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Abstract: Workers are embedded within a network of social relationships

and can communicate through word-of-mouth. They can Þnd a job through

either formal agencies or personal contacts. From this micro scenario, we

derive an aggregate matching function that has the standard properties but

fails to be homogeneous of degree one. Search frictions arise endogenously

because of coordination failures between workers as in the standard urn-ball

model. However, contrary to the latter, the network of personal contacts al-

lows here for a (partial) replacement of redundant jobs. Therefore, introducing

word-of-mouth communication among network-related individuals reduces co-

ordination failures and alleviates the associated search frictions. In particular,

when the network size increases, on average, the unemployed workers hear

about more vacancies through their social network but, at the same time,

it is more likely that multiple vacancies reach the same unemployed worker.

Above a certain critical value, this job overcrowding becomes so important that

job matches decrease with network size. Finally, we show the existence and

uniqueness of the labor market equilibrium and study its properties. In dense

enough networks, the corresponding equilibrium unemployment rate increases
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with network size.

1 Introduction

Individuals seeking for jobs read newspapers, go to employment agencies,

browse in the web and mobilize their local networks of friends and relatives.

Although underestimated by the bulk of the search and matching literature,

personal contacts often play a prominent role in matching job-seekers with va-

cancies. The empirical evidences indeed suggest that about half of all jobs are

Þlled through contacts.1 Networks of personal contacts mediate employment

opportunities which ßow through word-of-mouth and, in many cases, con-

stitute a valid alternative source of employment information to more formal

methods.2

The aim of this paper is threefold. First, we endogeneize search frictions

through coordination failures, obtained from an explicit micro scenario for the

matching function in which Þnding a job depends both on formal and infor-

mal methods. According to this scenario, workers are linked to each other

by a social network, the members of this network can communicate through

word-of-mouth and agents partly rely on friends to gather information about

employment opportunities. Second, we establish a non-monotonic relation-

1Sociologists and labor economists have produced a broad empirical literature on labor

market networks. In fact, the pervasiveness of social networks and their relative effectiveness

varies with the social group considered. For instance, Holzer (1988) shows that among 16-23

years old workers who reported job acceptance, 66% used informal search channels (30%

direct application without referral and 36% friends/relatives), while only 11% use state

agencies and 10% newspapers. See also Corcoran et al. (1980) and Granovetter (1995).

More recently, Topa (2001) argues that the observed spatial distribution of unemployment

in Chicago is consistent with a model of local interactions and information spillovers, and

may thus be generated by agent�s reliance in informal methods of job search such as networks

of personal contacts.
2Montgomery (1991) emphasizes the role of networks and its advantages for the employer

relative to other channels as providing a screening device against low-ability workers. Indeed,

it is widely documented that individuals tend to interact with individuals like themselves

(a property often called assortative matching or inbreeding bias). Therefore, currently em-

ployed high-ability workers (whose type has already been revealed to the employer) are more

likely to refer workers of the same type. Because of that, employers often delegate to the

network of their current workforce the screening function of Þnding a suitable employee. Our

focus here is rather on characterizing the (endogenous) returns of job information exchange

in social networks and the associated labor market equilibrium.
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ship between network size and job matches because in larger networks, on

average, unemployed workers hear about more vacancies through their social

network but coordination failures increase. Finally, we fully characterize the

steady-state labor market equilibrium, show its existence and uniqueness, and

investigate the link between the network of personal contacts, the information

transmission protocol and the equilibrium unemployment and vacancy rates.

There have been several attempts to Þnd a micro foundation of the stan-

dard macroeconomic matching function. The most popular reduced form is

the exponential matching function that was Þrst employed by Butters (1977)

to model contacts between buyers and sellers in commodity markets.3 More

recently, Lagos (2000) has proposed an alternative micro approach by deriving

an aggregate matching function which takes the form of a min function. Our

micro foundation of the matching function based on word-of-mouth commu-

nication gives insights on the relationship between job search, job matching

and social network. In fact, there have been few theoretical attempts to model

this link. Notable exceptions include Diamond (1981), Montgomery (1991,

1992), Mortensen and Vishwanath (1994) and Kugler (2000) that contribute

to the theoretical literature on equilibrium wage determination in search mar-

kets. However, in all these approaches, the modelling of the social network

is quite shallow. To our knowledge, the Þrst paper to explicitly model the

structure of social contacts by an undirected network in a labor market con-

text is Boorman (1975).4 Following this early contribution, Calvó-Armengol

(2001) develops a model specifying at the individual level both the decision to

establish or to maintain social ties with other agents, and the process by which

information about jobs is obtained and transmitted. The analysis focuses on

3This matching function owes its origin to the well-known and extensively analysed urn-

ball model in probability theory. According to this model, the labor market is visualized

as �urns� (vacancies) to be Þlled by �balls� (workers). Because of a coordination failure

inherent to any random placing of the balls in the urns, not all pairs are matched exactly.

Rather, this uncoordinated process yields an overcrowding in some jobs and no applications

in others. Such coordination failures are thus the sources of search frictions. In most cases,

the system steady state can be approximated by an exponential-type matching function as

the population becomes large. See for instance Hall (1979), Pissarides (1979), Peters (1991),

Blanchard and Diamond (1994), Burdett, Shi and Wright (2001), Smith and Zenou (2001).
4A recent and growing literature stresses the role of networks in explaining a wide range

of economic phenomema among which labor markets are just an example. See for instance

Jackson and Wolinsky (1996), Bala and Goyal (2000) and the references therein. For a

previous model of word-of-mouth communication, see Ellison and Fudenberg (1995).
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the impact that an endogenous determination of job contact networks has on

the effectiveness of information transmission and on the aggregate unemploy-

ment level. On the contrary, the present paper builds an aggregate matching

function stemming from an explicit network structure, and determines the im-

pact a partial reliance on social networks as a method of job search has on

labor market outcomes.

More precisely, in our model, individuals are not isolated one with respect

to the other. Rather, they are embedded within a network of social relation-

ships. We represent this social network by an undirected graph where nodes

stand for the agents and a link between two nodes means that the correspond-

ing agents can communicate directly. For most of the analysis, we focus on

symmetric social networks where all agents have the same number of direct

acquaintances. We refer to this number as the network size. Given a network

of contacts, information about employment opportunities can be transmitted

between any two direct neighbors through word-of-mouth communication. In

other words, when a job is available in the economy, workers can match with

such a vacancy using either formal or informal methods. When an unemployed

worker hears directly from a vacancy, we assume that s/he takes the job, and

this is considered as a formal method (since the social network plays no role).

