., Browne, 1984; Satorra and Bentler, 2001, for the theory

of ADF estimation).

It is well known that the DM test statistic asymptotically has the chi-square distribution

with r degrees of freedom, where r is the number of restrictions (see, e.g., Newey and McFad-

den, 1994). However, the sampling distribution of the test statistic is poorly approximated by

the asymptotic distribution if samples are small (see, e.g., Clark, 1996). Edgeworth expan-

sions can deal with this problem by expanding the sampling density of test statistics around

the asymptotic density in decreasing powers of N−
1
2 , with N being the sample size. This may

improve the accuracy of the asymptotic approximation. Surveys of Edgeworth expansion

methods, including the theory of their validity, are provided by Phillips (1977, 1978); Kallen-

berg (1993); Rothenberg (1984); Reid (1991); Sargan and Satchell (1986), among others.

However, Edgeworth expansion methods have not yet been applied to the most general

version of the DM test. Most of known results concern the LR, Wald and the score test (see,

e.g., Cribari-Neto and Cordeiro, 1996; Phillips and Park, 1988; Magee, 1989; Linton, 2002;

Hausman and Kuersteiner, 2008). Hansen (2006) is the only application (known to us) of
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the Edgeworth correction to the DM test but it is restricted to the setting of a normal linear

regression with a single constraint. Moreover, it is well known that Edgeworth expansions do

not always improve the quality of first-order asymptotic approximations (see, e.g., Phillips,

1983). The main contribution of the paper is that we derive the Edgeworth correction, also

known as the Bartlett-type correction, for the DM test in its general form and illustrate in

simulations that this corrected approximation does work better, often surprisingly better,

than the uncorrected test.

We do not consider alternative ways to remedy the inaccuracy of first-order asymptotic ap-

proximations. Such alternatives include resampling techniques and other types of asymptotic

approximations, e.g., saddle-point (tilted Edgeworth) or Cornish-Fisher expansions. Validity

of the former is usually based on existence of an asymptotic approximation in the first place

(see, e.g., Hall, 1992) and the various forms of the latter are substantially more complicated

than the classical Edgeworth expansion (see, e.g., Barndorff-Nielsen and Cox, 1979).

The paper can be viewed as a generalization of the results by Hansen (2006), who obtained

the DM test correction in the setting of linear regressions with one restriction, to most of the

extremum and minimum distance estimators and to multiple linear and nonlinear restrictions.

We also draw on the results by Phillips and Park (1988) and Kollo and Rosen (2005). Phillips

and Park (1988) investigate how higher-order terms in the asymptotic approximation of the

Wald test are affected by various formulations of the null hypothesis. The DM test is invariant

to such reformulations, however, their theorem on asymptotic expansion of the distribution

provides a useful shortcut that substantially facilitates our proof. Kollo and Rosen (2005)

provide general forms of Taylor series expansions for vector-valued functions, applicable in

our setting.

In the application section, we consider a covariance structure model of Abowd and Card

(1989). We address the question at what sample sizes would the proposed asymptotic cor-

rection make a difference for the empirical conclusions of that paper. It turns out that this
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happens at sample sizes as large as 900-1,000 observations. An interesting by-product of the

application is that it explains the old puzzle in labor economics that longer panels reverse the

original inference.

The DM test statistic is defined in Section 2. In Section 3 we derive the asymptotic

expansion to order Op(N
−1) of the DM test statistic, and in Section 4 we give the higher-

order approximation of its distribution. Simple simulations are provided in Section 5, and an

empirical illustration is presented in Section 6. Section 7 contains brief concluding remarks.

2 Distance Metric Test

For a family of distributions {Pθ, θ ∈ Θ ⊂ Rp}, Θ compact, consider the test

H0 : g(θ) = 0,

H1 : g(θ) 6= 0,

where g : Rp → Rr is a continuously differentiable function with the first derivative defined

by

A(θ)
p×r
≡ dg(θ)

dθ
.

Let A(θo) be denoted by A.

We assume that underlying the test is a parametric model that can be written in terms of

the moment condition

Em(Zi, θ) = 0 iff θ = θ0, (1)

where m(·, ·) is a continuous k-valued function, Zi is a vector of data, independently dis-

tributed over i = 1, . . . , N , and θ0 is the true value of the parameter vector. We assume
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that the moments identify θ0. In covariance structure models, for example, m(Zi, θ) =

vechZiZ
′
i − vechΣ(θ), where vech denotes vertical vectorization of the lower triangle of a

matrix and Σ(θ) is a model for the covariance matrix, in which k ≥ p.

For some positive definite weighting matrix WN , define the criterion function

−QN(θ) ≡ 1

2
m′N(θ)WN mN(θ), (2)

where mN(θ)
k×1

≡ 1
N

N∑
i=1

m(Zi, θ). In covariance structure literature, the estimator that mini-

mizes this function is known as the asymptotically distribution free (ADF) or weighted least

squared (WLS) estimator (see, e.g., Browne, 1984). It is well known that efficient weighting

of m(·, ·) requires that

WN
k×k

p−→ W ≡ {E[m(Zi, θ0)m′(Zi, θ0)]}−1
.

We assume efficient weighting. What this means for our expansions will be clarified below.

The test statistic we consider is based on the value of QN(θ) for two competing models,

one that satisfies H0 and the other that is unrestricted. Let θ̄ and θ̂ denote the corresponding

estimators:

θ̄ = arg max
θ∈Θ

QN(θ), subject to g(θ) = 0;

θ̂ = arg max
θ∈Θ

QN(θ).

Then, the DM test statistic is defined (see, e.g., Newey and McFadden, 1994, p. 2222) as

DM ≡ −2N [QN(θ̄N)−QN(θ̂N)]. (3)

Throughout, we assume that the standard regularity conditions are satisfied (see, e.g., Newey
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and McFadden, 1994, conditions of Theorems 2.6, 3.4, 4.5, and 9.1).

3 Stochastic Expansion of DM Test Statistic

Let

MN(θ) = W
1/2
N mN(θ).

Assume that MN(θ) is three-times continuously differentiable. We follow Kollo and Rosen

(2005, Definition 1.4.1) and define the derivative matrices recursively as follows

GN(θ)
p×p

≡ ∂M′N(θ)

∂θ
,

DN(θ)
p×p2

≡ ∂vec′GN(θ)

∂θ
,

CN(θ)
p×p3

≡ ∂vec′DN(θ)

∂θ
.

Let G = E[GN(θ0)], D = E[DN(θ0)], and C = E[CN(θ0)]. In simulations, our focus is

on covariance structure models for which the moment conditions have the form m(Zi, θ) =

r(Zi) + h(θ), for some functions r(·) and h(·). In this case, GN(θ0), DN(θ0), and CN(θ0) are

nonrandom matrices.

