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Abstract

We study estimation and model selection on both the fixed and the random

effects in the setting of linear mixed models using outlier robust S-estimators.

Robustness aspects on the level of the random effects as well as on the error terms

is taken into account. The derived marginal and conditional information criteria

are in the style of Akaike’s information criterion but avoid the use of a fully

specified likelihood by a suitable S-estimation approach that minimizes a scale

function. We derive the appropriate penalty terms and provide an implementa-

tion using R. The setting of semiparametric additive models fit with penalized

regression splines, in a mixed models formulation, fits as a specific application.

Simulated data examples illustrate the effectiveness of the proposed criteria.

Some key words: Akaike information criterion; Conditional likelihood; Effective

degrees of freedom; Mixed model; Penalized regression spline; S-estimation.
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1 Introduction

We consider mixed linear models of the form Y = Xβ + Zu + ε, where u and ε are

independent random variables, not necessarily normally distributed. Outlying values

may be present in either u or ε. Variable selection in mixed linear models by means of

the Akaike information criterion (AIC, Akaike, 1973) which is defined as minus twice

the value of the maximized log-likelihood of the model plus twice the number of esti-

mated parameters in the model, may be performed using the marginal log-likelihood of

Y . Vaida and Blanchard (2005) have shown that in linear mixed models the resulting

marginal AIC is not appropriate for variable selection when the random effects are

of interest. They proposed the conditional Akaike information which uses the condi-

tional likelihood of the response Y given the random effects u. The penalty term in

the conditional AIC is related to the effective degrees of freedom of a linear mixed

model (Hodges and Sargent, 2001). Liang et al. (2008) have proposed a corrected

conditional AIC that accounts for the estimation of the variance components. Greven

and Kneib (2010) study the theoretical properties of both the marginal and the con-

ditional corrected AIC for the selection of variables in linear mixed models, and they

provide a computationally feasible penalty term. Bondell et al. (2010) proposed a joint

variable selection for fixed and random effects in linear mixed-effects models. All of

the mentioned papers use maximum likelihood or restricted maximum likelihood for

estimation.

In this paper we derive a marginal and conditional AIC for linear mixed models that

no longer requires likelihood based estimation methods. In particular, we work with

robust S-estimators that can accommodate the presence of outliers in (i) the response

values, (ii) the random effects. We derive an expression for the penalty term that

explicitly takes the estimation of the variance components into account and that can
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be computed in a straightforward way.

2 S-estimation in linear mixed models

We model the vector of observations for the ith subject, i = 1, . . . , n, as

Yi = Xiβ +
r∑

j=1

Zijuij + εi, (1)

where Yi has length mi, Xi is a mi×p design matrix of fixed effects, Zij is a mi×qj design

matrix for the random effects. The p-vector β is fixed but unknown, while the qj-vectors

uij are random with mean zero and variance matrix Gj. The random error εi has mean

zero, and its variance matrix is denoted by Ri. The total number of observations is

equal to N =
∑n

i=1 mi, resulting in vectors Y and ε of length N , a N×p design matrix

X = (X1, . . . , Xn)t for the fixed effects, a mi×q design matrix Zi = (Zi1, . . . , Zir) for the

random effects, ui = (ut
i1, . . . , u

t
ir)

t is a q × 1 vector. We denote Z = diag(Z1, . . . , Zn),

Z is a N × nq vector, u = (ut
1, . . . , u

t
n)t is a nq × 1 vector, Gi = diag(G1, . . . , Gr),

G = diag(G1, . . . , Gn), and let q =
∑r

j=1 qj. We assume that the set of random effects

{uij; i = 1, . . . , n, j = 1, . . . , r} and the set of error terms {ε1, . . . , εn} are independent,

that Var(uij) = Gj = σ2
j Iqj

and that Var(ε) = R = σ2
0IN , with IN the identity

matrix with N rows. We define Ri = σ2
0Imi

and V = Var(Y ) = R + ZGZt. In the

balanced case where all mi = m, we define the m × m matrices Var(Yi) = V0, and

Var(εi) = R0 = σ2
0Im, for i = 1, . . . , n, j = 1, . . . , r.

The most frequent assumption in linear mixed models is that both the errors ε

and the random effects u have Gaussian distributions. Outliers, extreme observations

that are unlike most of the other observations in the sample, may occur for any of

the observed random effects as well as for the observed error terms. Consequently, in

such case the distributions of the errors and/or random effects may be non-Gaussian.
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Welsh and Richardson (1997) present several approaches and give an overview on how

to robustly estimate parameters in linear mixed models. We use the high-breakdown

S-estimators of Copt and Victoria-Feser (2006) for both the parameters of the mean

as well as for the variance components. For the purpose of developing a conditional

AIC, we need in addition the predictions of the random effects, for which we develop

an estimation scheme.

Copt and Victoria-Feser (2006) work with the marginal likelihood in the linear

mixed model where all mi = m, and define the S-estimator for the vector β and the

variance components σ2 = (σ2
0, . . . , σ

2
r) as the values for β and σ2 that minimize det(V0)

subject to the constraint

1

n

n∑
i=1

ρ1[{(Yi −Xiβ)tV −1
0 (Yi −Xiβ)}1/2] = b1. (2)

An appropriate choice of the function ρ1 and of the value of b1 will lead to robust

estimators with a high breakdown point.

The loss function ρ1 is a function that is even, continuously differentiable, non-

decreasing on [0,∞), satisfies that ρ1(0) = 0 and is bounded for above by 1, that

is, supε∈R ρ1(u) = 1. We define b1 = EF0 [ρ1(ε)] to ensure consistency of the scale

estimator under the central model F0 and assume that ε0 < b1 < 1− ε0, here F0 is the

cumulative distribution function of ε. The notation EF0 means that the expectation is

computed with respect to F0. When ρ1(x) = x2, the estimation method boils down to

maximum likelihood estimation. A translated Tukey biweight function is proposed by

Rocke (1996) and is used as ρ1 in this paper, see also Copt and Victoria-Feser (2006),

ρ1(d; c.M) =





d2

2
, 0 ≤ d ≤ M

ρM≤d≤M+c(d; c,M), M ≤ d ≤ M + c

M2

2
+ c(5c+16M)

30
, d > M + c,
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with M + c < ∞ and

ρM≤d≤M+c(d; c,M) =
M2

2
− M2(M4 − 5M2c2 + 15c4)

30c4
+ d2

(
0.5 +

M4

2c4
− M2

c2

)

+d3

(
4M

3c2
− 4M3

3c4

)
+ d4

(
3M2

2c4
− 1

2c2

)
− 4Md5

5c4
+

d6

6c4
,

where the constants c and M can be chosen to achieve the desired breakdown point

and asymptotic rejection probability.