If on the contrary the worker hearing directly from a vacancy is currently

employed, we assume that s/he transmits this information to her/his direct

unemployed neighbors. Unemployed workers getting a job with the help of

their local social network −as described above− rely on informal methods of

job search.

Our Þrst result is to endogenously derive search frictions through coordi-

nation failures between workers. In this respect, our model can be seen as an

extension of the standard urn-ball model mentioned above. However, in our

framework, because of the two sources of Þnding a job, the network of personal

contacts allows for a (partial) replacement of redundant jobs, thus reducing

coordination failures and alleviating matching frictions, whose intensity is now

explicitly related to network size. From this micro scenario, in which the

structure of personal contacts and the job information transmission process

is spelled out in detail, we obtain a well-deÞned aggregate matching function

that gives the number of job matches per unit of time. The corresponding

reduced form is expressed in terms of the unemployed worker and vacant Þrm

pools, and the social network underlying players� talks. Contrarily to previous
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contributions which also provide micro foundations of matching functions, the

expression obtained here is neither an exponential nor a min one. This match-

ing function is increasing and strictly concave in both the unemployment and

the vacancy rates. Moreover, the (extension of the standard) matching func-

tion we provide clearly relates job matching to individual social embeddedness

and captures complex spillovers within social networks of interrelated personal

contacts.

Our second result is to show that the relationship between network struc-

ture (namely size) and job Þnding is not as straightforward as it is commonly

viewed. Indeed, in the standard social network literature (especially in soci-

ology), more contacts are thought to be an advantage because of more net-

work members who can potentially broker job vacancies and job seekers. We

show in fact that this result crucially depends on the size of the network. In-

deed, in a symmetric social network, we demonstrate that, when the network

size increases, on average, the unemployed workers hear about more vacan-

cies through their social network but, at the same time, it is more likely that

multiple vacancies reach the same unemployed worker, thus increasing coor-

dination failures. Therefore, there exists a critical network size, above which

coordination failures are so important that the individual job-acquisition rate

decreases. As a result, there is a non-monotonic relationship between network

size and the rate at which matches occur so that the matching function fails

to be homogenous of degree one.

Our last result is, using this matching function, to fully characterize the

steady-state labor market equilibrium whose existence and uniqueness are es-

tablished. We show that the resulting equilibrium unemployment rate de-

creases with the network size in sparse networks while it increases when the

pattern of links is dense.

The remaining of the paper is as follows. The next section describes the

social network, the labor market and the information transmission protocol

within this network. Section 3 derives the aggregate matching function and

examines its main properties. The characterization, the existence and the

uniqueness of the labor market equilibrium is established in section 4. Section

5 concludes and all the proofs are presented in the Appendix.
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2 Social Network and Word-of-Mouth Com-

munication

Social networks are links and associations between people of a common ilk.

These can be friends, acquaintances and colleagues. Networks are evident

between family members, but are also established between friends and neigh-

borhood residents. In this section, we model the social network between people

by means of graph theory.

2.1 The social network

We consider a Þnite population of workers N = {1, ..., n}. In our model,

individuals are not isolated one with respect to the other. Rather, they are

embedded within a network of social relationships. More precisely, each worker

i is in direct contact with a group of workers (her/his set of friends or relatives)

and we assume that each pair of directly connected workers can communicate

with each other through word-of-mouth. A direct link between two individuals

i and j is denoted by ij. The collection of all existing links constitutes the

prevailing social network of personal relationships denoted by g. Such a social

network is modelled as an undirected graph in which binary relationships are

symmetric that is, whenever i is connected to j according to g (ij ∈ g), then
j is also connected to i according to g (ji ∈ g).
Given a social network g, we denote by Ni(g) the set of all direct neighbors

of worker i. Formally, Ni(g) = {j ∈ N\{i} : ij ∈ g}. We also denote by ni(g)
the cardinal of the set Ni(g) that is, the number of direct neighbors of i with

whom s/he can directly communicate. For example, Figure 1a corresponds to

a star-shaped graph in which worker 1 can communicate with every other in-

dividual in the economy whereas workers 2 to n = 6 can directly communicate

only with worker 1. Figure 1b illustrates the case of the complete graph where

every worker can directly communicate with everybody.

An interesting case to be considered is when all workers have the same

number of direct neighbors that is, ni(g) = s for all i ∈ N . Such a graph is
called a symmetric graph and s is the size of the corresponding social network.

The complete graph described in Figure 1b is a particular case of a symmetric

network where s = n− 1 = 5.
[Insert F igures 1a and 1b here]
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2.2 The labor market

The labor market environment is as follows. Time is discrete and continues

forever. At any point in time, each of the n workers is either employed or

unemployed. At period t, the unemployment pool is denoted by Ut and the

corresponding unemployment rate by ut = Ut/n. There are also Vt vacancies to

be Þlled and each worker directly hears of a vacancy with probability vt = Vt/n.

We refer to vt as the job arrival rate or the vacancy rate. Each employer posts a

vacancy by advertising this job both in employment agencies (and/or national

newspapers) and to her/his current workers.

At each period, currently employed workers lose their jobs with some prob-

ability δ. This process is taken to depend only on the general state of the

economy and hence is treated as exogenous to the labor market. The tim-

ing of the model is as follows. At the end of period t, the unemployment

and employment rates are respectively equal to ut and 1 − ut. At the begin-
ning of period t+ 1, there is a technological shock and employed workers lose

their jobs with the breakdown probability δ. The resulting employment rate is

(1−δ)(1−ut). Then, Vt+1 vacancies are posted and jobs are Þlled according to

the procedure described below. At the end of period t+ 1, the unemployment

and employment rates are respectively equal to ut+1 and 1− ut+1. And so on.

From now on, and for notational simplicity, we omit the subscript t when no

confusion is possible.