The quadratic form in (2) becomes

−QN(θ) =
1

2
M′N(θ)MN(θ),

and the DM test statistic in (3) can be written as follows

DM = N [M′N(θ̄)MN(θ̄)−M′N(θ̂)MN(θ̂)]. (4)
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Note that, due to the efficient weighting,

−
√
NMN(θ0) ≡ qN

d−→ q̄
k×1
∼ N(0, I). (5)

Following Hansen (2006) and Phillips and Park (1988), we derive higher order expansions

of the DM test under the stronger assumption that we have carried out the standardizing

transformation and that

−
√
NMN(θo) ≡ q̄ ∼ N(0, I). (6)

We further assume that

√
N(θ̂N − θ0) ≡ q̃ ∼ N(0,Ω1), (7)

√
N(θ̄N − θ̂N) ≡ q̂ ∼ N(0,Ω2). (8)

The usual first order asymptotic expansions of constrained and unconstrained GMM Newey

and McFadden (1994, p. 2219) imply that

q̃ = B−1Gq̄,

q̂ = −HGq̄,

where H
p×p
≡ B−1A(A′B−1A)−1A′B−1 and B−1 = (GG′)−1.

Assumptions (6)-(8) substantially simplify derivations by disregarding possibly important

higher order terms of q̄, q̃ and q̂. It is in principle possible to generalize our results as in Phillips

and Park (1988, Appendix B) to the more general case of only (5), by carrying additional

higher order terms involved in q̄ and in the transformations using WN , B, G and H. That is, in

principle q̄, q̃ and q̂ can come from any distribution that admits a valid Edgeworth expansion.

This would account for the well known higher order biases of GMM (see, e.g., Newey and
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Smith, 2004) and would allow WN to depend on θ as in the CU-GMM estimator of Hansen

et al. (1996) or a two-step GMM procedure. However, the expansions for this general case

quickly become hard to manage using matrix notation. Moreover, we focus on covariance

structure models with relatively small deviations of the sampling distributions from the first-

order asymptotics and it is unclear if the benefit of this generalization outweighs the costs

in this setting. For example, in our simulations we consider other distributions of q̄ and find

that our correction still works well. We leave such generalizations for future research.

Using the above notation and Theorem 3.1.1 of Kollo and Rosen (2005, p. 280), which

we provide in Appendix A for reference, the Taylor expansion of MN(θ̄N) about θ̂N can be

written as follows

MN(θ̄N) = MN(θ̂N)+G′N(θ̂N)(θ̄N− θ̂N)+
1

2
[Ik⊗(θ̄N− θ̂N)′]D′N(θ̂N)(θ̄N− θ̂N)+op(N

−1). (9)

Substituting (9) into (4), we obtain

DM = q̄′G′HGN(θ̂N)G′N(θ̂N)HGq̄

+ M′N(θ̂N)(Ik ⊗ q̄′G′H)D′N(θ̂N)HGq̄

−N−1/2q̄′G′HGN(θ̂N)(Ik ⊗ q̄′G′H)D′N(θ̂N)HGq̄

+
1

4
N−1q̄′G′HDN(θ̂N)(Ik ⊗HGq̄)(Ik ⊗ q̄′G′H)D′N(θ̂N)HGq̄ + op(N

−2).

(10)

We will now expand at θ0 all functions of θ̂N contained in (10). We wish to use Theorem 3.1.1

of Kollo and Rosen (2005) to do that. So we will transform the current representation into

the one based on vector functions. Specifically, we need the vectorized versions of matrices

GN(θ̂N) and DN(θ̂N). Using the facts that

vec(ABC) = (C ′ ⊗ A)vecB,

(A⊗B)′ = A′ ⊗B′,
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we obtain the following equations

q̄′G′HGN(θ̂N) = vec′GN(θ̂N)(Ik ⊗HGq̄),

D′N(θ̂N)HGq̄ = (Ipk ⊗ q̄′G′H)vecDN(θ̂N).

Equation (10) can now be rewritten as

DM = vec′GN(θ̂N)M1vecGN(θ̂N)

+ M′N(θ̂N)M2vecDN(θ̂N)

−N−1/2vec′GN(θ̂N)M3vecDN(θ̂N)

+N−1 1

4
vec′DN(θ̂N)M4vecDN(θ̂N) + op,

(11)

where

M1 = (Ik ⊗HGq̄)(Ik ⊗ q̄′G′H),

M2 = Ik ⊗ q̄′G′H⊗ q̄′G′H,

M3 = (Ik ⊗HGq̄)(Ik ⊗ q̄′G′H⊗ q̄′G′H),

M4 = Ik ⊗HGq̄q̄′G′H⊗HGq̄q̄′G′H.

Substituting the Taylor expansions at θ0 of MN(θ̂N), vecGN(θ̂N) and vecDN(θ̂N) into (11)

gives the asymptotic expansion of the DM test statistic, which is summarized in the following

theorem.

Theorem 1. The asymptotic expansion of the DM test statistic is given by

DM = q̄′P q̄ +N−1/2u(q̄) +N−1v(q̄) + op, (12)
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where

P
k×k
≡ G′HG, (13)

u(q̄) = u1(q̄) + u2(q̄) + u3(q̄),

v(q̄) = v1(q̄) + v2(q̄) + v3(q̄) + v4(q̄),

with ui(q̄) (i = 1, 2, 3) and vi(q̄) (i = 1, 2, 3, 4) specified by

u1(q̄) = 2q̄′G′B−1DM1vecG, (14)

u2(q̄) = q̄′(G′B−1G− Ik)M2vecD, (15)

u3(q̄) = −vec′GM3vecD; (16)

v1(q̄) = q̄′G′B−1DM1D
′B−1Gq̄ + q̄′G′B−1C(Ipk ⊗B−1Gq̄)M1vecG, (17)

v2(q̄) = q̄′(G′B−1G− Ik)M2C
′B−1Gq̄ +

1

2
q̄′G′B−1D(Ik ⊗B−1Gq̄)M2vecD, (18)

v3(q̄) = −q̄′G′B−1CM ′
3vecG− q̄′G′B−1DM3vecD, (19)

v4(q̄) =
1

4
vec′DM4vecD. (20)

Proof. See Appendix B for all proofs.

4 Distribution of DM Test Statistic

In this section we follow Phillips and Park (1988) and use the Taylor expansion of DM

to derive the Edgeworth expansion of its distribution to order O(N−1). Theorem 2.4 of

Phillips and Park (1988) allows us to skip intermediate steps in deriving the expansion for

the distribution from the expansion of the test statistics. Hansen (2006) used this approach

for a single restriction DM test in a normal linear regression with known error variance.
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In order to use Phillips and Park’s results, we first show that u(q̄) and v(q̄) can be written

in terms of Kronecker products of q̄ and q̄q̄′. This is done in the following lemma.

Lemma 1. u(q̄) and v(q̄) in Theorem 1 can be written as

u(q̄) = vec′J(q̄ ⊗ q̄ ⊗ q̄),

v(q̄) = tr[L(q̄q̄′ ⊗ q̄q̄′)],

where vecJ = vecJ1 + vecJ2 + vecJ3 with

vecJ1 = 2(G′HG⊗G′H⊗G′B−1)vecD,

vecJ2 = [(G′B−1G− Ik)⊗G′H⊗G′H]vecD,

vecJ3 = −(G′HG⊗G′H⊗G′H)vecD;

and

L = L1 + L2 + L3 + L4, (21)

with

L1 = (G′H⊗G′B−1)VD(HG⊗B−1G) + (G′H⊗G′B−1)MV (Ik ⊗HG), (22)

L2 = (G′H⊗G′H)MV I +
1

2
(G′H⊗G′H)VD(B−1G⊗B−1G), (23)

L3 = −(G′H⊗G′H)MV (Ik ⊗HG)− (G′H⊗G′H)VD(HG⊗B−1G), (24)

L4 =
1

4
(G′H⊗G′H)VD(HG⊗HG), (25)

where VD, MV and MV I are given in Appendix B.

