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Abstract 

This paper examines the effect on the effectiveness of using futures contracts as hedging 

instruments of: 1) the model of volatility used to estimate conditional variances and 

covariances, 2) the analyzed currency, and 3) the maturity of the futures contract being 

used. For this purpose, daily data of futures and spot exchange rates of three currencies, 

Euro, British pound and Japanese yen, against the American dollar are used to analyze 

hedge ratios and hedging effectiveness resulting from using two different maturity 

currency contracts, near-month and next-to-near-month contract. Following Tansuchat, 

Chang and McAleer (2010), we estimate four multivariate volatility models (CCC, 

VARMA-AGARCH, DCC and BEKK) and calculate optimal portfolio weights and 

optimal hedge ratios to identify appropriate currency hedging strategies. Hedging 

effectiveness index suggests that the best results in terms of reducing the variance of the 

portfolio are for the USD/GBP exchange rate. The results show that futures hedging 

strategies are slightly more effective when the near-month future contract is used for the 

USD/GBP and USD/JPY currencies. Moreover, CCC and AGARCH models provide 

similar hedging effectiveness although some differences appear when the DCC and 

BEKK models are used. 

 

Keywords: Multivariate GARCH, conditional correlations, exchange rates, optimal 
hedge ratio, optimal portfolio weights, hedging strategies. 
 
JEL Classifications: G32, G11, G17, C53, C22. 
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1. Introduction 

 

With the rise of the capital market liberalization and globalization, foreign currency 

denominated assets circulate rapidly in the world. With increasing internationalization 

of financial transactions, the foreign exchange market has been profoundly transformed 

and became more competitive and volatile. This places the accurate and reliable 

measurement of market risks in a crucial position for both investment decision and 

hedging strategy designs.   

 

Foreign exchange rate markets are the largest and most liquid of all asset markets. 

Developments in these markets influence national trade and monetary policies and the 

competitiveness of nations. Foreign exchange markets are also important for the 

increasing number of companies engaged in cross-border trade and investment. The 

foreign exchange business is naturally risky, because it deals primarily in measuring, 

pricing, and managing risk. The success of an institution trading in the foreign exchange 

market depends critically on how well it assesses prices and manages the inherent risk, 

on its ability to limit losses from particular transactions, and to keep its overall exposure 

under control.  

 

The fact in managing currency risk is to control the volatility of the portfolio. The 

volatility of a portfolio includes variances and correlation coefficients of, and among, 

individual positions. Great losses may be yielded from holding this portfolio without a 

time-varying consideration of its variance and correlation parts simultaneously. If 

investors can sense the interacting dynamics among markets in advance, then adjusting 

and hedging activities will be implemented in time. Successful and profitable 

performances can therefore be made. 

 

The aim of hedging is to use derivatives to reduce a particular risk. A relatively 

inexpensive and reliable strategy for hedging foreign exchange risk involves the use of 

foreign currency futures markets. Hedging with futures contracts is perhaps the simplest 

method for managing market risk arising from adverse movements in the foreign 

exchange market. Hedgers usually short an amount of futures contracts if they hold the 

long position of the underlying currency and vice versa. The question is how many 

futures contracts should be held for each unit of the underlying currency, as well as the 
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effectiveness measure of that ratio. The hedge ratio provides information on how many 

futures contracts should be held, whereas its effectiveness evaluates the hedging 

performance and the usefulness of the strategy. In addition, hedgers may use the 

effectiveness measure to compare the benefits of hedging a given position from many 

alternative contracts. 

 

Generally speaking, when the market trend is stable, the hedge ratio will become 

smaller, whereas if a big fluctuation of the market takes place it will get bigger. Several 

distinct approaches have been developed to estimate the optimal hedge ratio (OHR), 

also known as the minimum-variance hedge ratio. 

 

The static hedging model with futures contracts (Johnson [32], Stein [56], Ederington, 

[21]) assumes that the joint distribution of spot and futures returns is time-invariant and 

therefore the OHR, defined as the optimal number of futures holdings per unit of spot 

holdings, is constant over time. The minimum variance OHR use to be derived form the 

ordinary-least squares (OLS) regression of spot price changes on future price changes. 

There is wide evidence that the simple OLS method is inappropriate to estimate hedge 

ratios since it suffers from the problem of serial correlation in the OLS residuals and the 

heteroscedasticity often encountered in spot and futures price series (Herbst et al. [31]).  

 

Therefore, the underlying assumption of the static hedging model of time-invariant asset 

distributions has been changed. The Autoregressive Conditional Heteroscedastic 

(ARCH) framework of Engle [23] and its extension to a generalized ARCH (GARCH) 

structure by Bollerslev [8] have proven to be very successful in modelling asset price 

second-moment movements. Bollerslev [9], Bailie and Bollerslev [3], and Diebold [19] 

have shown that the GARCH (1,1) model is effective in explaining the distribution of 

exchange rate changes. However, Lien et al. [39] compared Ordinary Least Squares 

(OLS) and constant-correlation vector generalized autoregressive conditional 

heteroscedasticity (VGARCH) and claimed that the Ordinary List Squares (OLS) hedge 

ratio performs better than the VGARCH one. CHAN [16] proposed a dynamic hedging 

strategy based on a bivariate GARCH-jump model augmented with autoregressive jump 

intensity to manage currency risk. The collective evidence shows that the GARCH-

modelled dynamic hedging strategies are empirically appropriate but the risk-reduction 
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improvements over constant hedges vary across markets and may be sensitive to the 

sample period employed in the analysis.  