2.3 Word-of-mouth information transmission

At each period, and once the technological shock has occurred, any worker

(employed or unemployed) directly hears of a vacant job with probability v =

V/n. Recall that jobs are systematically posted both through employment

agencies (or newspapers) and within Þrms. Hence, the probability that a

worker directly hears of a job (i.e. through the employment agency for the

unemployed or from the employer her/himself for the employed) is always equal

to v irrespective of the current employment status. There are now two cases

to be considered. First, the directly informed worker is unemployed. Then,

s/he takes this job immediately. This means that this worker has found the job

through an employment agency (or an ad in the newspapers) and, consequently,

does not rely on her/his social network to be reemployed. Second, the directly

informed worker is employed, meaning that s/he has been directly informed
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by her/his current employer. Obviously, this worker does not need this job

and transmits this information to one of her/his direct unemployed neighbors,

if any. We assume that unemployed workers are treated on an equal footing,

which means that all unemployed direct neighbors have the same probability

to be informed.5

Observe that, according to this information transmission protocol, job in-

formation can only ßow through word-of-mouth from an employed to an un-

employed worker that is, between workers with different employment status.

Indeed, vacancies are assumed to be posted for one period which coincides

with the time required to transmit information to direct neighbors. Therefore,

if the informed worker is both employed and does not have any unemployed

worker in her/his direct vicinity, the job slot is lost. Similarly, if an unem-

ployed worker hears of two (or more) vacancies through word-of-mouth from

two (or more) direct employed neighbors, we assume that s/he selects one job

randomly, the other job(s) being lost. Finally, one (or more) job(s) is (are)

also lost when an unemployed worker hears of jobs both directly and through

friends.

Assuming that job information cannot be relayed further away than the di-

rect neighborhood of the initially informed employed worker is not completely

at odds with empirical Þndings. Indeed, Granovetter (1995) shows that infor-

mation transmission with no relay (as assumed here) accounts for 39.1% of the

jobs found through contacts (p. 57). To keep things tractable, we maintain

this simplifying assumption throughout and, in section 2.5, we discuss how our

results are robust to generalizations of this information transmission protocol.

5There are two equivalent interpretations of this assumption. Either the employed worker

transmits the information about a vacancy to only one worker that s/he picks at random

among all her/his neighbors or the employed worker transmits this information to all her/his

unemployed neighbors. In both cases, the probability to hear about the vacancy for an un-

employed worker belonging to the network of this employed worker is exactly the same. The

two interpretations are thus formally equivalent. A more realistic model should also allow

for job information exchange among unemployed workers with a common employed friend,

whenever they are directly linked with each other. As we shall see, such generalizations

jeopardize the model tractability without adding further insights.
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2.4 Finding a job through personal contacts

In our model, workers partly rely on friends to gather information about poten-

tial jobs. Denote by θ ≡ (1− δ)(1−u) the individual probability of remaining
employed after the technological shock and before vacancies are posted for the

current period. Conditional on being unemployed and not hearing directly of a

vacancy, the individual probability of Þnding a job through contacts for worker

i depends on the prevailing social network g and is given by:

Pi(g, u, v) = 1− Π
j∈Ni(g)

"
1− vθ 1− θnj(g)

(1− θ)nj (g)
#

(1)

The explanation for this result is the following. Fix a worker j ∈ Ni (g)
in the direct neighborhood of player i. Then, vθ is the probability of this

particular neighbor j knowing of a job opportunity (probability v) and not

needing it (probability θ). This employed and informed neighbor j transmits

this available job information to her/his direct neighbor i with probability
1−θnj (g)

(1−θ)nj(g)
. Indeed, the probability of i being the unemployed worker selected

among all the unemployed neighbors of j to be told about the existing vacancy

can be decomposed as follows:

1− θnj(g)

(1− θ)nj (g) = θ
nj(g)−1+

nj(g)−1X
k=1

Ã
nj (g)− 1

k

!
1

k + 1
θnj(g)−k−1(1− θ)k

According to this expression, worker i is the recipient of the job informa-

tion held by her/his employed neighbor j if either s/he the only unemployed

neighbor of j (probability θnj(g)−1) or s/he is the one selected among the

k + 1 unemployed friends of j (probability 1
k+1
θnj(g)−k−1(1 − θ)k). Therefore,

vθ 1−θnj(g)

(1−θ)nj(g)
is the probability of player i Þnding a job thanks to his direct

neighbor j ∈ Ni (g), whereas with complementary probability 1 − vθ 1−θnj (g)

(1−θ)nj(g)
the employed direct neighbor j of player i does not prove useful to Þnd a job.

Finally, Π
j∈Ni(g)

·
1− vθ 1−θnj (g)

(1−θ)nj(g)

¸
denotes the individual probability of worker i

not hearing of a vacancy through word-of-mouth communication from any of

her/his direct acquaintances.

In Figures 1a and 1b, we have calculated this probability Pi(g, u, v) for a

star-shaped graph and a complete graph. From Figure 1a, it is clear that indi-

vidual 1 has the highest probability to Þnd a job through word-of-mouth since

s/he is connected to everybody whereas all the others have the same probability
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since they are only connected to individual 1 (P1 > P2 = P3 = P4 = P5 = P6).

In Figure 1b, all individuals have the same number of direct neighbors (sym-

metric graph), which implies that they all have the same probability to Þnd a

job through contacts (P1 = P2 = P3 = P4 = P5 = P6). Observe however that,

in both cases, all individuals have the same probability v to Þnd a job through

formal methods since this job-Þnding process does not depend on the social

network.

From now on, we focus on symmetric social networks with uniform mix in

which all workers have both the same number of neighbors equal to s (symme-

try) and the same number of employed and unemployed direct contacts equal

respectively to (1− u) s and us (uniform mix). We refer to s as the network

size. In a symmetric network of size s, the individual probability of hearing of

a job through word-of-mouth is then:

P (s, u, v) = 1−
"
1− vθ 1− θs

(1− θ) s
#s

(2)

As stated above, Figure 1b depicts a particular example of a symmetric

social network when s = n− 1 = 5.

Proposition 1 The properties of P (s, u, v) are the following:

(i) P (·, u, v) is increasing between 0 and s and decreasing between s and

n−1, where s is the unique global maximum of P (·, u, v). Also, P (·, u, v)
is strictly concave on [0, K) for some K > s;

(ii) P (s, ·, v) is decreasing in u. Moreover, there exists some eδ ∈ [0, 1) such

that P (s, ·, v) is strictly convex in u when δ ≥ eδ;
(iii) P (s, u, ·) is increasing and strictly concave in v.