We can now follow Hansen (2006, Theorem 3) and apply the result of Phillips and Park

(1988, p. 1069-1072). Specifically, we can obtain the characteristic function of the DM test
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statistic:

CDM(t) = (1− 2it)−r/2{1 +
1

N
[(a0 −

1

4
b1)it

+ (a1 +
1

4
b1 −

1

4
b2)it(1− 2it)−1

+ (a2 +
1

4
b2 −

1

4
b3)(1− 2it)−2

+
1

4
b3it(1− 2it)−3]}+ op(N

−1),

where ai, i = 0, 1, 2, and bj, j = 1, 2, 3, are defined in Appendix B. Note that the first term

(1−2it)−r/2 is the characteristic function for a χ2
r variate, reflecting the first order asymptotics.

Then, using the Fourier transform, we can derive the distribution of the DM test statistic.

This is done in Theorem 2.

Theorem 2. The asymptotic expansion to O(N−1) of the distribution function of DM is given

by

FDM(x) = Fr
(
x−N−1(α1x+ α2x

2 + α3x
3)
)

+ o(N−1) (26)

where Fr denotes the distribution function of a χ2
r variate and

α1 = (4a1 − b2)/4r,

α2 = (4a2 + b2 − b3)/4r(r + 2),

α3 = b3/4r(r + 2)(r + 4),

with ai (i = 1, 2) and bi (i = 1, 2, 3) defined in Appendix B.

The Edgeworth correction factor that follows from (26) can be written as

1−N−1(α1 + α2DM + α3DM
2) (27)
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where DM is the original (uncorrected) DM test statistic. If multiplied by the correction

factor, the DM test statistic should be better approximated by the χ2
r distribution than the

uncorrected statistic. Strictly speaking, the correction cannot be called “Bartlett” because

it depends on the uncorrected statistic DM . However, it is common to call such corrections

Bartlett-type due to their similarity to the classical Bartlett (1937) correction (see, e.g.,

Cribari-Neto and Cordeiro, 1996, for a review of Bartlett and Bartlett-type corrections of

common tests).

Note that increasing the number of restrictions r does not necessarily result in a bigger

correction factor because αi (i = 1, 2, 3) may be negative. Moreover, it is important to note

that, even if the restrictions are linear, the Bartlett-type correction factor in (27) will be

different from one so long as MN(θ) is nonlinear in parameters. The theorem imposes no

constraint on the number of restrictions tested or on the specific estimator represented by the

moment condition (1).

Edgeworth expansions do not always improve the quality of asymptotic approximations.

It has been documented that their performance is parameter dependent and that they fail

when deviations of the sampling distribution from the first order asymptotic distribution

is large (see, e.g., Phillips, 1983). We cannot expect the correction in (27) to work in all

circumstances but when it does work, the quality of the correction can be expected to depend

on nonlinearities (through matrices J and L), the size of the model (through the number of

restrictions r), the sample size N and the true distribution (through q̄). We now demonstrate

the behavior of the correction along some of these dimensions.

5 Illustrative Simulations

In this section, we use simulations to illustrate the theoretical results obtained in Section 4 in

the settings of a simple covariance structure model. Consider a random vector Z ∈ Z ⊂ Rq

from Pθ0 , θ0 ∈ Θ ⊂ Rp. Assume that E[Z] = 0, E{‖Z‖4} < ∞ and E[ZZ ′] = Σ(θ0). The
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matrix function Σ(θ) may come from a variety of models, e.g., LISREL, MIMIC, factor model,

random effects or simultaneous equations model. For a random sample (Z1, · · · , ZN), let

Si ≡ ZiZ
′
i

and

S ≡ 1

N

N∑
i=1

Si.

Then, S satisfies a central limit theorem:

√
N(vechS − vechΣ(θ0))→ N(0,∆(θ0)),

where

∆(θ0) = V(vechSi) = E[vechSivech
′Si]− vechΣ(θ0)vech′Σ(θ0).

Assume p ≤ 1
2
q(q+1). Then, in terminology of covariance structure literature, the degrees

of freedom of the model are equal to q(q+1)
2
− p, and they will be increased by one for each

independent restriction imposed on Σ(θ) by the model. We can write all distinct sample

moment functions as follows

mN(θ)
1
2
q(q+1)×1

≡ 1

N

N∑
i=1

m(Zi, θ) = vechS − vechΣ(θ)

where

m(Zi, θ)
1
2
q(q+1)×1

= vechSi − vechΣ(θ).
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The sample covariance matrix of the moments is

W−1
N (θ)

1
2
q(q+1)× 1

2
q(q+1)

=
1

N

N∑
i=1

[m(Zi, θ)m
′(Zi, θ)]

=
1

N

N∑
i=1

[vechSivech
′Si − vechSivech′Σ(θ)

− vechΣ(θ)vech′Si + vechΣ(θ)vech′Σ(θ)].

In practice, either the restricted or the unrestricted estimate of θ will be used in these infeasible

expressions.

We are interested in testing H0 : Σ(θo) = Σ(c) against H1 : Σ(θo) 6= Σ(c), where c is a

constant vector. This type of test is fundamental in covariance structure analysis. Known as

the ADF test, it has been studied by Korin (1968); Sugiura (1969); Nagarsenker and Pillai

(1973); Browne (1984); Chou et al. (1991); Muthen and Kaplan (1992); Yuan and Bentler

(1997); Satorra and Bentler (2001); Yanagihara et al. (2004), among others. Ogasawara

(2009) provides an asymptotic expansion similar to ours for the ADF test statistic in the

setting of covariance structure models. The literature has focused on three dimensions of the

test behavior: (1) what is the effect of the sample size; (2) how the sample size requirements

change for different nonnormal distributions; (3) how the sample size requirements change for

models of different size. We wish to apply our Bartlett-type correction to the DM test of this

restriction and study its behavior along the same dimensions.

For simplicity, we consider a bivariate problem (i.e. q = 2) in which

Σ(θ) =

σ2
1 σ12

σ12 σ2
2

 ,
θ′ = (σ1, σ12, σ2), c′ = (1, 0, 1) and p = k = r = 3. So the parameter vector is completely

specified under the null and there are no parameters to estimate in the restricted model.
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Write the null hypothesis as

H0 : g(θ)
3×1

= 0, where g(θ) = vechΣ(θ)− vechΣ(c) =


σ2

1 − 1

σ12 − 0

σ2
2 − 1

 .

In order to demonstrate the effect of the Bartlett-type correction, we generate a sample of

varying size from normal, Student-t and uniform distributions and compute the uncorrected

and corrected versions of the DM test statistics. This is done 1,000 times. Then we plot the

quantiles of the resulting bootstrap distributions. These are displayed on Figures 1-3. The

quantile curve of the chi-square distribution, marked “chiˆ2”, is drawn as a reference. The

uncorrected and corrected versions of the DM test statistic are marked “DM” and “DM star,”

respectively.