 

Regarding foreign currencies, different results are provided. Kroner and Sultan [35] 

demonstrated that GARCH hedge ratios produce better hedging effectiveness than 

conventional hedge ratios in currency markets. Chakraborty and Barkoulas [15] 

employed a bivariate GARCH model to estimate the joint distribution of spot and 

futures currency returns and they constructed the sequence of dynamic (time-varying) 

OHRs based upon the estimated parameters of the conditional covariance matrix. The 

empirical evidence strongly supports time-varying OHRs but the dynamic model 

provides superior out-of-sample hedging performance, compared to the static model, 

only for the Canadian dollar. Ku et al. [37] applied the dynamic conditional correlation 

(DCC)-GARCH model of Engle [24] with error correction terms to investigate the 

optimal hedge ratios of British and Japanese currency futures markets and compare the 

DCC-GARCH and OLS model. Results show that the dynamic conditional correlation 

model yields the best hedging performance. 

 

Given the distinct theoretical advantages of the dynamic hedging method over the static 

one, a great number of studies have employed the multivariate GARCH framework to 

examine its hedging performance for various assets. To evaluate the impact of model 

specification on the forecast of conditional correlations, Hakim and McAleer [29] 

analyze whether multivariate GARCH models incorporating volatility spillovers and 

asymmetric effect of negative and positive shocks on the conditional variance provide 

different conditional correlations forecasts. Using three multivariate GARCH models, 

namely the CCC model (Bollerslev, [10]), VARMA-GARCH model (Ling and 

McAleer, [41]), and VARMA-AGARCH model (McAleer et.al., [45]) they forecast 

conditional correlations between three classes of international financial assets (stock, 

bond and foreign exchange rates). The paper suggested that incorporating volatility 

spillovers and asymmetric of negative and positive shocks on the conditional variance 

does not affect forecasting conditional correlations. 

 

To estimate time-varying hedge ratios using multivariate conditional volatility models 

Chang et.al. [17] examinned the performance of four models (CCC, VARMA-GARCH, 

DCC and BEKK) for the crude oil spot and futures returns of two major international 
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crude oil markets (BRENT and WTI). The calculated OHRs form each multivariate 

conditional volatility model presented the time-varying hedge ratios and recommended 

to short in crude oil futures, with a high portion of one dollar long in crude oil spot. The 

hedging effectiveness indicated that DCC (BEKK) was the best (worst) model for OHR 

calculation in terms of the variance of portfolio reduction. 

 

This paper extends Chang et.al. [17] to currency hedging. To evaluate the impact of 

model specification on conditional correlations forecasts, this paper calculates and 

compares the correlations between conditional correlations forecasts resulted from four 

different multivariate models (CCC, VARMA-AGARCH, DCC and BEKK) to estimate 

the returns on spot and futures (analyzing two sets of futures depending on their 

maturity) of three currency prices (USD/GBP, USD/EUR and USD/JPY). The purpose 

is to calculate the optimal portfolio weights and OHRs ratio from the conditional 

covariance matrices in order to achieve an optimal portfolio design and hedging 

strategy, and to compare the performance of OHRs from estimated multivariate 

conditional volatility models by applying the hedging effectiveness index. One of the 

main contributions of this study is that allows us to compare whether the results are 

different depending on the volatility model, currency and maturity of the futures 

contract selected. We have found no evidence of these three items considered together 

for currency hedging in prior literature. 

 

The remainder of the paper is organized as follows. In Section 2 we discuss the 

multivariate GARCH models used, and the derivation of the OHR and hedging effective 

index. In section 3 the data used for estimation and forecasting and the descriptive 

statistics are presented. Section 4 analyses the empirical estimates from empirical 

modeling. Section 5 presents some conclusions. 

 

2. Econometric Models 

 

2.1. Multivariate Conditional Volatility Models 

  

Following Chang et.al. [17] this paper considers the CCC model of Bollerslev [10], 

VARMA-AGARCH model of McAleer et al. [45], the DCC model of Engle [24] and 

BEKK model of Engle and Kroner [25]. Constant conditional correlations are assumed 
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in the first two models while dynamic conditional correlations are taken in the last two 

models. 

 

Considering the CCC multivariate GARCH model of Bollerslev [10]: 

 
  

 
 1 1/ ,t t t t t ty E y F D    

 (1) 

  1var /t t t tF D D     

 

Where     1 1,..., , ,...,t t mt t t mty y y       is a sequence of independent and 

identically distributed random vectors, Ft is the past information available at time t, 

 1/ 2 1/ 2
1 ,...,t mD diag h h , m is the number of assets (see, for example, McAleer [43]                        

and Bauwens et al. [6]). As    1/ ,t t t tE F E 
     where  ij   for i, j = 1,…, 

m, the constant conditional correlation matrix of the unconditional shocks, t , is 

equivalent to the constant conditional covariance matrix of the conditional shocks, ,t  

from (1),  1/2
, ,t t t t t t t tD D D diagQ     and  1/ ,t t t t t tE F Q D D  

    where tQ  is 

the conditional covariance matrix. 

 

The CCC model of Bollerslev [10] assumes that the conditional variance for each 

return, ith , i =1, …, m, follows a univariate GARCH process, that is 

 

 2
, ,

1 1

,
r s

it i ij i t j ij i t j
j j

h h    
 

     (2) 

 

where ij  represents the ARCH effect, or short run persistence of shocks to return i, ij  

represents the GARCH effect, and 
1 1

r s

ij ij
j j

 
 

   denotes the long run persistence. 