Let us Þrst comment the Þrst result (i) of Proposition 1. If we Þx u

and v, then (i) shows that the individual probability P (·, u, v) to Þnd a job
through word-of-mouth within the network of social contacts exhibits dimin-

ishing marginal returns to network size s.6 In other words, the marginal impact

6In fact, this is true only on a restricted domain [0,K) including the unique global

maximum s. However, observe that concavity holds on the whole domain where s is allowed

to vary whenever K ≥ n− 1.
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of adding a new connection to everybody decreases with the total number of

pairwise links in the society. Moreover, P (·, u, v) increases with s in sparse
networks (s < s) while it decreases with s in densely connected labor market

networks (s > s).

To understand this result, observe that increasing the network size has

both a (positive) direct and (negative) indirect effect. On one hand, rising the

network size expands the available direct connections to every worker. Work-

ers become better connected and, consequently, the potential job information

they can beneÞt from increases. On the other hand, rising the network size also

increases the potential number of unemployed workers directly connected to

an employed and informed worker. The information held by every employed

worker is now shared by a larger group of unemployed workers. Therefore,

every unemployed worker suffers from the information sharing constraints ex-

erted by the unemployed indirectly connected to her/him. Stated differently,

expanding one�s neighborhood has a negative impact on the current direct

friends as it reduces their (individual) probability to gather job opportuni-

ties through social contacts. Workers relative locations thus create a negative

network externality for their direct vicinity.

Another way to understand Proposition 1 (which will be very useful when

we derive the matching function) is to highlight the coordination failures in

the search process. Take a given unemployed individual in a network of size

s and let τ (s) = vθ (1− θs) / (1− θ). Any direct contact passes informa-

tion on to the unemployed worker with probability τ (s) /s. Indeed, a direct

contact passes on job information to some particular unemployed friend of

her/him whenever: this direct contact remains employed after job separations,

which happens with probability θ; this direct contact is informed about a job

vacancy, which happens with probability v; and our unemployed worker is se-

lected as the recipient of this job information, which happens with probability

(1− θs) /s (1− θ). Since the unemployed worker in question has s different di-
rect contacts, then Þnding a job through word-of-mouth communication corre-

sponds to a random experiment consisting of s repeated independent Bernoulli

trials with a probability of success at each individual trial given by τ (s) /s.

The number of job offers an unemployed worker hears about through his net-

work thus follows a binomial distribution of parameters B (τ (s) /s; s).

Let X be a random variable that represents the number of successes in the

s repeated independent Bernoulli trials that is, the number of job vacancies

11



passed on through word-of-mouth communication. X follows the binomial

distribution B (τ (s) /s; s). Therefore, the total expected number E[X] of job

offers that any unemployed worker hears about in a network of size s is:

E[X] = τ (s) = vθ
1− θs
1− θ

It is easy to see that E[X] increases with s, is concave and converges to

vθ/ (1− θ) as s → +∞. In other words, in larger networks, the unemployed

workers hear about more jobs on average. Also, when the network becomes

large, the average number of vacancies communicated through this network

becomes vθ/ (1− θ) = v/ (1− θ) − v. Since the unemployment rate after job
separations but before matches equals 1− θ, this total expected number of va-
cancies an unemployed hears about is simply the vacancy rate divided by the

unemployment rate (after separations, before matches), excluding those va-

cancies the unemployed person hears about directly (with a probability equal

to the vacancy rate).

However, as network size s increases, the support of the binomial distribu-

tion B (τ(s)/s, s) also widens. This has a subtle countervailing effect. Indeed,

the probability that an unemployed worker has at least one job offer is:7

Pr [X ≥ 1] = 1− Pr [X = 0] = 1−
"
1− τ (s)

s

#s

It is straightforward to see that, holding τ(s)/s constant, this probability (of

hearing about multiple vacancies) increases when the support s of the binomial

distribution widens. This highlights the coordination failures of our model.

When the network size s increases, on average, the unemployed workers hear

about more vacancies through their social network but, at the same time, it

is more likely that multiple vacancies reach the same unemployed worker. We

show in fact that there is a critical network size s8 above which the second

effect dominates the Þrst one.

In sparse networks, the individual probability to Þnd a job through word-

of-mouth increases with the network size and workers� connections alleviate

coordination failures (with respect to the canonical urn-ball model) by allowing

a partial replacement or job matches. In dense networks, though, coordination

7Of course, Pr [X ≥ 1] = P (s, u, v).
8The threshold value s is uniquely determined by ∂P (s,u,v)

∂s = 0.
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failures arise again and more connections now harm the matching process by

(slightly) slowing down information exchange.

The second (ii) and third result (iii) of Proposition 1 are now quite easy

to understand. When the unemployment rate u increases, two effects are in

order: the likelihood that a worker, who is directly informed of a vacancy

through formal channels (arrival rate v), is unemployed increases; and also

the number of unemployed directly connected to every informed and employed

worker rises (more coordination failures). This implies that u and P (s, ·, v)
are negatively correlated. To understand the positive impact of the vacancy

rate v on the individual probability of Þnding a job through friends P (s, u, ·)
a similar intuition applies.

2.5 Generalizing the communication protocol

So far, we have assumed that information about job opportunities can only

ßow from employed workers to unemployed direct acquaintances. In particular,

the informed worker cannot transmit any information to any other employed

friend that may then relay it to some unemployed direct contact, if any. Hence,

the rate at which employed workers hear of a job opportunity is completely

determined by the vacancy rate v and does not depend on the network of social

contacts g. As a consequence, one�s indirect neighbors do not constitute a po-

tential source of job information. Rather, they are perceived as potential com-

petitive information recipients. The resulting information sharing constraints

they exert on indirect neighbors generate the negative externality arising in

information transmission.