We consider a conditional model for Y |u. In a first setting we assume that the

random effects have a normal distribution uj ∼ N(0, Gj). The conditional S-estimator

(predictor) for the vectors β, u and the variance σ2
0 are those parameter values that

minimize det(R0)= |R0| subject to the constraint

1

n

n∑
i=1

ρ1[{(Yi −Xiβ − Ziu)tR−1
0 (Yi −Xiβ − Ziu)}1/2] = b1. (3)

By following the idea of Henderson (1973) we provide an iterative system that gives in

addition to estimators of (β, σ2) the predictions of the random effects. In a likelihood

setting the Henderson approach starts by phrasing the joint likelihood of (Y, u) as the

product of the likelihood of Y |u and the likelihood of u. In our context this leads to

the following joint Lagrangian function, the maximization of which leads to estimators

and predictors simultaneously,

Ljoint(β, u, σ2) = log |R0|+ τ1

n

n∑
i=1

{ρ1(di)− b1}+ log |G|+ utG−1u, (4)

where di = di(β, u, R0) = {(Yi−Xiβ−Ziu)tR−1
0 (Yi−Xiβ−Ziu)}1/2 and τ1 is a Lagrange

multiplier. The estimators of β and σ2 that result from this procedure are identical to

those obtained by Copt and Victoria-Feser (2006) by using a marginal Lagrangian (4)

and by omitting the part related to the marginal density of u, which is the reason why

that approach does not automatically provide predictions of the random effects. The

derivation of the estimators/predictions is given in Appendix A.
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Result 1 The S-estimators β̂ and σ̂2 of the fixed effect parameters β and of the vector

of variance components σ2 and the S-predictions û of the random effects u in the linear

mixed model (1) obtained by maximizing the joint Lagrangian (4), assuming normality

of the random effects, are equivalently obtained by iteratively solving the following set

of equations,

β̂ = (X tŴ V̂ −1X)−1X tŴ V̂ −1Y (5)

û =
τ̂1

2n
ĜZtŴ V̂ −1(Y −Xβ̂) (6)

σ̂2
0 = (d̂tŴ d̂)−1(Y −Xβ̂ − Zû)tŴ (Y −Xβ̂ − Zû) (7)

σ̂2
j = ût

jûj/qj, (8)

where Ŵ = diagi=1,...,n(ψ1(d̂i)/d̂iIm), d̂i = di(β̂, û, R̂0), d̂ = (d̂1, . . . , d̂n)t and the vector

û decomposes in components ûj with length qj, j = 1, . . . , r, τ̂1 = 2mn(d̂tŴ d̂)−1,

V̂ = R̂ + Z(
τ̂1

2n
Ĝ)ZtŴ . (9)

When ρ1(t) = t2 the S-scale estimator σ̂0 reduces to the sample standard deviation.

In this case we have that Ŵ = 2 In and that τ̂1 = n. Hence, as expected, V̂ =

R̂ + ZĜZt and (5) and (6) correspond to the maximum likelihood fixed and random

effects formulae where β̂ML = (X tV̂ −1X)tX tV̂ −1Y and ûML = ĜZtV̂ −1(Y −Xβ̂ML).

To accommodate possible outliers on the random effects we consider robust S-

prediction of the random effects simultaneous with S-estimation of the fixed effects

and variance components. For this purpose we define a new joint Lagrangian function

that is to be optimized over β, u and σ2,

Ljoint,2(β, u, σ2) = log |R0|+ τ1

n

n∑
i=1

{ρ1(di)− b1}+ log |G|+ τ2

r

r∑
j=1

{ρ2(d2j)− b2}. (10)

Here d2,j = (ut
jG

−1
j uj)

1/2, ρ1 and ρ2 are both translated Tukey’s bi-square family loss

functions, which might be taken to be different functions, b1 and b2 are constants
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associated with the breakdown point of the estimator, defined by bk = E{ρk(
√

U)},
where U is a chi-squared distributed random variable with m degrees of freedom, where

m is the length of the observation vectors Yi, τ1 and τ2 are Lagrange multipliers.

Result 2 The S-estimators β̃ and σ̃2 of the fixed effect parameters β and of the vari-

ance components σ2 and the S-predictions ũ of the random effects u in the linear mixed

model (1) obtained by maximizing the joint Lagrangian (10), without assuming nor-

mality, are equivalently obtained by iteratively solving the following set of equations,

β̃ = (X tW̃ Ṽ −1X)−1X tW̃ Ṽ −1Y

ũ =
rτ̃1

nτ̃2

(
G̃−1/2W̃2G̃

−1/2
)−1

ZtW̃ Ṽ −1(Y −Xβ̃) (11)

σ̃2
0 = (d̃tW̃ d̃)−1(Y −Xβ̃ − Zũ)tW̃ (Y −Xβ̃ − Zũ)

σ̃2
j =

τ̃2

2rqj

ũt
jW̃2jũj (12)

where the matrix of weights W̃ = diagi=1,...,n{ψ1(d̃i)/d̃iIm}, d̃i = di(β̃, ũ,R̃0), d̃ =

(d̃11, . . . , d̃1n)t, τ̃1 = 2nm(d̃tW̃ d̃)−1,

Ṽ = R̃ + Z

(
rτ̃1

nτ̃2

(G̃−1/2W̃2G̃
−1/2)−1

)
ZtW̃ , (13)

d̃2j = (ũt
jG̃

−1
j ũj)

1/2, d̃2 = (d̃21, . . . , d̃2r)
t, W̃2 = diagj=1,...,r(ψ2(d̃2j)/d̃2jIqj

),

τ̃2 = 2rq
(
d̃t

2W̃2d̃2

)−1

and ψj (j = 1, 2) is the first derivative of ρj.

When ρ2(x) = x2, the estimators presented in Result 2 coincide with those of

Result 1.

Copt and Victoria-Feser (2006, end of Sec. 3.2) argue that arguments as in Davies

(1987) can be used to obtain the breakdown point of the constrained estimators, similar

arguments hold for the case of S-estimation in the conditional model.

The estimators of the variance components that are obtained by iteratively solving

the sets of equations as in Results 1 and 2, are by construction non-negative.
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3 AIC for S-estimation in linear mixed models

When both the error terms and the random effects are Gaussian,

2 log f(Y | β̂, û, R̂) = −N log(2π)− log |R̂| − (Y −Xβ̂ − Zû)tR̂−1(Y −Xβ̂ − Zû),

with maximum likelihood or restricted maximum likelihood estimators β̂, û, σ̂2
ε .