 

The CCC model assumes that negative and positive shocks of equal magnitude have 

identical impacts on the conditional variance. McAleer et al. [45] extended the 

VARMA-GARCH to accommodate the asymmetric impacts of the unconditional shocks 
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on the conditional variance, and proposed the VARMA-AGARCH specification of the 

conditional variance as follows: 

  

 ,
1 1 1

r r s

t i t i i t i t i j t j
i i j

H W A C I B H    
  

      
 (3) 

 

Where Ci are mm matrices for i = 1,…r with typical element ,ij  and 

 1 ,..., ,t t mtI diag I I  is an indictor function, given as 

 

  
0, 0

1, 0
it

it
it

I





 
   

 (4) 

 

If m=1 (3) collapses to the asymmetric GARCH (or GJR) model of Glosten et al. [28]. 

If Ci = 0 and Ai and Bj are diagonal matrices for all i and j, then VARMA-AGARCH 

reduces to the CCC model. The structural and statistical properties of the model, 

including necessary and sufficient conditions for stationarity and ergodicity of 

VARMA-AGARCH, are explained in detail in McAleer et al. [45]. The parameters of 

model (1) to (3) are obtained by maximum likelihood estimation (MLE) using joint 

normal. We also estimate the models using Student’s t distribution, in this case the 

appropriate estimator is QMLE. 

 

The assumption that the conditional correlations are constant may seen unrealistic so, in 

order to make the conditional correlation matrix time dependent, Engle [24] proposed a 

dynamic conditional correlation (DCC) model, which is defined as 

 
 1 (0, ), 1, 2,...,t t ty Q t n   (5) 

 
 ,t t t tQ D D   (6) 

 

where  1/ 2 1/ 2
1 ,...,t mD diag h h  is a diagonal matrix of conditional variances, and t  is 

the information set available at time t. The conditional variance, hit, can be defined as a 

univariate GARCH model, as follows: 
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 , ,
1 1

p q

it ik i t k il i t l
k l

h h    
 

     (7) 

 

If t is a vector of i.i.d. random variables, with zero mean and unit variance, Qt in (8) is 

the conditional covariance matrix (after standardization, /it it ity h  ). The it are used 

to estimate the dynamic conditional correlations, as follows: 

 

    1/ 2 1/ 2( ( ) ( ( )t t t tdiag Q Q diag Q    (8) 

 

where the kk symmetric positive definitive matrix Qt is given by 

 

  1 2 1 1 1 2 11 ,t t t tQ Q Q            (9) 

 
in which θ1  and θ2 are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on the current dynamic conditional 

correlation, and θ1  and θ2 are non-negative scalar parameters. When 1 2 0,Q    in 

(9) is equivalent to CCC. As Qt is conditional on the vector of standardized residuals, 

(9) is a conditional covariance matrix, and Q  is the kk unconditional variance matrix 

of t . DCC is not linear, but may be estimated simply using a two-step method based 

on the likelihood function, the first step being a series of univariate GARCH estimates 

and the second step being the correlation estimates. 

 

An alternative dynamic conditional model is BEKK, which has the attractive property 

that the conditional covariance matrices are positive definite. However, BEKK suffers 

from the so-called “curse of dimensionality” (see McAleer et al. [45] for a comparison 

of the number of parameters in various multivariate conditional volatility models). The 

BEKK model for multivariate GARCH (1,1) is given as: 

  
 1 1 1 ,t t t tH C C A A B H B          (10) 

 

Where the individual element for the matrices C, A and B matrices are given as 
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 11 12 11 12 11 12

21 22 21 22 21 22

, ,
a a b b c c

A B C
a a b b c c

     
       
     

 

 

with 2 2 1, 1, 2ii ii i     for stationary. In this diagonal representation, the conditional 

variances are functions of their own lagged values and own lagged returns shocks, while 

the conditional covariances are functions of the lagged covariances and lagged cross-

products of the corresponding returns shocks. Moreover, this formulation guarantees Ht 

to be positive definite almost surely for all t. A comparision between BEKK and DCC 

can be found in Caporin and McAleer [12]. 

 

2.2 Optimal Hedge Ratios and Optimal Portfolio Weights 

Market participants in futures markets choose a hedging strategy that reflects their 

attitudes toward risk and their individual goals. Consider the case of exchange rates, the 

return on the portfolio of spot and futures position can be denoted as: 

  
 , , , ,H t S t F tR R R   (11) 

 

Where RH,t is the return on holding the portfolio between t-1 and t, RS,t and RF,t are the 

returns on holding spot and futures positions between t and t-1, and γ is the hedge ratio, 

that is, the number of futures contracts that the hedger must sell for each unit of spot 

commodity on which price risk is borne. 

 

According to Johnson [32], the variance of the returns of the hedged portfolio, 

conditional on the information set available at time t-1 is given by 

  

        2
, 1 , 1 , , 1 , 1var var 2 cov , var ,H t t S t t S t F t t t F t tR R R R R            (12) 

 

Where  , 1var ,S t tR   , 1var F t tR  , and  , , 1cov ,S t F t tR R   are the conditional 

variance and covariance of the spot and futures returns, respectively. The OHRs are 

defined as the value of γt which minimizes the conditional variance (risk) of the hedged 

portfolio returns, that is  , 1min var
t H t tR    . Taking the partial derivate of (12) with 
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respect to γt, setting it equal to zero and solving for γt, yields the OHRt conditional on 

the information available at t-1(see, for example, Baillie and Myers [4]): 

  

 
 
 

, , 1*
1

, 1

cov ,

var
S t F t t

t t

F t t

R R

R
 





 


 (13) 

 

where returns are defined as the logarithmic differences of spot and futures prices. 