Suppose now that we relax this assumption and we allow for information to

be relayed through word-of-mouth from employed worker to employed worker,

with no restrictions whatsoever on the length of transmission. Assume, though,

that relayed information is correctly transmitted with some probability strictly

less than one, to account, for instance, for forgetfulness.9 Now, the rate aj at

which some employed worker j acquires job information depends both on the

vacancy rate v and on the network of contacts g and thus can be written as

aj (v, g). The individual probability of Þnding a job through contacts then

9Equivalently, we could assume that there is no forgetfulness at all but that the length

of job information transmission is Þnite and arbitrarily Þxed.
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becomes

Pi(g, u, v) = 1− Π
j∈Ni(g)

"
1− aj (v, g) θ 1− θnj(g)

(1− θ)nj (g)
#

Indeed, indirect connections do not only induce information sharing constraints

but may now also constitute a valuable source of job information. Still, one can

show that in dense enough networks, the negative effect of information sharing

constraints outweighs the positive impact of possibly acceding a broader range

of information channels. In other words, allowing for information to ßow on

the network of contacts along any path connecting two workers does not alter

the qualitative relationship between job matching and social embeddedness

stressed in this paper.10

3 The matching function

As stated above, unemployed workers Þnd jobs from two different channels.

Either they Þnd their job directly through formal methods −such as adver-
tisement or employment agencies− with probability v, or they gather informa-
tion about jobs through informal methods −in our case, the network of social
contacts− with probability P (s, u, v). In this context, the job acquisition rate
or individual hiring probability of an unemployed worker is:

h(s, u, v) = v + (1− v)P (s, u, v) (3)

At each period of time, there are nu = U unemployed workers that Þnd

a job with probability h(s, u, v). Since this probability is independent across

different individuals, the number of job matches taking place per unit of time

is just nuh(s, u, v). Therefore, the matching function for our labor market

where workers partly rely on personal contacts to Þnd a job is given by:11,12

m(s, u, v) = u [v + (1− v)P (s, u, v)] (4)

10For more details on this issue, see Calvó-Armengol (2001). Note, however, that allow-

ing for information to ßow through word-of-mouth with no restrictions on the length of

transmission complicates sharply the analysis. Indeed, when relays are permitted, the local

topology of the network may play a role and has to be taken explicitly into account.
11To be more precise this matching function corresponds to the rate at which job matches

occur per unit of time. It suffices therefore to multiply m(s, u, v) by n to get the number of

matches per unit of time.
12It is easy to verify that the matching function for a general social network g, not neces-
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We can thus express the aggregate rate at which job matches occur as a

function of the unemployed worker and vacant Þrm pools, and the social net-

work underlying players talks. This endogenous matching function is derived

from an explicit micro scenario where the structure of personal contacts and

the job information transmission process is spelled out in detail. Contrary

to previous contributions also providing micro foundations for matching func-

tions, the well-deÞned reduced function obtained here is neither an exponential

nor a min one. Moreover, the central role of the network of contacts in match-

ing job-seekers with vacancies is made explicit, and the link between m(s, u, v)

and the network size s is precisely the key element of our model.

Proposition 2 The properties of the matching function m(s, u, v) are the fol-

lowing:

(i) m(·, u, v) is increasing between 0 and s and decreasing between s and

n−1, where s is the unique global maximum of P (·, u, v). Also, m(·, u, v)
is strictly concave on [0, K) for some K > s;

(ii) m(s, ·, v) is increasing and strictly concave in u on [0, u] for some 0 <

u ≤ 1;

(iii) m(s, u, ·) is increasing and strictly concave in v.

The following comments are in order. First, there is a non-monotonic

relationship between the job matching rate and the network size. To explain

this result, let us use the intuition of section 2.4 in which the number of

job offers an unemployed worker hears about through his network follows a

binomial distribution of parameters B (τ (s) /s; s). In this context, when the

network size s increases, on average, the unemployed workers hear about more

vacancies through their social network (i.e. the expected number of offers τ(s)

reaching an unemployed in a network of size s increases) but, at the same

time, it is more likely that multiple vacancies reach the same unemployed

sarily symmetric, is equal to:

m(g, u, v) = nu

"
v + (1− v) 1

n

X
i∈N

Pi(g, u, v)

#

where Pi(g) is given by (1).

15



worker (i.e. holding τ (s)/s constant, the support of the binomial distribution

widens and the probability of hearing about multiple vacancies rises), thus

increasing coordination failures. Therefore, above a critical network size s,

coordination failures become so important that job matches decrease. We have

thus endogeneized search frictions through coordination failures but, contrary

to the standard urn-ball model, the network of personal contacts allows for

a (partial) replacement of redundant jobs, thus reducing coordination failures

and alleviating matching frictions.

Second, it is easily veriÞed that P (s, u, v) is not homogeneous of degree

one, implying in turn that the matching function m (s, u, v) also fails to ex-

hibit constant returns to scale (with respect to u and v). The intuition for this

result is as follows. Suppose Þrst that the network size s is Þxed. Increasing

the vacancy rate from v to λv (where λ > 1) has a positive direct impact on

all workers in the population. By contrast, increasing the unemployment rate

by the same amount (from u to λu) has both a direct and an indirect nega-

tive effect. Indeed, the number of unemployed direct acquaintances increases,

thus reducing the value of such personal contacts as job providers (direct neg-

ative effect). Moreover, the number of unemployed indirect acquaintances also

increases, thus imposing a stronger information sharing constraint (indirect

negative effect). These two combined negative effects outweigh the positive

direct effect of additional vacancies. In order to see that, let us write (2) as13

P (s, u, v) = 1−
·
1− 1

s
vθ
³
1 + θ + · · ·+ θs−1

´¸s
where θ = (1− δ) (1− u). Therefore, increasing v has a positive linear impact
on 1

s
vθ
³
1 + θ + · · ·+ θs−1

´
whereas increasing u has both a negative linear

impact through θ of the same order and a magnifying negative impact through

the polynomial form
³
1 + θ + · · ·+ θs−1

´
. This result is at odds with the

standard hypothesis of a constant-return-to-scale aggregate matching function

made in the theoretical literature on job matching (Mortensen and Pissarides,

1999 and Pissarides, 2000). It says that, if social networks and word-of-mouth

communications are integrated in the job-search process, then the matching

function is more likely not to be homogeneous of degree one. Besides, there is

a huge body of empirical work to assess whether this property of the matching

function is encountered in real-life labor markets. Even if the results lean

13Simply note that (1− θs) / (1− θ) = 1 + θ+ · · ·+ θs−1.
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towards constant returns to scale, they are very much controversial14 and most

of these empirical studies do not include informal methods in Þnding a job.