A marginal AIC follows from an immediate application of the original AIC (Akaike,

1973), it counts the number of estimated parameters to be used in the penalty part

of the criterion and it uses the marginal likelihood of Y , with maximum likelihood

estimators inserted for the unknown parameters,

mAIC = −2 log fY (Y ; β̂, V̂ ) + 2(p + r + 1).

Vaida and Blanchard (2005) obtain for variable selection when the random effects

are of interest a conditional AIC, defined as

cAIC = −2 log fY |u(Y | β̂, û, R̂) + 2(Tr(H) + 1),

where fY |u is the conditional likelihood for Y |u and H = C(CtR−1C + B)−1CtR−1,

where C = (X,Z) and B = diag(0p, G
−1), where 0p is a vector of zeros of length p.

The added value of 1 in the penalty term reflects the estimation of the error variance

σ2
0.

The boundedness of the functions ρ1 and ρ2 for S-estimation has as a consequence

that the transformation exp(−ρk), k = 1, 2, does not lead to a density function since its

integral will be infinite. Hence a substitution of the model’s density f by exp(−ρk) in

expressions for the AIC is not valid when working with S-estimators, in contrast to the

case of M-estimation where the unbounded ρ functions lead to valid density functions.

Motivated by the m-variate normal likelihood with mean function µ and variance ma-

trix Σ, a cAIC expression for M-estimation (Ronchetti, 1997) would replace the sum
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of the Mahalanobis distances by
∑n

i=1 ρ(yi; µ, Σ). For S-estimation this, however, is

the constant number nb. Indeed, the marginal multivariate S-estimator of (β, u, V ) is

defined by the minimization of |V0| subject to the constraint (2), while the conditional

multivariate S-estimator of (β, u,R) is defined by the minimization of |R0| subject to

the constraint (3). S-estimation requires a different approach towards defining the

AIC. Following Tharmaratnam and Claeskens (2011), we come to the definition of a

marginal and conditional AIC for use with S-estimation as

mAIC.S1 = 2 log|V̂ |+ 2 (p + q + 1), cAIC.S1 = 2 log|R̂|+ 2 Tr(ĤS + 1),

where, from application of Result 1, the matrix ĤS = (IN − R̂V̂ −1P̂ ), with P̂ =

IN −X(X tŴ V̂ −1X)−1X tŴ V̂ −1.

When robustness in both ε and u is considered we use instead the matrices R̃, Ṽ , W̃

(see Result 2), with the corresponding matrices H̃S and P̃ , leading to

mAIC.S2 = 2 log|Ṽ |+ 2 (p + r + 1), cAIC.S2 = 2 log|R̃|+ 2 Tr(H̃S + 1).

Wager et al. (2007) compare the use of marginal and conditional AIC values for

selecting a model amongst penalized spline additive mixed models with hierarchical

smooth terms. One of their findings is that cAIC performs better for more complex

models.

Liang et al. (2008) obtain that Φ0 = Tr{∂Ŷ /(∂Y )} is a better penalty term than

Tr(H) + 1, since it takes the effect of the estimation of the variance components into

account. This is further studied and explicitly computed by Greven and Kneib (2010,

Thm. 3) for (restricted) maximum likelihood estimation. A large part of the difficulty

in arriving at computable expressions is that the estimators (β̂, û, σ̂2) depend on Y .

The corrected conditional AIC from Greven and Kneib (2010) is

ccAIC = −2 log fY |u(Y | β̂, û, R̂) + 2 Φ0. (14)
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For the case of S-estimation we explicitly obtain the generalized degrees of freedom for

both situations with one or two levels of robustness. In these calculations we always

consider σ2
ε > 0 to be unknown, and hence we do not need any additional adjustments

in the penalty Φ0 to account for the estimation of the error variance.

Theorem 1 The generalized degrees of freedom ΦS1 = Tr{∂Ŷ /(∂Y )} when the esti-

mators are obtained via the joint Lagrangian (4) are computed as:

ΦS1 = Tr(IN − R̂V̂ −1P̂ −B) (15)

where

B =
∂(R̂V̂ −1P̂ )

∂Y
Y =

(
∂(R̂V̂ −1P̂ )

∂Y1

Y, . . . ,
∂(R̂V̂ −1P̂ )

∂YN

Y

)

of which the kth column (k = 1, 2, . . . , N) equals

Bk =
∂(R̂V̂ −1P̂ )

∂σ2
0

Y
∂σ̂2

0

∂Yk

+
r∑

j=1

∂(R̂V̂ −1P̂ )

∂σ2
j

Y
∂σ̂2

j

∂Yk

= D1D2k +
r∑

j=1

D3jD4jk.

Here, D1 = [IN − R̂V̂ −1{(IN − P̂ )Dvσ0 − Dwσ0}]V̂ −1P̂ , D2k = −H−1
σ0

Hσ0Yk
, D3j =

−τ1/(2n)R̂V̂ −1P̂ZZtŴ V̂ −1P̂ , D4jk = −H−1
σj

HσjYk
, with V̂ , Ŵ and τ̂1 as in Result 1,

Âj = τ̂1/(2n)Zt
jŴ V̂ −1P̂ Y , Dvσ0 = ∂V̂ /∂σ2

0, Dwσ0 = ∂Ŵ/∂σ2
0, Dτ1σ0 = ∂τ̂1/∂σ2

0,

DvYk
= ∂V̂ /∂Yk, DwYk

= ∂Ŵ/∂Yk, Dτ1Yk
= ∂τ̂1/∂Yk, D(V −1Pk)Yk

= ∂(V̂ −1P̂k)/∂Yk,

Pk is the kth column of the matrix P . In the above formulae we have used Hσ0 =

−N/σ4
0 −N−1Y tP̂ tV̂ −1[Ŵ V̂ −1P̂ Y Dτ1σ0 − 2 τ1ŴY V̂ −1{(IN − P̂ )Dvσ0 −Dwσ0}V̂ −1P̂ +

τ1Dwσ0V̂
−1P̂ Y ], Hσj

= −qj/σ
4
j − 2 Ât

j{τ1/(2n)Zt
jŴ V̂ −1P̂Zj}Âj, Hσ0Yk

= −n−1Y t
k P̂ t

k

×V̂ −1{2 τ1Ŵ V̂ −1P̂k + Dτ1Yk
Ŵ V̂ −1P̂kYk + 2 τ1ŴD(V −1Pk)Yk

Yk + τ1DwYk
V̂ −1P̂kYk} and

HσjYk
= −n−1Ât

j{τ1Z
t
jŴ V̂ −1P̂k + τ1Z

t
jDwYk

V̂ −1P̂kYk + τ1Z
t
jŴD(V −1Pk)Yk

Yk +Dτ1Yk
Zt

j

×Ŵ V̂ −1P̂kYk}.