All figures show severe over-rejection of the uncorrected DM test statistic. The fact that

the size of the DM test is substantially greater in small samples than the asymptotic size is well

documented (see, e.g., Clark, 1996), and our results agree with that. Our corrected statistic

performs much better for all distributions and all sample sizes. Of course, the corrected

distribution is not identical to the chi-square distribution and the corrected test exhibits

over- and under-rejection at times, but the deviations are substantially smaller than for the

uncorrected test. It is notable how much improvement one can obtain using the corrected

statistic in the area close to the 95th percentile, which corresponds to the commonly used 5%

significance level. At that level, the correction is almost perfect.

Figure 1 shows the quantiles for various sample sizes from N (0, 1). One can clearly see

from the figure how the uncorrected curve deviates from the chi-square quantiles as the sample

size decreases while the degree of model complexity does not change (q = 2). At the same

time, the corrected curve consistently provides a great deal of improvement.

In Figure 2 we show the behavior of the corrected and uncorrected test statistics for two
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(a) N = 25 (b) N = 35

(c) N = 65 (d) N = 200

Figure 1: Quantiles of chi-square and bootstrap distribution of uncorrected and corrected DM
test statistics for various sample sizes; q = 2.

distributions, Student-t and uniform, and two sample sizes, N = 25 and N = 65. As expected,

the test (and its correction), being distribution-free, exhibits similar behavior under the two

distributions. The figures also show that the benefit of a larger sample size varies for the two

distributions. For other distributions (not reported here), the sample size needed to obtain

a similar level of approximation accuracy as in panel (d) was several hundred observations.

For some distributions, the correction may be trivial even when samples are small while for

others it may produce a large correction even when samples are large.

In Figure 3, in addition to the bivariate case, we consider a univariate (q = 1) model in

which Σ(θ) = σ2. The null is σ = c, and the restricted model has one degree of freedom.
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(a) N = 25, Student-t with 9 df. (b) N = 65, Student-t with 9 df.

(c) N = 25, Uniform (d) N = 65, Uniform

Figure 2: Quantiles of chi-square and bootstrap distribution of uncorrected and corrected DM
test statistics for two data distributions and two sample sizes; q = 2.

This is done to show how model size (as measured by the degrees of freedom of the model)

affects the performance of the test statistics. In the larger model (q = 2), the gap between

the sampling and the asymptotic χ2
3 distribution is much larger than between the sampling

and the asymptotic χ2
1 distribution in the smaller model. It is interesting to note that the

model size plays as important a role in accuracy of asymptotic approximations as the sample

size: we more than double the sample size between panel (b) and panel (d), and this has a

similar effect on the larger model accuracy as replacing it by a model with 2 fewer degrees

of freedom. This is consistent with the findings of Hoogland and Boomsma (1998) that the

chi-square statistics are sensitive to model size (as measured by the degrees of freedom of
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(a) q = 1, N = 25 (b) q = 2, N = 25

(c) q = 1, N = 65 (d) q = 2, N = 65

Figure 3: Quantiles of chi-square and bootstrap distribution of uncorrected and corrected DM
test statistics for two values of q and two sample sizes.

the model). A bigger model requires a larger sample size to ensure good behavior of the

statistics. At the same time, for the smaller models (panels (a) and (c)), larger sample sizes

do not improve the asymptotic approximation by much – the approximation error is small to

start with. The corrected statistic displays an improved behavior for both model sizes and

both sample sizes.
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6 Empirical Illustration

In this section, we study applicability of the Bartlett-type correction to a covariance structure

model of earnings. This type of model has been a focus of many papers in labor economics (see,

e.g., MaCurdy, 1982; Abowd and Card, 1987, 1989; Topel and Ward, 1992; Baker, 1997; Baker

and Solon, 2003). Among other things, the literature has been concerned with the puzzling

observation that the use of longer panels results in a reversal of the original inference (see, e.g.,

Baker, 1997, p. 358). Longer panels are usually used to estimate higher-order autocovariances.

However, the cost of longer balanced panels is a smaller number of individuals. For example,

the sample sizes used by Baker (1997) in 10-year panels are 992 and 1,331 individuals for

the periods 1967-76 and 1977-86, respectively; his 20-year panel contains only 534. On the

other hand, as the panel gets longer (q increases), degrees of freedom grow. As mentioned

earlier, this generally requires larger sample sizes for the DM statistic to remain close to the

asymptotic approximation. In this section, we use parts of the sample of earnings used by

Abowd and Card (1989) to demonstrate how the Bartlett-type correction affects the outcomes

of a hypothesis test for various sample sizes.

The earnings data are from the Panel Study of Income Dynamics (PSID), conducted by

Survey Research Center at University of Michigan. The sample consists of male heads of

household, who were between the ages of 21 and 64 in the period 1969 to 1974 and who

reported positive earnings in each year. The sample we use – a subsample of the data used

by Abowd and Card (1989) – contains 1,578 individuals. Individuals with average hourly

earnings greater than $100 or those who reported annual hours worked greater than 4,680 were

excluded. A detailed description of the PSID variables is given in Appendix C. Covariances

and correlations between demeaned changes in log of real annual earnings (in 1967 dollars)

are displayed in Table 1. Covariances are presented below the diagonal, while correlations

and their two-tailed p-values are presented above the diagonal.
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Table 1: Covariances (below diagonal) and correlations (above diagonal) between changes in log-
earnings : PSID Males 1967-1974

Covariance/Correlation(with two-tailed p-value) of :
with : ∆ ln e 69-70 ∆ ln e 70-71 ∆ ln e 71-72 ∆ ln e 72-73 ∆ ln e 73-74

∆ ln e 69-70 0.228 -0.204 -0.006 0.018 -0.006
(0) (0.827) (0.463) (0.823)

∆ ln e 70-71 -0.04418 0.205 -0.415 -0.082 0
(0) (0.001) (0.994)

∆ ln e 71-72 -0.00117 -0.08345 0.197 -0.347 -0.041
(0) (0.101)

∆ ln e 72-73 0.003442 -0.01447 -0.06 0.152 -0.305
(0)

∆ ln e 73-74 -0.00102 -0.0000303 -0.00697 -0.04518 0.144

A generic population covariance matrix for Table 1 can be written as

Σ(θ) =



σ2
1 σ12 σ13 σ14 σ15

σ21 σ2
2 σ23 σ24 σ25

σ31 σ32 σ2
3 σ34 σ35

σ41 σ42 σ43 σ2
4 σ45

σ51 σ52 σ53 σ54 σ2
5


, (28)

where θ = (σ1, σ21, σ31, σ41, σ51, σ2, σ32, σ42, σ52, σ3, σ43, σ53, σ4, σ54, σ5)′.

The question Abowd and Card (1989) ask is whether the information in the covariance

matrix in Table 1 could be adequately summarized by some relatively simple statistical model.

Specifically, they ask whether an MA(2) process (possibly nonstationary) can serve as the

model. Indeed, there are very few covariances (correlations) that are large or statistically

significant at lags greater than two. In order to address this concern, two tests were performed

using the DM test statistic.