 

From the multivariate conditional volatility model, the conditional covariance matrix is 

obtained, such that the OHR is given as: 

  

 ,*
1

,

,SF t
t t

F t

h

h
    (14) 

 

where hSF,t is the conditional covariance between spot and futures returns, and hF,t is the 

conditional variance of futures returns. 

 

In order to compare the performance of OHRs obtained from different multivariate 

conditional volatility models, Ku et al. [37] suggest that a more accurate model of 

conditional volatility should also be superior in terms of hedging effectiveness, as 

measured by the variance reduction for any hedged portfolio compared with the 

unhedged portfolio. Thus, a hedging effective index (HE) is given as: 

  

 
var var

,
var

unhedged hedged

unhedged

HE
 

  
  

 (15) 

 

where the variances of the hedge portfolio are obtained from the variance of the rate of 

return, RH,t, and the variance of the unhedged portfolio is the variance of spot returns 

(see, for example, Ripple and Moosa [50]). A higher HE indicates a higher hedging 

effectiveness and larger risk reduction, such that hedging method with a higher HE is 

regarded as a superior hedging strategy. 
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Alternatively, in order to construct an optimal portfolio design that minimizes risk 

without lowering expected returns, and applying the methods of Kroner and Ng [33] 

and Haqmmoudeh et.al. [30], the optimal portfolio weight of exchange rate spot/futures 

holding is given by: 

  

 , ,
,

, , ,2
F t SF t

SF t
S t SF t F t

h h
w

h h h




 
 (16) 

 

and 

  

 
SF,t

*
, , SF,t

SF,t

0,  w 0

,  0<w 1

1,  w 1
SF t SF t

if

w w if

if

 
 
 

 (17) 

 

Where  *
SF,t SF,tw 1-w is the weight of the spot (futures) in a one dollar portfolio of 

exchange rates spot/futures at time t. 

  

3. Data  

 

We used daily closing prices of spot (S) and futures for three foreign exchange rate 

series, the value of the US dollar to one European Euro (USD/EUR), one British Pound 

(USD/GBP) or one Japanese Yen (USD/JPY). The 3,006 observations from 3 January 

2000 to 11 July 2011 are obtained from the Thomson Reuters-Ecowin Financial 

Database. The perpetual series of futures prices derived from individual futures 

contracts. These contracts call for a delivery of a specified quantity of a specified 

currency, or a cash settlement, during the months of March, June, September and 

December (the “March quarterly cycle”). Selected contracts are available with two 

future position continuous series. The futures price series for First Position Future 

(FUT1) is the price of the near-month delivery contract and the Second Position Future 

(FUT2) is the price of the next-to-near-month delivery contract. For example, in 1 

February 2011, FUT 1 is the price of the contract that expires in March 2011, while 

FUT 2 is the price of the contract that expires in June 2011. 
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[Insert Table 1] 

[Insert Table 2] 

[Insert Table 3] 

 

The returns of currency i at time t are calculated as   , , , 1log /i t i t i tr P P  , where Pi,t and 

Pi,t-1 are the closing prices of currency i for days t and t-1 respectively. In Tables 1, 2 

and 3 we show the descriptive statistics for the return series of EUR, GBP and JPY. The 

mean is close to zero in all cases. For the EUR and JPY currencies the standard 

deviation of the futures returns is larger than that of the spot returns, indicating the 

futures market is more volatile than the spot market for these currencies. The exchange 

rate return series display high kurtosis and heavy tails. Most of them, except EUR, 

present negative skewness statistics that signify increased presence of extreme losses 

than extreme gains (longer left tails). The Jarque-Bera Lagrange Multiplier test rejects 

the null hypothesis of normally distributed returns for every exchange rate series. 

 

[Insert Figure 1] 

 

Figure 1 presents the plot of spot and futures daily returns for each currency. Extremely 

high positive and negative returns are evident from September 2008 onward, and have 

continued well into 2009. Therefore, an increase in volatility during the financial crisis 

is perceived, however, is lower than in other assets (see, f.e., Mc Aleer et al. [46]). In 

the same way, the plots indicate volatility clustering. Spot and futures returns move in 

the same pattern suggesting a high correlation (the highest one is between FUT1 and 

FUT2 for all currencies). Correlations between the returns in European markets (EUR 

and GBP) are higher than the correlations between these and JPY which is hardly 

surprising. 

 

[Insert Figure 2] 

 

The volatilities of exchange rate returns are showed in figure 2. These volatilities are 

calculated as the square of the estimated returns and seem to support the stated above. 



14 

The plots are similar in all returns and the volatility of the series appears to be high 

during the early 2000s, followed by a quiet period from 2003 to the beginning of 2007. 

Volatility increases dramatically after August 2008, due in large part to the worsening 

global credit environment.  
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4.- Empirical Results 

 

Estimation Results 

 

We estimate four multivariate models (CCC, VARMA-AGARCH, DCC and BEKK) 

for each error distribution, currency and two different futures. The estimate underlying 

parameters are reported in tables 4-7. Table 4 shows the estimates for the CCC model. 