For the situation where we consider robustness aspects for both the random effects

and the errors, the following theorem is proven in the Appendix. The main difference is
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in the partial derivatives of the predictions of the random effects, which has an effect on

the derivatives of the fixed effects as well, through the connections shown in Result 2.

Theorem 2 The generalized degrees of freedom ΦS2 = Tr{∂Ŷ /(∂Y )} when the esti-

mators are obtained via the joint Lagrangian (10) are computed as:

ΦS2 = Tr
(
IN − R̃Ṽ −1P̃ − B̃

)
(16)

where

B̃ =
∂(R̃Ṽ −1P̃ )

∂Y
Y =

(
∂R̃Ṽ −1P̃

∂Y1

Y, . . . ,
∂R̃Ṽ −1P̃

∂YN

Y

)

of which the kth column (k = 1, 2, . . . , N) equals

B̃k =
∂(R̃Ṽ −1P̃ )

∂σ2
0

Y
∂σ̃2

0

∂Yk

+
r∑

j=1

∂(R̃Ṽ −1P̃ )

∂σ2
j

Y
∂σ̃2

j

∂Yk

= D̃1D̃2k +
r∑

j=1

D̃3jD̃4jk.

The quantities D̃1 and D̃2k are the same as in Theorem 1 though use the estimators

Ṽ , W̃2, d̃2 and τ̃2 from Result 2, D̃3j = −R̃Ṽ −1P̃ D̃vσj
Ṽ −1P̃ and D̃4jk = −H̃−1

σj
H̃σjYk

.

Here D̃vσj
= ∂Ṽ /∂σ2

j , D̃τ2σj
= ∂τ̃2/∂σ2

j , D̃d2jσj
= ∂d̃2j/∂σ2

j , D̃W2σj
= ∂W̃2/∂σ2

j ,

D̃τ2Yk
= ∂τ̃2/∂Yk, D̃d2jYk

= ∂d̃2j/∂Yk, D̃W2jYk
= ∂W̃2j/∂Yk. Further, the deriva-

tives H̃σj
= −qj/σ̃

4
j + 1/(2rσ̃2

j )d̃
t
2j {(τ̃2/σ̃

2
j )W̃2j d̃2j − W̃2j d̃2jD̃τ2σj

− 2τ̃2W̃2jD̃d2jσj
−

τ̃2D̃W2jσj
d̃2j}, H̃σjYk

= −1/(2rσ̃2
j )d̃

t
2j{W̃2j d̃2jD̃τ2Yk

+ 2τ̃2W̃2jD̃d2jYk
+ τ̃2D̃W2jYk

d̃2j}.

The generalized degrees of freedom from Theorems 1 and 2 lead to corrected versions

of the conditional AIC,

ccAIC.S1 = 2 log|R̂|+ 2 ΦS1, ccAIC.S2 = 2 log|R̃|+ 2 ΦS2. (17)

While the expressions for the generalized degrees of freedom ΦS1 and ΦS2 might

look formidable, they are straightforward to program in any matrix-language software

(e.g. R). Our code is available from https://perswww.kuleuven.be/Gerda Claeskens/

software/functionsRCAIC.R.
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4 Numerical results

4.1 Algorithm

An iterative procedure is required to compute the S-estimators in Results 1 and 2,

as is the case for other S-estimation schemes, e.g. in linear regression models. The

algorithm to obtain the estimators from Result 1 is described in the following steps,

Step 1: Let β̂(0), û(0), (σ̂2
0)

(0) and (σ̂2
j )

(0) be the initial values, for which we use Minimum

Covariance Determinant (MCD) estimators from covMcd function in the R

library robustbase.

Step 2: Set k = 0. Iterate the following steps until convergence:

(i) Compute the d̂
(1)
i , weights Ŵ (1) and τ̂ (1) as in Result 1.

(ii) Compute β̂(1) and û(1) by substituting (σ̂2
0)

(0), (σ̂2
j )

(0), d̂
(1)
i , Ŵ (1) and τ̂ (1)

in the equations (5) and (6).

(iii) Compute (σ̂2
0)

(1), (σ̂2
j )

(1) by substituting β̂(1), û(1), d̂
(1)
i , Ŵ (1) and τ̂ (1) in

the equations (7) and (8).

(iv) If either k = maxit (i.e., the maximum number of iterations) or |β̂(k) −
β̂(k+1)| < ε |β̂(k)| where ε > 0 is a fixed small constant (the tolerance

level), then set β̂F = β̂(k) and stop.

Step 3: Compute the final estimators (σ̂2
0)

(F ), (σ̂2
j )

(F ) by substituting β̂(F ), û(F ), d̂
(F )
i ,

Ŵ (F ) and τ̂ (F ) in the equations (7) and (8).

We used a similar algorithm for obtaining the estimates from Result 2. We have

coded the above algorithm in R. In our experience the above algorithm converges

without problems in the majority of the cases. The algorithm with ε = 10−6 and

12



maxit = 500 converges generally in less than 200 iterations. For all of our simulation

experiments, we have never encountered a situation where the algorithm diverged.

4.2 Simulation results – S-estimators

To investigate the performance of the S1 and S2-estimators we fit mixed models as

in (1) with generated outliers (i) only in the errors ε, (ii) in both ε and u. In a

balanced design we take n = 20, m = 4, r = 2, p = 7, q = 2 and N = 80. A

comparison is also made with the non-robust maximum likelihood estimators, using

the function lme from the R library nlme. For the robust estimation methods, we used

our own implementation of the algorithm in Section 4.1. We simulated 1000 samples

for all simulation settings. We used a translated Tukey biweight function with 50%

breakdown point and constant c = 5.41 to compute the S1- and S2-estimators in all

cases.

Case 1: We consider a true model Y = m1(x, u) + ε, with x = (x1, . . . , x6), and

m1(x, u) = (β0 +u1j)+(β1 +u2j)x1 +β2x2 +β3x3. We fit linear mixed models with six

covariates in all simulation settings. The covariates are generated from a multivariate

normal distribution with mean vector µ = (1, 1, . . . , 1) and covariance matrix Σ = I6,

while the errors ε and random components each come from a N(0, 1) distribution. We

took β0 = β1 = β2 = β3 = 5. To investigate the robustness of the estimation method

against outliers, we generated different percentages of outliers (0%, 10%, 20% and

30%) from a N(100, 0.52) distribution for the error terms and 10% outlying random

components were generated from a student t-distribution with, respectively, 3 and 5

degrees of freedom for u1 and u2.