By taking into account these methods, it would be interesting to see if the

results would be altered in such a way that the matching function would fail

to exhibit constant returns to scale.

Third, even though our matching function is quite different to the ones

found in the literature, it has the same natural properties: it is increasing and

strictly concave in both u and v.15

Finally, we can deduce from (4) the following simple expression for the

individual probability f(s, u, v) for Þrms to Þll a vacancy:

f(s, u, v) =
m (s, u, v)

v
= u

·
1−

µ
1− 1

v

¶
P (s, u, v)

¸
(5)

Clearly, the properties of both the job-hiring rate h(s, u, v) and the job-

Þlling rate f(s, u, v) as functions of the network size s are immediately deduced

from that of P (s, u, v) namely, strictly concave in s, increasing between 0 and

s and decreasing between s and n− 1. Moreover, the job-hiring rate h(s, u, v)
is decreasing in u and increasing in v whereas the job-Þlling rate f(s, u, v) is

increasing in u and decreasing in v.16 In other words, given a vacancy rate

v (and a network size s), when the number of unemployed increases, it is

more difficult to Þnd a job but easier to Þll a vacancy. Similarly, given an

unemployment rate u (and a network size s), it becomes easier to Þnd a job

but more difficult to Þll a vacancy as the number of vacancies increases.17

4 The labor market equilibrium

4.1 Characterization of the equilibrium

Firms and workers are all identical. A Þrm is a unit of production that can

either be Þlled by a worker whose production is y units of output or be un-

Þlled and thus unproductive. We denote by γ the search cost for the Þrm per

14See for instance Coles and Smith (1996), Petrongolo and Pissarides (2001) and the

references therein.
15For u, this is true only on a restricted domain, i.e. on [0, u], where u is quite large.
16See Lemmata 1 and 2 in the appendix.
17See Pissarides (2000) for a thorough account and description of such trading external-

ities. Note also that 1/h and 1/f can be interpreted as the mean duration respectively of

unemployment and of vacancies.
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unit of time, by w the wage paid by the Þrms when a match is realized and

by r the discount factor. We assume that the wage is exogenous. This is be-

cause our focus is not on wage determination but rather on the communication

mechanisms through which job information is gathered and transmitted, the

network of personal contacts underlying such communication processes, and

their impact on labor market outcomes. In particular, one of the salient fea-

tures of our framework is to derive an explicit matching function from a model

of communication and networks (see Proposition 2).18 In section 4.3, we will

however discuss how our model can take into account endogenous wages.

At every period, matches between workers and Þrms depend upon the cur-

rent network of social contacts of size s and the current state of the economy

given by the unemployment rate u and the vacancy rate v. We focus on the

steady state equilibrium.

Definition 1 Given a network size s and the associated matching technology

m(s, ·, ·), a (steady-state) labor market equilibrium (u∗(s), v∗(s)) is determined

by a free-entry condition for firms and a steady-state condition on unemploy-

ment flows.

At the steady state labor market equilibrium, every worker has s direct

acquaintances consisting of su∗ (s) unemployed and s (1− u∗ (s)) employed
contacts. We now characterize such a steady state equilibrium. We Þrst estab-

lish the free-entry condition and the resulting labor demand. At period t, the

intertemporal proÞt of a Þlled job and of a vacancy are denoted respectively

by IF,t and IV,t. Recall that the job-Þlling rate f is deÞned by (5). Since time

is discrete, we have the following standard Bellman equations:

IF,t = y − w + 1

1 + r
[(1− δ)IF,t+1 + δ IV,t+1]

IV,t = −γ + 1

1 + r
[(1− f)IV,t+1 + f IF,t+1]

In steady state, both IF,t = IF,t+1 = IF and IV,t = IV,t+1 = IV . Fol-

lowing Pissarides (2000), we assume that Þrms post vacancies up to a point

18There are papers that have explored the wage premium associated with the use of

personal contacts in Þnding a job. See for instance Montgomery (1991) and Kugler (2000)

for analyses of this issue in an adverse selection setting, Mortensen and Vishwanath (1994)

for an equilibrium search models with wage posting and on-the-job search, and Montgomery

(1992) for a model with weak and strong ties.
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where IV = 0. We deduce from this free entry condition the following relation

between u and v:
m(s, u, v)

v
= γ

r + δ

y − w (6)

In other words, the value of a job is equal to the expected search cost, i.e.

the cost per unit of time multiplied by the average duration of search for the

Þrm. This equation can be mapped in the plane (u, v) and is referred to as the

labor demand curve. We then close the model by the following steady-state

condition on ßows:

m(s, u, v) = δ(1− u) (7)

As above, this equation can be mapped in the plane (u, v) and is referred

to as the Beveridge curve. The two equations (6) and (7) with two unknowns

u and v fully characterize the labor market equilibrium (u∗(s), v∗(s)) as a
function of the network size s.

Proposition 3 Suppose that γ(r + δ)/(y − w) > δ/(1 + δ). Then, for all

network size s, there exists a labor market equilibrium (u∗(s), v∗(s)). If γ(r +

δ)/(y − w) is small enough, this equilibrium is unique.

Observe that the condition on the parameters γ(r+ δ)/(y−w) > δ/(1+ δ)
that guarantees the existence of the equilibrium is very likely to be satisÞed.

Indeed, we deduce from (6) that γ(r + δ)/(y − w) is equal to the job-Þlling
rate f(s, u, v). A sufficient condition for f(s, u, v) > δ/(1 + δ) to hold is

f(s, u, v) > δ that is, the job-Þlling rate be higher than the job-destruction

rate, which is obviously true in most labor markets.

4.2 Social network and unemployment

We now investigate the different properties of the labor market equilibrium

and focus on the relationship between the equilibrium unemployment rate

u∗(s) and the size of the social network s. We assume from now on that the

conditions for uniqueness are met.

Proposition 4 The equilibrium unemployment rate u∗(s) decreases with s

when s < s, while it increases when s ≥ s.