The first one is to test for a nonstationary MA(2) representation of the changes in earnings.

The changes in earnings have a nonstationary MA(2) representation if the covariances at lags

greater than two are zero. The null is H0 : changes in earnings are nonstationary MA(2), and
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the alternative is H1 : changes in earnings are not nonstationary MA(2). Equivalently, the

null can be rewritten as

H0 :


σ41

σ51

σ52

 = 0
3×1
. (29)

The second one is to test for a stationary MA(2) representation of the changes in earnings.

By a stationary MA(2) representation, we mean (i) cov(∆ ln et,∆ ln et−j) depends only on j

and does not change over t, and (ii) cov(∆ ln et,∆ ln et−j) is zero for |j| > 2. The null is H0 :

changes in earnings are stationary MA(2), and the alternative is H1 : changes in earnings are

not stationary MA(2). Equivalently, the null can be rewritten as

H0 :


σ41

σ51

σ52

 = 0
3×1
,

σ1 = σ2 = σ3 = σ4 = σ5,

σ21 = σ32 = σ43 = σ54,

σ31 = σ42 = σ53.

(30)

The test results are presented in Table 2. The values of the uncorrected and corrected DM

test statistic (and the corresponding p-values) are very close for both tests. Not surprisingly,

the corrections for this relatively large sample are minor to none. We now demonstrate the

effect of the Bartlett-type correction as the sample size becomes smaller.

As expected, when the sample size becomes smaller the Bartlett-type correction becomes

more important. Consider the second test as an example. The results for that test are

presented in Table 3. We randomly select increasingly smaller subsamples of data. As the

sample size decreases from N =1,400 to 900, the correction becomes larger to the point at
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Table 2: Goodness-of-Fit Tests for Changes in Earnings: PSID Males 1967-1974

Goodness-of-Fit Test DM Test Statistic Asy. P-Value
N=1,578 Uncorrected Corrected Uncorrected Corrected

I. Nonstationary MA(2) 0.3325 0.3320 0.9538 0.9539
(df = 3)
II. Stationary MA(2) 19.9889 19.6262 0.0673 0.0745
(df = 12)

which the outcome of the test is reversed at conventional significance levels. For example, if

N = 900, the corrected test does not reject at the 5% level while the uncorrected test does.

Table 3: Testing Stationary MA(2) for Changes in Earnings: PSID Males 1967-1974

Sample Size
DM Test Statistic Asy. P-Value

Uncorrected Corrected Uncorrected Corrected

N=1,400 22.21 21.64 0.035 0.042
N=1,200 24.15 22.83 0.019 0.029
N=1,000 25.46 22.12 0.012 0.036
N=900 25.99 20.35 0.010 0.061

Assuming that the correction does bring the sampling distribution closer to its asymptotic

approximation, we conclude from this table that, for the current number of degrees of freedom,

cross sections as large as 900 are not large enough to justify application of the uncorrected

first-order asymptotic approximation to this covariance structure model. If used against the

asymptotic critical values, the uncorrected DM test severely over-rejects.

7 Concluding Remarks

This paper provides the Bartlett-type correction of the DM test statistic. Our setting covers

linear and nonlinear restrictions and all extremum and minimum distance estimators that can

be stated in terms of moment conditions. The expansions used to obtained the correction are

based on several normality assumptions that can be relaxed using methods similar to Phillips

and Park (1988, Appendix B). The correction may work better if we do so but we leave this

general case for future work.
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We also provide simple simulation evidence about the behavior of the corrected test statis-

tic in a fairly general class of covariance structure models. Given the poor performance of

Edgeworth approximations documented in settings when the error in the first order asymp-

totics is large, we use simulations where the errors are relatively small. We find that the

correction works very well in such settings. In practice, it is often necessary to consider a very

large (as measured by the degrees of freedom of the model) covariance structure model (see,

e.g., Herzog et al., 2007; Kenny and McCoach, 2003), which makes it difficult to maintain

good properties of the DM test and of our correction even in large samples. Moreover, large

samples are not always possible to obtain and the available data are often non-normal. We

show that the correction still performs well for the sample sizes and non-normal distributions

considered.
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A Theorem 3.1.1 of Kollo and Rosen (2005)

Let {xn} and {εn} be sequences of random p-vectors and positive numbers, respectively, and let xn − x0 =

op(εn), where εn → 0 as n→∞. If the function f(x) from Rp to Rs has continuous partial derivatives up to

the order (M + 1) in a neighborhood D of a point x0, then the function f(x) can be expanded at the point

x0 into the Taylor series

f(x) = f(x0) +

M∑
k=1

1

k!

(
Is ⊗ (x− x0)⊗(k−1)

)′(dkf(x)

dxk

)′
x=x0

(x− x0) + o(ρM(x, x0)),

where the Kroneckerian power A⊗k for any matrix A is given by A⊗k = A⊗ · · · ⊗A︸ ︷︷ ︸
k times

with A⊗0 = 1, ρ(., .) is the

Euclidean distance in Rp, and the matrix derivative for any matrices Y and X is given by dkY
dXk = d

dX

(
dk−1Y
dXk−1

)
with dY

dX ≡
dvec′Y
dvecX ; and

f(xn) = f(x0) +

M∑
k=1

1

k!

(
Is ⊗ (xn − x0)⊗(k−1)

)′(dkf(xn)

dxkn

)′
xn=x0

(xn − x0) + op(εMn ).

B Proofs

Proof of Theorem 1: Write (11) as

DM ∼= 1DM + 2DM + 3DM + 4DM , (31)

where,

1DM = vec′GN (θ̂N )M1vecGN (θ̂N ),

2DM = M′N (θ̂N )M2vecDN (θ̂N ),

3DM = −N−1/2vec′GN (θ̂N )M3vecDN (θ̂N ),

4DM = N−1
1

4
vec′DN (θ̂N )M4vecDN (θ̂N ).

Taking Taylor expansions of MN (θ̂N ), vecGN (θ̂N ) and vecDN (θ̂N ) about θ0 and using (5) and (7), we have

MN (θ̂N )
k×1

= MN (θ0) +G′(θ̂N − θ0) +
1

2
[Ik ⊗ (θ̂N − θ0)′]D′(θ̂N − θ0) + op(N−1)

= −N−1/2q̄ +N−1/2G′B−1Gq̄ +N−1
1

2
(Ik ⊗ q̄′G′B−1)D′B−1Gq̄ + op(N−1),
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vecGN (θ̂N )
pk×1

= vecG+D′(θ̂N − θ0) +
1

2
[Ipk ⊗ (θ̂N − θ0)′]C ′(θ̂N − θ0) + op(N−1)

= vecG+N−1/2D′B−1Gq̄ +N−1
1

2
(Ipk ⊗ q̄′G′B−1)C ′B−1Gq̄ + op(N−1),

vecDN (θ̂N )
p2k×1

= vecD + C ′(θ̂N − θ0) + op(N−1/2)

= vecD +N−1/2C ′B−1Gq̄ + op(N−1/2).