The fit of the estimated models is measured via the median squared prediction

error (MSPE). Denoting m̂r(x) the estimated value of m(x) for simulation run r, (r =

13
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Figure 1: Case 1, outliers in both ε and u. Box plots of the log median squared prediction

error using (a) ML, (b) S1 and (c) S2-estimation for samples with mean structure m1(x, u).

S-estimators are computed with 50% breakdown point.

1, 2, . . . , 1000), the MSPE for the rth simulation run is defined by

MSPEr = median{[m(xi)− m̂r(xi)]
2, i = 1, . . . , n}.

boxplots on the log scale of the MSPE values visualize the variability of the obtained es-

timates, see Figure 1. It is observed that the MSPEs of the S1- and the S2-estimators re-

main stable as the proportion of contamination increases. The ML-estimator’s MSPEs

increase in the presence of outliers, even with only 10% of outliers. The S2-estimators

perform better than the S1-estimators in the case outliers are present in both the errors

and the random components.

4.3 Simulation results – Variable selection

We compare the different versions of the AIC, see Section 3. In each case, the largest

model contains six covariates, some of them are redundant. The simulation results are

summarized by reporting the proportions of selected models that are (C) a correct fit –

the true model only, (O) overfit – models containing all the variables in the true model

plus some more that are redundant, (U) underfit – models with only a strict subset

14



of the variables in the true model, (W) wrong fit – all other models. These are the

models where some of the relevant variables might be present (though not all of them)

in addition to some of the redundant variables.

For case 1 we select amongst the fixed and random components of the model and

fit all possible subsets of the largest model to the data. Again, outliers on the response

variable are generated from a N(100, 0.52) distribution in different percentages (10%,

20% and 30%). From table 1 is clearly observed that the performance of the three

marginal AICs is inferior to those of the conditional AICs, which is to be expected

since in this setting we select both the fixed and the random components in the model.

The conditional S1 and S2-methods have a good performance in the sense of having

larger percentages of correctly selected models and smaller percentages of wrong and

underfit models, also in the case that no outliers are present in the data, while these

methods are preferred in the case of outliers. Similar results were obtained (not shown)

in case only the errors ε contain outliers. In that situation, S1 and S2 gave practically

the same results, while S2 is the preferred method for the situation of outliers in the

random effects.

We considered two other simulation settings. Case 2 is taken from Greven and Kneib

(2010), where m2(x) = 1+x+2d(0.3−x)2. The covariate values x are generated from a

uniform distribution on the interval [0, 1]. In the model, d is a constant and increasing

values of d correspond to the increased non-linearity. We generate 11 different models

corresponding to d = (0, 5, 10, . . . , 50). The model is linear in x when d = 0. In the

case of no outliers, the error terms ε have a standard normal distribution. We fit a

cubic thin plate regression spline model

Yi = β0 + β1xi +
K∑

k=1

uk|xi − κk|3 + εi,

using maximum likelihood estimation and the S1-estimation method. In the mixed

15



Table 1: Case 1. Outliers in u and ε. Proportion of selected models for the true function

m1(x, u) for p = 6, error terms and random components from a N(0, 1) distribution, and

for sample size n = 100. We consider 10%, 20% and 30% of outliers in ε generated from

ε ∼ N(100, 0.52) and 10% random component outliers generated from student t-distributions

with 3 and 5 degrees of freedom for, respectively, u1 and u2. S-estimators are computed with

a 50% breakdown point.

AIC AIC.S1 AIC.S2

ε % m c cc m c cc m c cc

0 C 0.425 0.536 0.532 0.378 0.484 0.487 0.351 0.499 0.544

O 0.345 0.456 0.445 0.324 0.403 0.458 0.357 0.420 0.406

U 0.230 0.000 0.000 0.224 0.094 0.048 0.213 0.049 0.023

W 0.000 0.008 0.023 0.074 0.019 0.007 0.079 0.032 0.027

10 C 0.010 0.017 0.074 0.345 0.498 0.512 0.379 0.498 0.525

O 0.009 0.069 0.081 0.342 0.424 0.421 0.326 0.399 0.422

U 0.574 0.611 0.608 0.234 0.044 0.046 0.201 0.051 0.046

W 0.407 0.303 0.237 0.079 0.034 0.021 0.094 0.052 0.007

20 C 0.009 0.089 0.021 0.324 0.428 0.473 0.348 0.437 0.527

O 0.018 0.058 0.024 0.231 0.395 0.374 0.297 0.408 0.430

U 0.554 0.522 0.532 0.219 0.134 0.058 0.250 0.131 0.011

W 0.419 0.331 0.423 0.226 0.043 0.095 0.105 0.024 0.032

30 C 0.008 0.001 0.023 0.327 0.475 0.411 0.354 0.487 0.501

O 0.014 0.075 0.089 0.264 0.309 0.335 0.274 0.392 0.412

U 0.594 0.658 0.674 0.321 0.214 0.226 0.353 0.114 0.035

W 0.384 0.266 0.214 0.088 0.002 0.028 0.019 0.007 0.052
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model formulation the uk are random variables with mean zero and variance σ2
u. We

placed the knots according to the quantiles of the data, for sample size n = 100 there

were 24 knots. For the non-robust estimation methods we have used the R library

SemiPar, function spm,

For each value of the constant d, for each simulated data set, we use the mAIC,

ccAIC, mAIC.S1 and ccAIC.S1 to decide on either the linear model (with d = 0) or

the more complex model (with the given value of d). To assess the performance of the

marginal and the conditional AIC in distinguishing the linear and non-linear models,

we compute the frequency of selecting the nonlinear model for each d value. We use

1000 simulated data sets for both cases with (a) no outliers and (b) 20% outliers on the

error terms, generated from a N(100, 0.52) distribution for the sample size n = 100.

From Figure 2 we observe that the corrected conditional AIC selects a larger proportion

of nonlinear models than the marginal AIC (which is the true model when d 6= 0). This

holds for both maximum likelihood estimators and S1-estimators. In these penalized

spline models, the random effects correspond to the spline coefficients. The conditional

AIC is better suited to decide on the inclusion of random effects (i.e. nonlinear effects

in this setup) than the marginal AIC. The results do not change much for different

values of d. The significant effect of the robust methods is clearly visible in the case

that outliers are present.