The volatility persistence, as measure by the sum of ,   in either spot or futures 

markets for each currency is significantly high, ranging from 0.978 to 0.9976, indicating 

long memory processes. All markets satisfy the second moment and long moment 

condition, which is a sufficient condition for the QMLE to be consistent and 

asymptotically normal (see McAleer et.al. [44]) The ARCH and GARCH estimates of 

the conditional variance are statistically significant. The ARCH estimates are generally 

small (less than 0.04) and the GARCH effects are generally close to one, finding lower 

values for the JPY in both spot and futures prices (0.949 and 0.944 against 0.961 and 

0.962 for the EUR). There are not big differences among the constant conditional 

correlation estimates ranging from 0.799 for the EUR to 0.811 for the JPY.  

 

[Insert Table 4] 

[Insert Table 5] 

 

Table 5 reports the estimates of the conditional mean and variance for the AGARCH 

models. The ARCH and GARCH effects are statistically significant in all markets and 

similar to the estimates for the CCC model without asymmetric effects. The asymmetric 

impact of the unconditional shocks on the conditional variance estimates, , are weak 

for the three currencies, in particular are not statistically significant for the JPY.  

 

[Insert Table 6] 

 

The DCC model developed by Engle [24] is employed to capture dynamics conditional 

correlations. Table 6 summaries the results of the DCC models estimated for all spot 

and futures markets. Regarding the conditional variance, estimates of all parameters are 

statistically significant and satisfy the condition 1.   The estimates of the DCC 
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parameters, 1̂ and 2̂ , are statistically significant for all the currencies. These results 

suggest that the conditional correlation is not constant over time. The short run 

persistence of shocks on the dynamic conditional correlation is greater for the JPY at 

0.051, although it shows the lower long run persistence of shocks to the conditional 

correlation 0.913 (0.051+0.862). The EUR shows the lowest short run persistence 

(0.024) and the greatest long run persistence 0.986 (0.024+0.962). The time-varying 

conditional correlations between spot and futures returns are given in figure 3. An 

apparent change in the conditional correlation appeared upon the bankruptcy of Lehman 

Brothers in New York on 15 September 2008. Due to an increase in the volatility of 

spot and futures exchange rates, the conditional correlations seem to change in all the 

currencies. The GFC caused an apparent decline in the conditional correlation between 

the spot and both FUT1 an FUT2. 

 

[Insert Table 7] 

 

Table 7 reports the estimates for the BEKK model. We have restricted the bivariate 

BEKK model to the reduced form of the diagonal BEKK. The elements of the 

covariance matrix depend only on past own squared residuals, and the covariances 

depend only on past own gross products of residuals. The estimates show that the mean 

of the returns is not statistically significant. The elements of the diagonal matrices, A 

and B, are statistically significant. From the empirical results we conclude a time 

variation in market risk, a strong evidence of GARCH effect and the presence of a weak 

ARCH effect. The results for the covariance equations are similar, indicating that there 

is a statistically significant covariation in shocks, which depends more on its lag than on 

past innovations. These results clearly mean that market shocks are influenced by 

information which is common to spot and future markets, and as a result of this we have 

statistically significant covariance in the variance-covariance equations. Model 

estimations for FUT2 contracts has been done (available upon request) with similar 

results for the parameters estimates. 

 

Hedging Performance  

 



17 

With the estimated underlying parameters in the models, we first generate in-sample 

daily time series of variance and covariance of the spot and futures returns for each 

currency. Subsequently, we calculate OHRs and optimal portfolios weights given by 

equations (14) and (16) respectively.  

 

[Insert Table 8A] 

[Insert Table 8B] 

[Insert Table 8C] 

 

Tables 8A-8C report the average OHR values, the hedge effectiveness, the variance of 

the portfolio, the hedging effectiveness along with the average value of the optimal 

portfolio weights for the three currencies using FUT1 and FUT2 contracts when both 

student’s t and normal error distribution are assumed. We show the results for the four 

multivariate variance models.  

 

Tables 8A-8C show that hedging is effective in reducing the risks for every model, 

currency and maturity. In particular, we find that the average OHR using FUT2 

contracts are slightly higher than when FUT1 contracts are used, except for the GBP. 

The highest average OHR value is 0.854 for the USD/JPY when FUT2 contracts are 

used, meaning that in order to minimize risk, a long (buy) position of one dollar in such 

a currency should be hedged by a short (sell) position of $0.854 in JPYFUT2 contracts. 

Additionally, when using Gaussian error distribution tables 8A-8C report lower average 

OHR values for the three currencies analyzed. The average OHRs from each model are 

not particularly different, slightly smaller for the DCC and BEKK models when the 

Student’s t is used but bigger for the GBP and JPY when using Gaussian distribution. 

Apparently, the average OHR values are higher for the USD/JPY exchange rate. On the 

contrary, hedging effectiveness is higher for the DCC and BEKK models. 

 

For the GBP and JPY we notice that hedging effectiveness is slightly higher when a 

FUT1 contract is used, as opposed to showing a higher hedging effectiveness when the 

EURFUT2 contract is used. We find a hedging effectiveness that falls between a 

maximum of 66.3% for the USD/GBP currency and a minimum of 62.5% for the 

USD/EUR. It seems that hedging effectiveness is slightly higher for the USD/GBP 

currency.  
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[Insert Figure 3] 

[Insert Figure 4] 

 

 

Figure 3 shows the DCC estimates between spot and futures exchange rates for both 

future contracts. The volatility of the dynamic correlations increases during GFC and, as 

expected, during turbulent periods correlations decreases. This is why OHR volatility 

increases during the Global Financial Crisis (GFC). Figure 4 represents the calculated 

time-varying OHRs from every multivariate conditional volatility model. There are 

clearly time-varying ratios. It is interesting to look at the optimal hedging ratios during 

the GFC, for all the models but DCC optimal hedging ratios seem to increase in 

average.  