Note that we do not need to expand vecDN (θ̂N ) further for our purpose. Substituting these expressions into

the terms of (31) gives:

1DM = vec′GN (θ̂N )M1vecGN (θ̂N )

= vec′GM1vecG+N−1/22q̄′G′B−1DM1vecG

+N−1[q̄′G′B−1DM1D
′B−1Gq̄ + q̄′G′B−1C(Ipk ⊗B−1Gq̄)M1vecG]

+ op(N−1)

= q̄′P q̄ +N−1/2u1(q̄) +N−1v1(q̄) + op(N−1),

(32)

where

P
k×k
≡ G′HG

is a projection matrix, and

u1(q̄) = 2q̄′G′B−1DM1vecG,

v1(q̄) = q̄′G′B−1DM1D
′B−1Gq̄ + q̄′G′B−1C(Ipk ⊗B−1Gq̄)M1vecG;
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2DM = M′N (θ̂N )M2vecDN (θ̂N )

= −N−1/2q̄′M2vecD −N−1q̄′M2C
′B−1Gq̄

+N−1/2q̄′G′B−1GM2vecD +N−1q̄′G′B−1GM2C
′B−1Gq̄

+N−1
1

2
q̄′G′B−1D(Ik ⊗B−1Gq̄)M2vecD + op(N−1)

= N−1/2(q̄′G′B−1M2vecD − q̄′M2vecD)

+N−1[q̄′G′B−1GM2C
′B−1Gq̄ − q̄′M2C

′B−1Gq̄

+
1

2
q̄′G′B−1D(Ik ⊗B−1Gq̄)M2vecD] + op(N−1)

= N−1/2u2(q̄) +N−1v2(q̄) + op(N−1),

(33)

where

u2(q̄) = q̄′G′B−1GM2vecD − q̄′M2vecD

= q̄′(G′B−1G− Ik)M2vecD,

v2(q̄) = q̄′G′B−1GM2C
′B−1Gq̄ − q̄′M2C

′B−1Gq̄ +
1

2
q̄′G′B−1D(Ik ⊗B−1Gq̄)M2vecD

= q̄′(G′B−1G− Ik)M2C
′B−1Gq̄ +

1

2
q̄′G′B−1D(Ik ⊗B−1Gq̄)M2vecD;

3DM = −N−1/2vec′GN (θ̂N )M3vecDN (θ̂N )

= −N−1/2vec′GM3vecD −N−1vec′GM3C
′B−1Gq̄ −N−1q̄′G′B−1DM3vecD + op(N−1)

= N−1/2u3(q̄) +N−1v3(q̄) + op(N−1),

(34)

and

u3(q̄) = −vec′GM3vecD,

v3(q̄) = −vec′GM3C
′B−1Gq̄ − q̄′G′B−1DM3vecD

= −q̄′G′B−1CM ′3vecG− q̄′G′B−1DM3vecD;
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4DM = N−1
1

4
vec′DN (θ̂N )M4vecDN (θ̂N )

= N−1
1

4
vec′DM4vecD + op(N−1)

= N−1v4(q̄) + op(N−1),

(35)

where

v4(q̄) =
1

4
vec′DM4vecD.

Finally, collecting the terms (32)-(35) gives equation (12).

Proof of Lemma 1: From Theorem 1, if ui(q̄) (i = 1, 2, 3) and vi(q̄) (i = 1, 2, 3, 4) could be rewritten as

ui(q̄) = vec′Ji(q̄ ⊗ q̄ ⊗ q̄), (36)

vi(q̄) = tr[Li(q̄q̄
′ ⊗ q̄q̄′)], (37)

then,

u(q̄) = vec′J(q̄ ⊗ q̄ ⊗ q̄),

v(q̄) = tr[L(q̄q̄′ ⊗ q̄q̄′)],

where

vecJ = vecJ1 + vecJ2 + vecJ3,

and

L = L1 + L2 + L3 + L4.

Therefore, the proof is reduced to showing (36) and (37).
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Using

(A⊗ C)(B ⊗D) = (AB)⊗ (CD),

Kp,qvecA = vec(A′),

A⊗B = Kp,r(B ⊗A)Ks,q,

for A : p× q and B : r × s where K is the commutation matrix, we can rewrite (14):

u1(q̄) = 2q̄′G′B−1D(Ik ⊗HGq̄)vec(q̄′G′HG)

= 2q̄′G′HG(Ik ⊗ q̄′G′H)(q̄′G′B−1 ⊗ Ipk)vec(D′)

= 2q̄′G′HG(Ik ⊗ q̄′G′H)(Ipk ⊗ q̄′G′B−1)vecD

= 2(q̄′G′HG⊗ q̄′G′H⊗ q̄′G′B−1)vecD

= 2(q̄′ ⊗ q̄′ ⊗ q̄′)(G′HG⊗G′H⊗G′B−1)vecD

= vec′J1(q̄ ⊗ q̄ ⊗ q̄),

(38)

where

vecJ1 = 2(G′HG⊗G′H⊗G′B−1)vecD. (39)

Let

R1 = (HG⊗B−1G)(q̄q̄′ ⊗ q̄q̄′)(G′H⊗G′B−1), (40)

partition vecD as

vecD
p2k×1

=



VD1

VD2

...

VDk


(41)

where each subvector VDi is p2 × 1, and let

VD = VD1V
′
D1 + VD2V

′
D2 + · · ·+ VDkV

′
Dk. (42)
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Then, since

(Ik ⊗ q̄′G′H)D′B−1Gq̄ = (Ik ⊗ q̄′G′H)(q̄′G′B−1 ⊗ Ipk)vec(D′)

= (Ik ⊗ q̄′G′H)(Ipk ⊗ q̄′G′B−1)vecD

= (Ik ⊗ q̄′G′H⊗ q̄′G′B−1)vecD,

the first term of v1(q̄) in (17) becomes

q̄′G′B−1D(Ik ⊗HGq̄)(Ik ⊗ q̄′G′H)D′B−1Gq̄

= vec′D(Ik ⊗HGq̄ ⊗B−1Gq̄)(Ik ⊗ q̄′G′H⊗ q̄′G′B−1)vecD

= vec′D(Ik ⊗R1)vecD

=
[
V ′D1 V ′D2 · · · V ′Dk

]


R1 0

R1

. . .

0 R1





VD1

VD2

...

VDk


= V ′D1R1VD1 + V ′D2R1VD2 + · · ·+ V ′DkR1VDk

= tr[(VD1V
′
D1 + VD2V

′
D2 + · · ·+ VDkV

′
Dk)R1]

= tr[VD(HG⊗B−1G)(q̄q̄′ ⊗ q̄q̄′)(G′H⊗G′B−1)]

= tr[(G′H⊗G′B−1)VD(HG⊗B−1G)(q̄q̄′ ⊗ q̄q̄′)].

(43)

Similarly, let

R2 = (HG⊗B−1G)(q̄ ⊗ q̄), (44)

R3 = q̄′G′H, (45)
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partition G′B−1C and vecG as

G′B−1C
k×p2k

=
[
MGC1 MGC2 · · · MGCk

]
, (46)

vecG
pk×1

=



VG1

VG2

...