For case 3 we consider fitting semiparametric additive models Case 3: m3(x) =

1 + 2d1 cos(πx1) + d2 sin((0.5 − x2)
2) + x3, with d1 = 15, d2 = 25. The covariates

x1, . . . , x6 are generated from a multivariate normal distribution which is the same as

in case 1. The full model that is fit to the data is

Yi = β0 +
6∑

j=1

βjxji +
K∑

k=1

u1k|x1i − κk|3 +
K∑

k=1

u2k|x2i − κk|3 + εi,

that is, cubic thin plate splines are used to model smooth functions of x1, x2, while
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Figure 2: Case 2. Proportion of selected larger models from mAIC (solid line), ccAIC

(dashed line), mAIC.S1 (dotted line) and ccAIC.S1 (dot-dashed line) with mean function

m2(x). (a) no outliers in the data, (b) 20% of outliers in the error variables ε.

x3, . . . , x6 enter the model in a linear way. We fit model with all possible combinations

of the six covariates, resulting in (26 − 1) different models.

For case 3 we conduct selection amongst the parametric and nonparametric (ran-

dom) components of the model. This results in fitting 26 − 1 different models to the

data. Again, outliers on the response variable are generated from a N(100, 0.52) dis-

tribution in different percentages (10%, 20% and 30%). Based on the results from

Table 2 we clearly observe that the performance of the two marginal AICs (mAIC and

mAIC.S1) is inferior to that of the conditional AICs, which is to be expected since in

this setting we select both the parametric and the nonparametric components in the

model. Table 2 shows that the conditional S1-methods have a good performance also

in the case that no outliers are present in the data, and these methods are preferred
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Table 2: Case 3. Proportion of selected models for data generated with dependent xs, mean

m3(x) for p = 6, error terms from a N(0, 1) distribution, and for sample size n = 100. We

consider different % of outliers on ε, generated from N(100, 0.52). S-estimators are computed

with a 50% breakdown point.

% mAIC cAIC ccAIC mAIC.S1 cAIC.S1 ccAIC.S1

0 C 0.383 0.494 0.442 0.270 0.432 0.499

O 0.307 0.471 0.483 0.210 0.361 0.371

U 0.231 0.000 0.000 0.364 0.059 0.062

W 0.079 0.035 0.075 0.156 0.148 0.068

10 C 0.009 0.010 0.011 0.257 0.422 0.474

O 0.003 0.006 0.008 0.200 0.343 0.352

U 0.654 0.638 0.685 0.346 0.056 0.059

W 0.334 0.346 0.296 0.198 0.179 0.115

20 C 0.006 0.008 0.010 0.236 0.409 0.432

O 0.002 0.004 0.016 0.216 0.337 0.428

U 0.672 0.683 0.698 0.318 0.052 0.107

W 0.320 0.305 0.276 0.230 0.202 0.033

30 C 0.002 0.006 0.005 0.283 0.399 0.422

O 0.001 0.004 0.007 0.491 0.376 0.395

U 0.710 0.693 0.706 0.084 0.079 0.106

W 0.287 0.297 0.282 0.142 0.146 0.077

in the case of outliers. Higher proportions of correct and overfit models are obtained

when the corrected versions of the conditional AIC are used.
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5 Discussion

The need for robust model selection methods in linear mixed models has lead us to

develop the generalized degrees of freedom for S-estimation methods. In multilevel

models, extreme or outlying observations might occur at any level. Theoretical prop-

erties of the proposed estimation and variable selection approach are worth a separate

study, which, however, extends beyond the scope of the current paper.

It would be interesting to develop the proposed estimation method and the subse-

quent generalized degrees of freedom that we have used in a conditional AIC, for other

random effect models, such as generalized linear mixed models. Several non robust

model selection methods exist for generalized linear mixed models, see for example, Cai

et al. (2006), Chen et al. (2003) and Lavergne et al. (2008). Also an extension towards

survival-type data is relevant, for which, for example, Ibrahim and Chen (2005), Hjort

and Claeskens (2006), Kneib and Fahrmeir (2007) and Liang and Zou (2008) proposed

some model selection methods. Müller and Welsh (2009) extend their bootstrap-based

model selection method (Müller and Welsh, 2005) which is robust against outliers from

linear models to generalized linear models, however, not including random effects. Xu

et al. (2009) proposed a semiparametric model selection method with application to

proportional hazards mixed models using profile likelihood, however non robust to out-

liers in the data. Ideas in those papers could be used to propose a robust version of

AIC for survival models.
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A Appendix. Computation of S-estimators for lin-

ear mixed models

A.1 Proof of Result 1

Setting the partial derivatives of Ljoint in (4) with respect to β, u and the vector σ2 to

zero, and solving for these values, yields estimators β̂, û, σ̂2. We arrive at

β̂ = (X tŴ R̂−1X)−1X tŴ R̂−1(Y − Zû) (18)

û = (ZtŴ R̂−1Z +
2n

τ̂1

Ĝ−1)−1ZtŴ R̂−1(Y −Xβ̂). (19)

Substituting (19) in equation (18) yields (5), while substituting (5) in (19) yields (6).

We write V̂ −1 = R̂−1 − R̂−1Z(ZtŴ R̂−1Z + 2n
τ̂

Ĝ−1)−1ZtŴ R̂−1 from which it follows

that V̂ = R̂ + Z( τ̂
2n

Ĝ)ZtŴ .

Equating the partial derivative of Ljoint with respect to σ2
0 to zero yields, first, by

solving for τ1, that m = τ̂1/(2n)
∑n

i=1 W (d̂i)(Yi − Xiβ̂ − Ziû)tR̂−1
i (Yi − Xiβ̂ − Ziû),

from which follows that τ̂1 = 2mn(d̂tŴ d̂)−1. Second, solving for σ2
0 yields that

σ̂2
0 =

τ̂1

2mn
(Y −Xβ̂ − Zû)tŴ (Y −Xβ̂ − Zû),

from which (7) follows. The partial derivatives of Ljoint with respect to σ2
j (j = 1, . . . , q),

which occur only in the matrix G give that σ̂2
j = ût

jûj/qj in case the true variances are

nonzero. The maximizers of the joint Lagrangian are sought either at the values where

the first derivative is equal to zero, or at the value zero, which is at the boundary of

the parameter space.