 

As showed in the optimal portfolio weight columns in Tables 8A-8C, there are not big 

differences among models. For example, the largest average value corresponds to a 

portfolio including the JPYFUT1 contract, which spot currency weight is calculated 

using the DCC model assuming normal error distribution. The value 0.566 would imply 

that investors should have more spot currency than futures contracts in their portfolio in 

order to minimize risk without lowering expected returns. In particular, the optimal 

holding of one USD/JPY spot/future portfolio is 56.6 cents for spot and 43.4 cents for 

futures. When Gaussian distribution is used we find higher optimal portfolio weights. 

For both USD/EUR and USD/JPY spot/futures portfolios the optimal holding of spot 

currencies is higher when hedging with FUT1 contracts than when FUT2 are used. This 

is the opposite of what happen for USD/GBP spot/futures portfolios. Estimates suggest 

holding spot more than GBPFUT1, whereas they suggest holding spot less than 

GBPFUT2 on one dollar spot/future portfolio.  

 

Summarising estimates based on both OHR and optimal weight values recommend 

holding more FUT2 than FUT1 contracts for USD/EUR and USD/JPY spot/futures 

portfolios, meaning that we should increase the percentage of futures contracts for 

longer term portfolios when these currencies are used.   
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5.  Conclusions 

 

This study sheds light on the importance of measuring conditional variances and 

covariances when hedging daily currency risk using futures. The findings are of 

importance to currency hedgers who require taking futures positions in order to 

adequately reduce the risk. In this paper, we use four multivariate GARCH models, 

CCC, VARMA-AGARCH, DCC, and BEKK, to examine the volatilities among spot 

and two distinct maturity futures, near-month and next-to-near-month contracts. The 

estimated conditional covariances matrices from these models were used to calculate the 

optimal portfolios weights and optimal hedge ratios. 

 

The empirical results in this paper reveal that there are not big effectiveness differences 

when either the near-moth or the next-to-near-month contract is used for hedging spot 

position on currencies. They even reveal that hedging ratios are lower for near-month 

contract when the USD/EUR and USD/JPY exchange rates are analyzed. This result is 

explained in terms of the higher correlation between spot prices and the next-to-near-

month futures prices than that with near-month contract and additionally because of the 

lower volatility of the long maturity futures.  

 

Finally, CCC and VARMA-AGARCH models provide similar results in terms of 

hedging ratios, portfolio variance reduction and hedging effectiveness. Some 

differences appear when the DCC and BEKK models are used. Hedging ratios seem to 

decrease during the GFC as opposed to increasing ratios when CCC and VARMA-

AGARH models are consider for calculating the covariance matrix. Future research 

should be done to investigate the effects of the GFC on the conditional correlation 

between spot and futures contracts as well as its impact on hedging effectiveness. 
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Figure 1. Spot and futures daily returns 
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Figure 2. Estimated Conditional Volatilities of Returns  
USD/EUR USD/GBP USD/JPY 
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Figure 3. DCC Estimates 
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Figure 4. Optimal Hedge Ratios 
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Table 1. EUR Descriptive Statistics 

 

 Returns EUROS EUROFUT1 EUROFUT2 

 Mean  0.0107  0.0101  0.0098 
 Maximum  4.6174  3.1184  3.1007 
 Minimum -3.8445 -3.0568 -3.0620 
 Std. Dev.  0.6485  0.6552  0.6532 
 Skewness  0.1477 -0.0939 -0.0962 
 Kurtosis  5.6389  4.3878  4.3556 
 Jarque-Bera  882.87  245.58  234.73 

 

 

Table 2. GPB Descriptive Statistics 

 

 Returns GBPS GBPFUT1 GBPFUT2 

 Mean -0.0007 -0.0010 -0.0011 
 Maximum  4.4745  3.3542  3.3147 
 Minimum -3.9182 -5.1703 -5.1326 
 Std. Dev.  0.6103  0.6010  0.6021 
 Skewness -0.0552 -0.3793 -0.3560 
 Kurtosis  7.3609  6.7628  6.5791 
 Jarque-Bera  2382.7  1844.9  1667.4 

 

Table 3. JPY Descriptive Statistics 

 

 Returns JPYS JPYFUT1 JPYFUT2 

 Mean -0.0077 -0.0075 -0.0070 
 Maximum  3.0770  4.0082  4.0187 
 Minimum -4.6098 -5.1906 -5.2289 
 Std. Dev.  0.6594  0.6642  0.6594 
 Skewness -0.4246 -0.3285 -0.3020 
 Kurtosis  6.5503  6.9307  6.9282 
 Jarque-Bera  1668.5  1988.5  1977.8 
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Table 4. CCC Estimates 
 

Panel a: EURS_EURFUT1 

Returns C ω α β α + β 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

EURS 0.025532 
(0.0165) 

0.001324 
(0.1455) 

0.036873 
(0.0000) 

0.960795 
(0.0000) 

0.997668 0.798867 
(0.0000) 

-4105.754 2.738605 

EURFUT1 0.022376 
(0.0454) 

0.001886 
(0.0329) 

0.034411 
0.0000 

0.962024 
0.0000 

0.996435    

 
Panel b: GBPS_GBPFUT1 

Returns C ω α β α + β 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

GBPS 0.014299 
(0.1479) 

0.002229 
(0.0086) 

0.030472 
(0.0000) 

0.962650 
(0.0000) 