VGk


, (47)

where MGCi and VGi are k × p2 and p× 1 respectively, and let

MV = M ′GC1 ⊗ V ′G1 +M ′GC2 ⊗ V ′G2 + · · ·+M ′GCk ⊗ V ′Gk. (48)

Then, since

q̄′mq̄′M(q̄ ⊗ q̄) = m′q̄q̄′M(q̄ ⊗ q̄)

= [(q̄ ⊗ q̄)′M ′ ⊗m′]vec(q̄q̄′)

= (q̄ ⊗ q̄)′(M ′ ⊗m′)(q̄ ⊗ q̄)

= tr[(M ′ ⊗m′)(q̄q̄′ ⊗ q̄q̄′)]
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for some vector m and matrix M of appropriate sizes, the second term of v1(q̄) in (17) becomes

q̄′G′B−1C(Ipk ⊗B−1Gq̄)(Ik ⊗HGq̄)(Ik ⊗ q̄′G′H)vecG

= q̄′G′B−1C(Ik ⊗R2)(Ik ⊗R3)vecG

= q̄′
[
MGC1 MGC2 · · · MGCk

]


R2 0

R2

. . .

0 R2





R3 0

R3

. . .

0 R3





VG1

VG2

...

VGk


=

k∑
i=1

(q̄′MGCiR2R3VGi)

= tr

k∑
i=1

[q̄′MGCi(HG⊗B−1G)(q̄ ⊗ q̄)q̄′G′HVGi]

= tr

k∑
i=1

[q̄′G′HVGiq̄
′MGCi(HG⊗B−1G)(q̄ ⊗ q̄)]

= tr

k∑
i=1

{
{[(G′H⊗G′B−1)M ′GCi]⊗ V ′GiHG}(q̄q̄′ ⊗ q̄q̄′)

}
= tr

k∑
i=1

[(G′H⊗G′B−1)(M ′GCi ⊗ V ′Gi)(Ik ⊗HG)(q̄q̄′ ⊗ q̄q̄′)]

= tr[(G′H⊗G′B−1)MV (Ik ⊗HG)(q̄q̄′ ⊗ q̄q̄′)].

(49)

From (43) and (49), (17) can be rewritten as

v1(q̄) = tr[L1(q̄q̄′ ⊗ q̄q̄′)], (50)

where

L1 = (G′H⊗G′B−1)VD(HG⊗B−1G) + (G′H⊗G′B−1)MV (Ik ⊗HG). (51)

Similar to u1(q̄), u2(q̄) in (15) can be rewritten as

u2(q̄) = q̄′(G′B−1G− Ik)(Ik ⊗ q̄′G′H⊗ q̄′G′H)vecD

= (q̄′ ⊗ q̄′ ⊗ q̄′)[(G′B−1G− Ik)⊗G′H⊗G′H]vecD

= vec′J2(q̄ ⊗ q̄ ⊗ q̄),

(52)
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where

vecJ2 = [(G′B−1G− Ik)⊗G′H⊗G′H]vecD. (53)

The first term of v2(q̄) in (18) can be written as

q̄′G′B−1C(Ik ⊗HGq̄ ⊗HGq̄)(G′B−1G− Ik)q̄.

Since

(G′B−1G− Ik)q̄ = vec[q̄′(G′B−1G− Ik)]

= (Ik ⊗ q̄′)vec(G′B−1G− Ik),

and vec(G′B−1G− Ik) can be partitioned as

vec(G′B−1G− Ik) =



VGI1

VGI2

...

VGIk


(54)

where VGIi is k × 1, we may mimic the second term of v1(q̄) and rewrite the first term of v2(q̄) further as

tr

k∑
i=1

[q̄′MGCi(HG⊗HG)(q̄ ⊗ q̄)q̄′VGIi]

= tr[(G′H⊗G′H)MV I(q̄q̄′ ⊗ q̄q̄′)],

(55)

where

MV I = M ′GC1 ⊗ V ′GI1 +M ′GC2 ⊗ V ′GI2 + · · ·+M ′GCk ⊗ V ′GIk. (56)

Similar to the first term of v1(q̄), since

q̄′G′B−1D = vec′(q̄′G′B−1D) = vec′D(Ipk ⊗B−1Gq̄),
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the second term of v2(q̄) in (18) can be rewritten as

1

2
vec′D(Ik ⊗B−1Gq̄ ⊗B−1Gq̄)(Ik ⊗ q̄′G′H⊗ q̄′G′H)vecD

=
1

2
tr[VD(B−1G⊗B−1G)(q̄q̄′ ⊗ q̄q̄′)(G′H⊗G′H)]

= tr[
1

2
(G′H⊗G′H)VD(B−1G⊗B−1G)(q̄q̄′ ⊗ q̄q̄′))].

(57)

From (55) and (57), we have

v2(q̄) = tr[L2(q̄q̄′ ⊗ q̄q̄′)], (58)

where

L2 = (G′H⊗G′H)MV I +
1

2
(G′H⊗G′H)VD(B−1G⊗B−1G). (59)

Since

vec′G(Ik ⊗HGq̄)

= [(Ik ⊗ q̄′G′H)vecG]′

= q̄′G′HG,

(16) becomes

u3(q̄) = −q̄′G′HG(Ik ⊗ q̄′G′H⊗ q̄′G′H)vecD

= −(q̄′ ⊗ q̄′ ⊗ q̄′)(G′HG⊗G′H⊗G′H)vecD

= vec′J3(q̄ ⊗ q̄ ⊗ q̄),

(60)

where

vecJ3 = −(G′HG⊗G′H⊗G′H)vecD. (61)
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Similar to the second term of v1(q̄), the first term of v3(q̄) in (19) can be rewritten as

−q̄′G′B−1C(Ik ⊗HGq̄ ⊗HGq̄)(Ik ⊗ q̄′G′H)vecG

= tr

k∑
i=1

[−q̄′MGCi(HG⊗HG)(q̄ ⊗ q̄)q̄′G′HVGi]

= tr[−(G′H⊗G′H)MV (Ik ⊗HG)(q̄q̄′ ⊗ q̄q̄′)].

(62)

Similar to the second term of v2(q̄), the second term of v3(q̄) in (19) can be rewritten as

−q̄′G′B−1D(Ik ⊗HGq̄)(Ik ⊗ q̄′G′H⊗ q̄′G′H)vecD

= −vec′D(Ipk ⊗B−1Gq̄)(Ik ⊗HGq̄)(Ik ⊗ q̄′G′H⊗ q̄′G′H)vecD

= −vec′D(Ik ⊗HGq̄ ⊗B−1Gq̄)(Ik ⊗ q̄′G′H⊗ q̄′G′H)vecD

= tr[−VD(HG⊗B−1G)(q̄q̄′ ⊗ q̄q̄′)(G′H⊗G′H)]

= tr[−(G′H⊗G′H)VD(HG⊗B−1G)(q̄q̄′ ⊗ q̄q̄′)].