A.2 Proof of Result 2

The estimators for β, σ2
0 and τ1 are obtained similarly as in Result 1 though now

starting from the joint Lagrangian (10). The expressions for the predictors ũ and for
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the variance component estimators are different. After substituting the estimator β̃ in

the next equation,

ũ = (ZtW̃ R̃−1Z +
nτ̃2

qτ̃1

G̃−1/2W̃2G̃
−1/2)−1ZtW̃ R̃−1(Y −Xβ̃),

the estimator ũ of (11) results. When the true values of the variance components are

positive, from

∂Ljoint2(β̃, ũ, σ2)

∂σ2
j

∣∣∣
σ2

j =σ̃2
j

=
∂

∂σ2
j

{log |G|+ τ̃2

r

r∑

k=1

ρ2(d̃2k)} = 0, (20)

for all j = 1, . . . , r, (12) follows. Since (20) implies that also the sum over j =

1, . . . , r of these partial derivatives is equal to zero, τ̃2 = 2rq(
∑r

j=1 ũt
jW̃2jG̃

−1
j ũj)

−1 =

2rq(d̃t
2W̃2d̃2)

−1. When a true variance component is zero, the global maximum is found

at the boundary of the parameter space.

B Appendix. Generalized degrees of freedom for

the S-estimators

B.1 Proof of Theorem 1

We start from model (1) and assume that all variance components are unknown. The

generalized degrees of freedom is defined by ΦS1 = Tr
(
∂Ŷ /(∂Y )

)
. From (5) and (6)

it follows that

Ŷ = Xβ̂ + Zû = Xβ̂ + Z

(
τ̂1

2n
ĜZtŴ V̂ −1(Y −Xβ̂)

)
.

The expression of V from Result 1, see (9), leads to rewriting Z( τ̂1
2n

Ĝ)ZtŴ = V̂ − R̂,

from which it follows that Ŷ = Xβ̂ + (IN − R̂V̂ −1)(Y −Xβ̂) = Y − R̂V̂ −1P̂ Y where

P̂ = IN − X(X tŴ V̂ −1X)−1X tŴ V̂ −1. Thus ΦS1 is as in (15). With R̂ = σ̂2
0IN and
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Ĝj = σ̂2
j Iqj

, j = 1, . . . , r, Y is a vector of length N , Yk is the kth element of the vector

Y . The N×N matrix B with columns B1, . . . , BN as in Theorem 1, is re-written using

the chain rule as follows,

Bk =
∂(R̂V̂ −1P̂ )

∂σ2
0

Y
∂σ̂2

0

∂Yk

+
r∑

j=1

∂(R̂V̂ −1P̂ )

∂σ2
j

Y
∂σ̂2

j

∂Yk

. (21)

A further application of the chain rule leads to ∂(R̂V̂ −1P̂ )/∂σ2
0 =

V̂ −1P̂ − R̂V̂ −1
{ ∂V̂

∂σ2
0

−X(X tŴ V̂ −1X)−1X t
(
Ŵ V̂ −1 ∂V̂

∂σ2
0

− ∂Ŵ

∂σ2
0

)}
V̂ −1P̂ . (22)

Starting from (9), ∂V̂
∂σ2

0
= IN +Z( 1

2n
Ĝ)ZtŴ ∂τ̂1

∂σ2
0
+Z( τ̂1

2n
Ĝ)Zt ∂Ŵ

∂σ2
0
, where it holds that ∂τ̂1

∂σ2
0

=

−2mn(d̂tŴ d̂)−1
(
2d̂tŴ ∂d̂

∂σ2
0
+ d̂t ∂Ŵ

∂σ2
0
d̂
)
(d̂tŴ d̂)−1, ∂d̂i

∂σ2
0

= 1

2d̂i
(Yi−Xiβ̂−Ziû)tR̂−1

i R̂−1
i (Yi−

Xiβ̂ − Ziû), ∂Ŵ
∂σ2

0
= diagi=1,...,n

[(
d̂i ψ′1(d̂i)−ψ1(d̂i)

d̂2
i

)
∂d̂i

∂σ2
0
Im

]
. Since from (9) it follows that

∂V̂
∂σ2

j
= τ̂1

2n
ZjZ

t
jŴ and since ∂P̂

∂σ2
j

= τ̂1
2n

(IN − P̂ )ZjZ
t
jŴ V̂ −1P̂ , it follows that ∂(R̂V̂

−1
P̂ )

∂σ2
j

=

− τ̂1
2n

R̂V̂ −1P̂ZjZ
t
jŴ V̂ −1P̂ . Define for j = 0, . . . , r for the case where the variance com-

ponents are all positive

∂Ljoint(β̂, û, σ2)

∂σ2
j

|σ2
j =σ̂2

j
= h(σ̂2

j (Y ), Y ) = 0. (23)

Using the estimators from Result 1, h(σ̂2
0(Y ), Y ) = m

σ̂2
0
− τ̂1

n
(Y−Xβ̂−Zû)tR̂−1Ŵ R̂−1(Y−

Xβ̂ −Zû) = m
σ̂2
0
− τ̂1

n
Y tP̂ tV̂ −1Ŵ V̂ −1P̂ Y. In this expression τ̂1, P̂ and Ŵ are a function

of Y and σ̂2
0. Take the full differentiation of h(σ̂2

0(Y ), Y ) with respect to Yk,

dh(σ̂2
0(Y ), Y )

dYk

=
∂h(σ̂2

0(Y ), Y )

∂σ2
0

dσ̂2
0

dYk

+
∂h(σ̂2

0(Y ), Y )

∂Yk

= 0,

to find that
dσ̂2

0

dYk
= −

[
∂h(σ̂2

0(Y ),Y )

∂σ2
0

]−1
∂h(σ̂2

0(Y ),Y )

∂Yk
. From Result 1 it follows that

∂h(σ̂2
0(Y ),Y )

∂Yk
=

Hσ0Yk
, with ∂τ̂1

∂Yk
= −2mn(d̂tŴ d̂)−1

[
2d̂tŴ ∂d̂

∂Yk
+ d̂t ∂Ŵ

∂Yk
d̂
]
(d̂tŴ d̂)−1, ∂d̂i

∂Yk
= (Yi − Xiβ̂ −

Ziû)tR̂−1
i /d̂i,

∂Ŵ
∂Yk

= diagi=1,...,n

[(
{d̂iψ

′
1(d̂i)− ψ1(d̂i)}/d̂2

i

)
∂d̂i

∂Yk
Im

]
. Further it follows

from (9) and from matrix differentiation rules that ∂(V̂
−1

P̂ k)
∂Yk

= −V̂ −1 ∂V̂
∂Yk

V̂ −1P̂k +
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V̂ −1 ∂P̂ k

∂Yk
, where

∂V̂

∂Yk

=
1

2n
Z

∂τ̂1

∂Yk

ĜZtŴ + Z
τ̂1

2n
ĜZt ∂Ŵ

∂Yk

,

∂P̂k

∂Yk

= X(X tŴ V̂ −1X)−1X t

(
Ŵ V̂ −1 ∂V̂

∂Yk

− ∂Ŵ

∂Yk

)
V̂ −1P̂k.