0.993122 0.812791 
(0.0000) 

-3367.432 2.247209 

GBPFUT1 0.012066 
(0.2202) 

0.002608 
(0.0055) 

0.028671 
(0.0000) 

0.963302 
(0.0000) 

0.991973    

 
Panel c: JPYS_JPYFUT1 

Returns C ω α β α + β 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

JPYS 0.003894 
(0.7283) 

0.006035 
(0.0269) 

0.037076 
(0.0000) 

0.948975 
(0.0000) 

0.986051 0.811211 
(0.0000) 

-4239.943 2.827915 

JPYFUT1 0.005502 
(0.6230) 

0.009677 
(0.0205) 

0.033193 
(0.0055) 

0.944285 
(0.0000) 

0.977478    

 
Note: p_values in parentheses. 
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Table 5. VARMA-AGARCH Estimates 

Panel a: EURS_EURFUT1 

Returns C ω α β γ α+β+γ 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

EURS 0.016007 
(0.1350) 

0.001446 
(0.1021) 

0.025002 
(0.0027) 

0.962974 
(0.0000) 

0.018713 
(0.0489) 

1.006689 0.799869 
(0.0000) 

-4098.227 2.734926 

EURFUT1 0.011699 
(0.2921) 

0.002113 
(0.0135) 

0.020336 
(0.0105) 

0.964626 
(0.0000) 

0.021366 
(0.0483) 

1.006328    

 

Panel b: GBPS_GBPFUT1 

Returns C ω α β γ α+β+γ 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

GBPS 0.004260 
(0.6588) 

0.002587 
(0.0021) 

0.014752 
(0.0446) 

0.963269 
(0.0000) 

0.027465 
(0.0117) 

1.005486 0.813575 
(0.0000) 

-3356.194 2.241061 

GBPFUT1 0.001990 
(0.8368) 

0.002791 
(0.0021) 

0.016439 
(0.0301) 

0.964716 
(0.0000) 

0.020035 
(0.0644) 

1.00119    

 

Panel c: JPYS_JPYFUT1 

Returns C ω α β γ α+β+γ 
Constant 

Conditional 
Correlation 

Log-
likelihood 

AIC 

JPYS 0.004648 
(0.6808) 

0.006036 
(0.0315) 

0.038539 
(0.0006) 

0.949630 
(0.0000) 

-0.004651 
(0.7528) 

0.983518 0.811191 
(0.0000) 

-4239.519 2.828964 

JPYFUT1 0.005544 
(0.6287) 

0.009533 
(0.0208) 

0.032053 
(0.0331) 

0.944463 
(0.0000) 

0.002810 
(0.8728) 

0.979326    

Note: p_values in parentheses. 
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Table 6. DCC Estimates 

 

Panel a: EURS_EURFUT1 

Returns C ω α β α + β 1  2  Log-
likelihood 

AIC 

EURS 0.020377 
(0.0532) 

0.004386 
(0.0022) 

0.027374 
(0.0000) 

0.961108 
(0.0000) 

0.988482 0.023709 
(0.0000) 

0.961618 
(0.0000) 

-4077.809 2.721337 

EURFUT1 0.018240 
(0.0910) 

0.006484 
(0.0002) 

0.034551 
(0.0000) 

0.949876 
(0.0000) 

0.984427     

 

Panel b: GBPS_GBPFUT1 

Returns C ω α β α + β 1  2  Log-
likelihood 

AIC 

GBPS 0.010971 
(0.2487) 

0.004841 
(0.0001) 

0.038697 
(0.0000) 

0.946627 
(0.0000) 

0.985324 0.041639 
(0.0000) 

0.936892 
(0.0000) 

-3303.009 2.205663 

GBPFUT1 0.009160 
(0.3353) 

0.006684 
(0.0001) 

0.049814 
(0.0000) 

0.930739 
(0.0000) 

0.980553     

 

Panel c: JPYS_JPYFUT1 

Returns C ω α β α + β 1  2  Log-
likelihood 

AIC 

JPYS 0.003990 
(0.7237) 

0.019263 
(0.0000) 

0.043614 
(0.0000) 

0.911911 
(0.0000) 

0.955525 0.050768 
(0.0000) 

0.862159 
(0.0000) 

-4173.424 2.784974 

JPYFUT1 0.005513 
(0.6364) 

0.048472 
(0.0000) 

0.069140 
(0.0001) 

0.824529 
(0.0000) 

0.893669     

Note: p_values in parentheses. 
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Table 7. BEKK Estimates 

Panel a: EURS_EURFUT1 

Returns C C A B 
Log-

likelihood 
AIC 

EURS 0.020559 
(0.0488) 

0.003112 
(0.0001) 

 0.163463 
(0.0000) 

0.000000 0.982880 
(0.0000) 

0.000000 -4101.786 2.735964 

EURFUT1 0.019446 
(0.0664) 

0.004368 
(0.0001) 

0.006801 
(0.0003) 

0.000000 0.213424 
(0.0000) 

0.000000 0.969448 
(0.0000) 

  

 

Panel a: GBPS_GBPFUT1 

Returns C C A B 
Log-

likelihood 
AIC 

GBPS 0.009175 
(0.3332) 

0.003862 
(0.0000) 

 0.195416 
(0.0000) 

0.000000 0.975276 
(0.0000) 

0.000000 -3315.017 2.212324 

GBPFUT1 0.007995 
(0.3992) 

0.004889 
(0.0000) 

0.007320 
(0.0001) 

0.000000 0.238545 
(0.0000) 

0.000000 0.960766 
(0.0000) 

  

 

Panel a: JPYS_JPYFUT1 

Returns C C A B 
Log-

likelihood 
AIC 

JPYS 0.001488 
(0.8959) 

0.022401 
(0.0000) 

 0.215503 
(0.0000) 

0.000000 0.950569 
(0.0000) 

0.000000 -4181.067 2.788730 

JPYFUT1 0.001963 
(0.8719) 

0.046133 
(0.0000) 

0.083282 
(0.0000) 

0.000000 0.298570 
(0.0000) 

0.000000 0.855350 
(0.0000) 

  

Note: p_values in parentheses. 
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  Table 8A. Alternative hedging strategies (USD/EUR) 

  MODEL OHR Var. PF HE 
Var. 