(63)

From (62) and (63), we have

v3(q̄) = tr[L3(q̄q̄′ ⊗ q̄q̄′)], (64)

where

L3 = −(G′H⊗G′H)MV (Ik ⊗HG)− (G′H⊗G′H)VD(HG⊗B−1G). (65)

Similar to the first term of v1(q̄), v4(q̄) in (20) can be easily rewritten as

v4(q̄) =
1

4
tr[VD(HG⊗HG)(q̄q̄′ ⊗ q̄q̄′)(G′H⊗G′H)]

= tr[
1

4
(G′H⊗G′H)VD(HG⊗HG)(q̄q̄′ ⊗ q̄q̄′)]

= tr[L4(q̄q̄′ ⊗ q̄q̄)],

(66)

where

L4 =
1

4
(G′H⊗G′H)VD(HG⊗HG). (67)

By using (38), (50), (52), (58), (60), (64) and (66), we obtain (36) and (37), thus finishing the proof.
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Proof of Theorem 2: First, ai and bi are defined (Phillips and Park, 1988) as

ai = tr(Ai) (i = 0, 1, 2), (68)

where

A0 = L[(I +Kk,k)(P̄ ⊗ P̄ ) + vecP̄ vec′P̄ ],

A1 = L[(I +Kk,k)(P̄ ⊗ P + P ⊗ P̄ ) + vecP̄ vec′P + vecPvec′P̄ ],

A2 = L[(I +Kk,k)(P ⊗ P ) + vecPvec′P ];

bi = vec′JBivecJ (i = 1, 2, 3), (69)

where

B0 = H(P̄ ⊗ P̄ ⊗ P̄ ) +H(P̄ ⊗ vecP̄ vec′P̄ )H

+ P̄ ⊗Kk,k(P̄ ⊗ P̄ ) +Kk,k(P̄ ⊗ P̄ )⊗ P̄

+Kk,k2 [P̄ ⊗Kk,k(P̄ ⊗ P̄ )]Kk2,k = C0(P̄ ), say,

B1 = H(P ⊗ P̄ ⊗ P̄ )H

+H(P ⊗ vecP̄ vec′P̄ + P̄ ⊗ vecPvec′P̄ + P̄ ⊗ vecP̄ vec′P )H

+ P ⊗Kk,k(P̄ ⊗ P̄ ) + P̄ ⊗Kk,k(P ⊗ P̄ )

+ P̄ ⊗Kk,k(P̄ ⊗ P ) +Kk,k(P ⊗ P̄ )⊗ P̄

+Kk,k(P̄ ⊗ P̄ )⊗ P̄ +Kk,k(P̄ ⊗ P̄ )⊗ P

+Kk,k2{[P ⊗Kk,k(P̄ ⊗ P̄ )] + [P̄ ⊗Kk,k(P ⊗ P̄ )]

+ [P̄ ⊗Kk,k(P̄ ⊗ P )]}Kk2,k = C1(P̄ , P ), say,

B2 = C1(P, P̄ ),

B3 = C0(P ),
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with

H = I +Kk,k2 +Kk2,k,

P̄ ≡ I − P.

Secondly, from (68),

a0 = tr(A0) = tr{L[(I +Kk,k)(P̄ ⊗ P̄ ) + vecP̄ vec′P̄ ]}

= tr[(P̄ ⊗ P̄ )L(I +Kk,k) + vec′P̄LvecP̄ ]

= tr[(P̄ ⊗ P̄ )L(I +Kk,k)] + tr(vec′P̄LvecP̄ ).

(70)

Using (13) and P̄ ≡ I − P , we have

(A′B−1G)P̄ = 0, (71)

P̄ (G′B−1A) = 0. (72)

Therefore, by (21)-(25),

(P̄ ⊗ P̄ )L = 0, (73)

and

(HG⊗B−1G)vecP̄ = vec(B−1GP̄GH) = 0, (74)

(Ik ⊗HG)vecP̄ = vec(HGP̄ ) = 0. (75)

Combining (74) and (75) with (22) yields

L1vecP̄ = 0. (76)

Similarly,

L3vecP̄ = 0, (77)

L4vecP̄ = 0, (78)
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and

vec′P̄L2 = (L′2vecP̄ )′ = 0. (79)

From (76)-(79),

tr(vec′P̄LvecP̄ ) = 0. (80)

Substituting (73) and (80) into (70) gives

a0 = 0. (81)

Also, from (69),

b1 = vec′JB1vecJ

= vec′JH(P ⊗ P̄ ⊗ P̄ )HvecJ

+ vec′JH(P ⊗ vecP̄ vec′P̄ + P̄ ⊗ vecPvec′P̄ + P̄ ⊗ vecP̄ vec′P )HvecJ

+ vec′J [P ⊗Kk,k(P̄ ⊗ P̄ ) + P̄ ⊗Kk,k(P ⊗ P̄ )]vecJ

+ vec′J [P̄ ⊗Kk,k(P̄ ⊗ P ) +Kk,k(P ⊗ P̄ )⊗ P̄ ]vecJ

+ vec′J [Kk,k(P̄ ⊗ P̄ )⊗ P̄ +Kk,k(P̄ ⊗ P̄ )⊗ P ]vecJ

+ vec′JKk,k2{[P ⊗Kk,k(P̄ ⊗ P̄ )] + [P̄ ⊗Kk,k(P ⊗ P̄ )]

+ [P̄ ⊗Kk,k(P̄ ⊗ P )]}Kk2,kvecJ.

(82)

Using

Kp,qvecA = vec(A′),

A⊗B = Kp,r(B ⊗A)Ks,q,

38



for A : p× q and B : r × s where K is the commutation matrix, the following equations are obtained:

Kk,k2vecJ1 = 2(G′B−1 ⊗G′HG⊗G′H)vec(D′), (83)

Kk,k2vecJ2 = [G′H⊗ (G′B−1G− Ik)⊗G′H]vec(D′), (84)

Kk,k2vecJ3 = −(G′H⊗G′HG⊗G′H)vec(D′); (85)

Kk2,kvecJ1 = 2(G′H⊗G′B−1 ⊗G′HG)Kp2,kvecD, (86)

Kk2,kvecJ2 = [G′H⊗G′H⊗ (G′B−1G− Ik)]Kp2,kvecD, (87)

Kk2,kvecJ3 = −(G′H⊗G′H⊗G′HG)Kp2,kvecD. (88)

Then, substituting (83)-(88) into (82), and using

vec(ABC) = (C ′ ⊗A)vecB,

(A⊗B)′ = A′ ⊗B′,

(A⊗ C)(B ⊗D) = (AB)⊗ (CD),

together with (71) and (72) yield

b1 = 0. (89)

Given (81) and (89), the proof of Theorem 2.4 in Phillips and Park (1988) establishes the conclusion of

Theorem 2.

C Data Description

The earnings data used are drawn from the Panel Study of Income Dynamics (PSID), available at

http://psidonline.isr.umich.edu/

The sample consists of men who were heads of household from 1969 to 1974, between the ages of 21 (not

inclusive) and 64 (not inclusive), and who reported positive earnings in each year. Individuals with average

hourly earnings greater than $100 or reported annual hours greater than 4680 were excluded.

Variables V7492, V7490, V0313, V0794, V7460, V7476, V7491 listed on p.443 of Abowd and Card (1989)
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are not available now on the PSID website. The variables for sex listed on that page are not consistent with

those on the PSID website. The following are the PSID variables used here:

• ANNUAL EARNINGS: V1196, V1897, V2498, V3051, V3463, V3863;

• ANNUAL HOURS: V1138, V1839, V2439, V3027, V3423, V3823;

• SEX: ER32000;

• AGE: ER30046.
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