With the calculations done so far, we immediately obtain that
∂h(σ̂2

0(Y ),Y )

∂σ2
0

= Hσ0 , where

∂(V̂
−1

P̂ )

∂σ2
0

= −V̂ −1
{

∂V̂
∂σ2

0
− X(X tŴ V̂ −1X)−1X t

(
Ŵ V̂ −1 ∂V̂

∂σ2
0
− ∂Ŵ

∂σ2
0

)}
V̂ −1P̂ . We consider

next the functions h(σ̂2
j (Y ), Y ) for j = 1, . . . , r. Using the expressions from Result 1,

h(σ̂2
j (Y ), Y ) =

qj

σ̂2
j
− ût

jĜ
−1
j Ĝ−1

j ûj =
qj

σ̂2
j
− τ̂1

2n
Y tP̂ tV̂ −1ŴZj

τ̂1
2n

Zt
jŴ V̂ −1P̂ Y =

qj

σ̂2
j
− Ât

jÂj,

where Âj = τ̂1
2n

Zt
jŴ V̂ −1P̂ Y . By the full differentiation of h, this further leads to

dσ̂2
j

dYk
=

−
[

∂h(σ̂2
j (Y ),Y )

∂σ2
j

]−1 ∂h(σ̂2
j (Y ),Y )

∂Yk
, where via similar calculations we arrive at

∂h(σ̂2
j (Y ),Y )

∂Yk
=

HσjYk
and

∂h(σ̂2
j (Y ), Y )

∂σ2
j

= − qj

σ̂4
j

− 2Ât
j

∂Âj

∂σ2
j

= − qj

σ̂4
j

− 2Ât
j

(
τ̂1

2n
Zt

jŴ V̂ −1P̂Zj

)
Âj,

where it holds that

∂Âj

∂σ2
j

=
τ̂1

2n
Zt

jŴ
∂(V̂ −1P̂ )

∂σ2
j

Y =
τ̂1

2n
Zt

jŴ
τ̂1

2n
V̂ −1P̂ZjZ

t
jŴ V̂ −1P̂ Y.

When the variance component is estimated to be zero, by the use of the iterative

procedure from Result 1, there exists a sequence of estimators that are positive, for

which the above derivatives are defined. We define the derivative at the boundary

value by the limit of the derivatives of the estimators in this sequence. Considering the

expressions for the derivatives, this will result in a zero contribution to the effective

degrees of freedom, see also Greven and Kneib (2010). This proves Theorem 1.

B.2 Proof of Theorem 2

The proof goes along the same lines as that of Theorem 1, with this difference that we

use the estimators from Result 2, and in particular the expressions for (16) and (21)
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with these estimators, in addition to (23) using now Ljoint2. This leads to obtaining

∂h(σ̃2
0(Y ),Y )

∂Yk
and

∂h(σ̃2
0(Y ),Y )

∂σ2
0

from which we in a similar way arrive at the estimator
dσ̃2

0

dYk
=

−
[

∂h(σ̃2
0(Y ),Y )

∂σ2
0

]−1
∂h(σ̃2

0(Y ),Y )

∂Yk
. The quantities R̃, τ̃1 and W̃ do not depend on σ̃2

j ; j =

1, . . . , r. From (13),

∂Ṽ

∂σ2
j

= Z
rτ̃1

nτ̃2

(G̃
−1/2
j W̃2jG̃

−1/2
j )−1

[
G̃
−1/2
j

(
W̃2jG̃

−1
j +

∂W̃2j

∂σ2
j

)
G̃
−1/2
j

×(G̃
−1/2
j W̃2jG̃

−1/2
j )−1 − 1

τ̃2

∂τ̃2

∂σ2
j

]
ZtW̃ .

With ∂d̃2j/∂σ2
j = −1

2
G̃−1

j d̃2j, and δjk the Kronecker delta such that δjk = 1 if and only

if j = k, and δjk = 0 otherwise,

∂W̃2j

∂σ2
j

= diagk=1,...,r

[(
δjk

d̃2kψ
′
1(d̃2k)− ψ1(d̃2k)

d̃2
2k

)
∂d̃2k

∂σ2
j

Iqk

]

∂τ̃2

∂σ2
j

= −2qr(d̃t
2W̃2d̃2)

−1

[
2d̃t

2W̃2
∂d̃2

∂σ2
j

+ d̃t
2

∂W̃2

∂σ2
j

d̃2

]
(d̃t

2W̃2d̃2)
−1.

All this taken together gives us ∂(R̃Ṽ −1P̃ )/(∂σ2
j ). Defining

∂Ljoint2(β̃, ũ, σ2)

∂σ2
j

|σ2
j =σ̃2

j
= 0 = h2(σ̃

2
j (Y ), Y ) = qj/σ

2
j −

τ̃2

rσ̃2
j

d̃t
2jW̃2j d̃2j,

it follows that ∂h2(σ̃
2
j (Y ), Y )/∂Yk = H̃σjYk

, and ∂h2(σ̃
2
j (Y ), Y )/∂σ2

j = H̃σj
, where

∂τ̃2
∂Yk

= −2qr(d̃t
2jW̃2j d̃2j)

−1[2d̃t
2jW̃2j

∂d̃2j

∂Yk
+ d̃t

2j
∂W̃ 2j

∂Yk
d̃2j](d̃

t
2jW̃2j d̃2j)

−1,
∂d̃2j

∂Yk
= rτ̃1

nτ̃2
G̃
−1/2
j ×

(G̃
−1/2
j W̃2jG̃

−1/2
j )−1Zt

jW̃ Ṽ −1P̃kYk,
∂W̃ 2j

∂Yk
= diagj=1,...,r[(

d̃2jψ′2(d̃2j)−ψ2(d̃2j)

d̃2
2j

)
∂d̃2j

∂Yk
]. This leads

to
dσ̃2

j

dYk
= −[

∂h2(σ̃2
j (Y ),Y )

∂σ2
j

]−1 ∂h2(σ̃2
j (Y ),Y )

∂Yk
, from which the stated results follows. The case

of zero variance components is handled similarly as in Theorem1.
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