UnHed
OPT. W

  Student-t 

FU
T1

  CCC 0.805 0.158 62.5% 0.420 0.536 

VARMA-AGARCH 0.805 0.157 62.7% 0.420 0.536 

DCC 0.794 0.157 62.7% 0.420 0.542 

BEKK 0.802 0.157 62.6% 0.420 0.542 

        

FU
T2

  CCC 0.808 0.157 62.7% 0.420 0.532 

VARMA-AGARCH 0.808 0.156 62.9% 0.420 0.532 

DCC 0.797 0.156 62.9% 0.420 0.535 

BEKK 0.804 0.156 62.8% 0.420 0.537 

Gaussian 

FU
T1

  CCC 0.792 0.158 62.5% 0.420 0.544 

VARMA-AGARCH 0.792 0.157 62.7% 0.420 0.545 

DCC 0.784 0.157 62.7% 0.420 0.554 

BEKK 0.792 0.157 62.6% 0.420 0.550 

        

FU
T2

  CCC 0.799 0.157 62.7% 0.420 0.532 

VARMA-AGARCH 0.799 0.156 62.9% 0.420 0.533 

DCC 0.791 0.156 62.9% 0.420 0.538 

BEKK 0.798 0.156 62.8% 0.420 0.537 

 
Notes: Optimal Hedging Ratio (OHR), Variance of Portfolios (Var. PF), Hedging Effective Index 
(HE), Variance of ungedged portfolio (Var. UnHed) and Optimal Portfolio Weights (OPT. W). 
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Table 8B. Alternative hedging strategies (USD/GBP) 

MODEL OHR Var. PF HE 
Var. 

UnHed
OPT. W

  Student-t 

FU
T1

  CCC 0.829 0.126 66.2% 0.372 0.496 

VARMA-AGARCH 0.830 0.125 66.3% 0.372 0.498 

DCC 0.822 0.126 66.2% 0.372 0.497 

BEKK 0.826 0.126 66.2% 0.372 0.490 

             

FU
T2

  CCC 0.826 0.127 65.9% 0.372 0.510 

VARMA-AGARCH 0.826 0.126 66.1% 0.372 0.512 

DCC 0.817 0.127 65.9% 0.372 0.511 

BEKK 0.821 0.127 65.9% 0.372 0.505 

  Gaussian 

FU
T1

  CCC 0.816 0.126 66.2% 0.372 0.499 

VARMA-AGARCH 0.815 0.125 66.3% 0.372 0.503 

DCC 0.818 0.126 66.1% 0.372 0.500 

BEKK 0.822 0.127 66.0% 0.372 0.495 

             

FU
T2

  CCC 0.812 0.127 65.9% 0.372 0.510 

VARMA-AGARCH 0.812 0.126 66.1% 0.372 0.513 

DCC 0.813 0.127 65.8% 0.372 0.513 

BEKK 0.817 0.128 65.7% 0.372 0.508 

Notes: Optimal Hedging Ratio (OHR), Variance of Portfolios (Var. PF), Hedging Effective Index 
(HE), Variance of ungedged portfolio (Var. UnHed) and Optimal Portfolio Weights (OPT. W). 
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  Table 8C. Alternative hedging strategies (USD/JPY) 

MODEL OHR Var. PF HE 
Var. 

UnHed
OPT. W

  Student-t 

FU
T1

  CCC 0.849 0.153 64.8% 0.435 0.463 

VARMA-AGARCH 0.849 0.153 64.8% 0.435 0.464 

DCC 0.845 0.153 64.8% 0.435 0.475 

BEKK 0.849 0.154 64.7% 0.435 0.474 

        
FU

T2
  CCC 0.853 0.154 64.6% 0.435 0.450 

VARMA-AGARCH 0.853 0.154 64.6% 0.435 0.450 

DCC 0.850 0.154 64.7% 0.435 0.464 

BEKK 0.854 0.154 64.6% 0.435 0.468 

  Gaussian 

FU
T1

  CCC 0.803 0.152 65.0% 0.435 0.535 

VARMA-AGARCH 0.802 0.152 65.0% 0.435 0.537 

DCC 0.812 0.153 64.8% 0.435 0.566 

BEKK 0.817 0.153 64.7% 0.435 0.570 

        

FU
T2

  CCC 0.810 0.153 64.8% 0.435 0.514 

VARMA-AGARCH 0.809 0.153 64.8% 0.435 0.515 

DCC 0.818 0.154 64.6% 0.435 0.549 

BEKK 0.823 0.154 64.5% 0.435 0.555 

Notes: Optimal Hedging Ratio (OHR), Variance of Portfolios (Var. PF), Hedging Effective Index 
(HE), Variance of ungedged portfolio (Var. UnHed) and Optimal Portfolio Weights (OPT. W). 