Our matching function depends explicitly on the structure of personal con-

tacts and the labor market equilibrium captures the inßuence of the frictions
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due to workers social embeddedness on market outcomes. In particular, we

know from propositions 1 and 2 that in a sparse network (s < s) , both the

individual probability P (·, u, v) to Þnd a job through word-of-mouth and the
matching function increase with the network size s. We deduce from the free

entry condition (6) that, holding the arrival rate v Þxed, unemployment de-

creases. The Beveridge curve (7) then implies that unemployment must also

decrease to equalize ßows out with ßows in. Since the two effects have the

same sign, u∗(s) decreases with s. When the social network of contacts is
dense (s ≥ s), the opposite result holds since negative network externalities

prevail in networks of large size and both P (·, u, v) andm(·, u, v) decrease with
s.

[Insert F igures 2a and 2b here]

The impact of the network size s on the equilibrium vacancy rate v∗(s) is
ambiguous both when the network is sparse (s < s) or dense (s ≥ s). Indeed,
two opposite effects are now in place. On one hand, increasing the size of

a sparse network improves the transmission of information through word-of-

mouth communication. As a result, matches are more frequent and we deduce

from the free entry condition (6) that more vacancies are posted. In other

words, v∗(s) and s are positively correlated. On the other hand, rising the
size of a sparse network by creating additional direct connections increases

the number of matches between workers and Þrms. We then deduce from the

Beveridge curve (7), that vacancies decrease in order to guarantee that the

ßows out of unemployment are still equal to the ßows into unemployment.

Therefore, v∗(s) and s are negatively correlated. When the network is dense,
this ambiguity remains and is sustained by the opposite intuition: v∗(s) and s
are both negatively and positively correlated due to (6) and (7) respectively.

4.3 Endogenous wages

So far, we have assumed that wages were exogenous so that employed workers

systematically transmit information about job opportunities to their unem-

ployed friends. One may argue that, if wages were endogenous and negotiated

between workers and Þrms, the employed could exploit a job offer to increase

their bargaining power and thus their wages. In this case, it would not always

be optimal for employed workers to communicate job offers to their unem-

ployed neighbors. In fact, it is easy to see that currently employed workers
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who had never been offered an outside job would always use any available

outside opportunity to increase their wages. It should be clear that after some

Þnite iterations of such negotiations, these workers would obtain the highest

possible wage.19 This implies that all employed workers who have been work-

ing for a Þxed number of periods (greater or equal than two) in the same Þrm

and have exploited all possible wage negotiations, always transmit additional

job information to her/his unemployed friends. Formally, the individual prob-

ability of Þnding a job through contacts for any unemployed worker within a

symmetric network of size s can now be written as:

P (s, u, kv) = 1−
"
1− kvθ 1− θs

(1− θ) s
#s

where k < 1, and the corresponding matching function is given by:

m(s, u, v) = u [v + (1− v)P (s, u, kv)]

In words, compared to the case of exogenous wages, the unemployed workers

have less chances to hear from a vacancy from their employed direct friends

(kv < v) because the latter can now use job offers to increase their wages.

Observe that k is endogenous and determined by the labor market equilibrium,

and represents the reduction in available job information sources.

In this context, a wage distribution endogenously emerges in equilibrium.

Indeed, apart of the unemployment beneÞt received by the unemployed, em-

ployed workers earn different wages depending on their work history (in terms

of outside offers and thus negotiations). The lowest wage is received when they

leave unemployment and start working in a Þrm whereas in the highest wage

they obtain all the surplus because they have exhausted all possible negotia-

tions. Even if this extension enriches the working of the labor market, it leads

to a much more complicated analysis without altering the qualitative features

of our framework. Indeed, the closed-form expression of our micro-founded

matching function remains similar. More importantly, the frictions induced

by the social network explicitly characterized in terms of information sharing

constraints still hold.

19For instance, if there is Bertrand competition between two employers (the current and

the outside ones), the employed worker who has the two offers obtains all the surplus and

therefore gets straightaway the highest possible wage.
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5 Conclusion

In recent years, a growing literature consisting both of empirical work and

theoretical contributions has stressed the prominence of social networks in

explaining a wide range of economic phenomena. In particular, the prevalent

social contacts strongly determine, or at least inßuence, economic success of

individuals in a labor market context.

In this paper, we have analyzed the matching between unemployed workers

and vacant jobs in a social network context. More precisely, each individual,

who is embedded within a network of social relationships, can Þnd a job either

through formal methods (employment agencies or advertisements) or through

informal networks (word-of-mouth communication). From this micro scenario,

we Þrst derive an aggregate matching function that has the standard prop-

erties but fails to be homogenous of degree one. This is because there is a

non-monotonic relationship between the size of the social network and the

probability to Þnd a job: increasing the size of sparse networks is beneÞcial

to workers whereas it is detrimental in dense networks. Indeed, increasing the

network size of dense networks slows down word-of-mouth information trans-

mission and creates negative network externalities. We then close the model

by introducing the behavior of Þrms and show that there exists a unique labor

market equilibrium under mild conditions on the parameters of the economy.

Finally, and because of the previous result, we show that the equilibrium un-

employment rate decreases with the network size in sparse networks while it

increases in dense networks.
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A Appendix

Proof of Proposition 1.

Let q (s, θ) ≡ θ(1−θs)
s(1−θ) . Then, P (s, u, v) = 1 − Q(s, u, v) where Q(s, u, v) =

[1− vq (s, θ)]s. The properties of P (·) can thus be deduced from that of Q (·)
established below:

(a) Q (s, u, ·) is decreasing and strictly convex with respect to v. Indeed,
differentiating once with respect to v gives: ∂Q

∂v
= −sQ q

1−vq < 0. Differ-

entiating twice we get ∂
2Q
∂v2 = −s∂Q∂v q

1−vq − sQ q2

(1−vq)2 . Replacing
∂Q
∂v
by its

expression above gives ∂
2Q
∂v2 = s (s− 1)Q q2

(1−vq)2 > 0.

(b) Q (s, ·, v) is increasing with respect to u. Moreover, there exists eδ ∈ [0, 1)
such that Q (s, ·, v) is strictly concave with respect to u as long as
δ ≥ eδ. Indeed, simplifying by (1− θ) gives q (s, θ) = 1

s
(θ + · · ·+ θs).

Hence, q (s, ·) is increasing with respect to θ, implying that Q (s, u, v) =
[1− vq (s, 1− u)]s is increasing with respect to u. From θ = (1− δ) (1− u)
we deduce that ∂

2Q
∂u2 = (1− δ)2× ∂2

∂θ2 [1− vq (s, θ)]s. Differentiating twice
gives

∂2

∂θ2 [1− vq]s = −vs [1− vq]s−2
·
(1− vq) ∂2q

∂θ2 − v (s− 1)
³
∂q
∂θ

´2
¸

Hence, ∂
2Q
∂u2 < 0 is equivalent to (1− vq) ∂2q

∂θ2 − v (s− 1)
³
∂q
∂θ

´2
> 0 where

q (s, θ) = 1
s
(θ + · · ·+ θs)

∂q
∂θ
= 1

s

³
1 + · · ·+ sθs−1

´
∂2q
∂θ2 =

1
s

³
2 + · · ·+ s (s− 1) θs−2

´
At θ = 0 we have: q (s, θ) = 0, ∂q

∂θ
|θ=0=

1
s
and ∂2q

∂θ2 |θ=0=
2
s
. Therefore,

∂2Q
∂u2 |θ=0< 0 is equivalent to 2s > v (s− 1) which is true. Denote by eθ
the smallest positive root of the polynomial R in θ of degree 2 (s− 1)
given by: R (θ) ≡ (1− vq) ∂2q

∂θ2 −v (s− 1)
³
∂q
∂θ

´2
. If R (θ) > 0 for all θ > 0

we set eθ = +∞ by deÞnition. From R (0) > 0 and by continuity, we

deduce that R (θ) > 0 on
h
0, eθ´. Let eδ = 1−minneθ, 1o. Then, R (θ) > 0

on
h
0, 1− eδ´ implying that ∂2Q

∂u2 < 0 for all u ∈ [0, 1] that is, Q (s, ·, v)
strictly concave with respect to u, as long as δ ≥ eδ.

(c) Q (·, u, v) is decreasing in [0, s] and increasing on [s,+∞). Moreover, is
strictly convex on [0, K) for some K > s. We prove this result in four
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steps. Fix u and v and let φ (s) = 1−vq (s, θ). Then, Q (s, u, v) = [φ (s)]s
from which we deduce that ∂Q

∂s
= Φ (s)×Q where Φ (s) = lnφ (s)+sφ0(s)

φ(s)
.

Step 1. We show that ∂Q
∂s

¯̄̄
s=1

< 0 which is equivalent to proving

that Φ (1) < 0. With some algebra, φ0 (s) = vθ
1−θ

h
1−θs
s2 + ln θ θ

s

s

i
,

implying that 1
1−vθΦ (1) = vθ

³
1 + θ

1−θ ln θ
´
+ (1− vθ) ln (1− vθ).

Establishing that Φ (1) < 0 is thus equivalent to showing that for all

θ ∈ (0, 1), ρθ (v) < 0 on (0, 1), where ρθ (v) = vθ
³
1 + θ

1−θ ln θ
´
+

(1− vθ) ln (1− vθ). Fix θ. Differentiating twice gives ρ0θ (v) =
θ2

1−θ ln θ − θ ln (1− vθ) and ρ00θ (v) = θ2

1−vθ > 0. Therefore, ρθ is

strictly convex, implying that ρ0θ increases on (0, 1) with supremum
ρ0θ (1) =

θ
1−θ [θ ln θ − (1− θ) ln (1− θ)]. It is straightforward to see

that x 7→ x ln x − (1− x) ln (1− x) is worth 0 at x = 0, 1
2
and

1, takes negative values on
³
0, 1

2

´
and positive values on

³
1
2
, 1
´
.

Therefore, ρθ decreases on
³
0, 1

2

´
and increases on

³
1
2
, 1
´
with

supremum given by max {ρθ (0) , ρθ (1)}. We have ρθ (0) = 0 and

ρθ (1) = θ
³
1 + θ

1−θ ln θ
´
+ (1− θ) ln (1− θ). If θ < 1

2
, θ ln θ <

(1− θ) ln (1− θ) implying that ρθ (1) < 0. If θ > 1
2
, θ ln θ >

(1− θ) ln (1− θ), therefore ρθ (1) < θ
1−θ (1− θ + ln θ). It is easy to

check that x 7→ 1−x+ln x is negative on (0, 1). Hence, ρθ (1) < 0.
In both cases, sup

v∈(0,1)
ρθ = ρθ (0) = 0. Q.E.D.

Step 2. We show that Q (·, u, v) increases towards its asymptotic
limit for high values of s. It is easy to check that Φ (s) ∼

h
vθ

(1−θ)s
i2

when s→ +∞, implying that ∂Q
∂s
> 0 for high values of s. There-

fore, Q (·, u, v) increases towards its limit exp
³
− vθ

1−θ
´
when s →

+∞. Q.E.D.

Step 3. We show that ∂Q
∂s
≤ 0 implies that ∂2Q

∂s2 > 0. We have
∂Q
∂s
=

Φ (s)Q. Therefore, ∂
2Q
∂s2 = Φ

0 (s)Q+Φ (s) ∂Q
∂s
=
³
Φ0 (s) + [Φ (s)]2

´
Q.

Therefore, Φ0 > 0 implies that ∂2Q
∂s2 . Suppose on the contrary

that Φ0 ≤ 0. We have φ (s) = 1 − vθ 1−θs
(1−θ)s → 1 and sφ0 (s) =

vθ
1−θ

³
1−θs
s
+ ln θ × θs

´
→ 0 when s→ +∞. Therefore, lim

s→+∞ Φ (s) =
0. Hence, Φ0 ≤ 0 implies that Φ > 0. Reciprocally, Φ ≤ 0 implies
that Φ0 > 0, which in turn implies that ∂2Q

∂s2 > 0. But Φ ≤ 0 is

equivalent to ∂Q
∂s
≤ 0. Hence, ∂Q

∂s
≤ 0 implies that ∂2Q

∂s2 > 0.Q.E.D.
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Step 4. We deduce from steps 1 and 2 that ∂Q
∂s
= 0 for some s ∈

[1,+∞). Therefore, from step 3, ∂2Q
∂s2

¯̄̄
s=s

> 0. Therefore, Q (·, u, v)
does not have any local maxima and there exists a unique such

point s, and Q (·, u, v) reaches its global minimum at s. Moreover,
by continuity of ∂

2Q
∂s2 , there exists some K > s such that Q (·, u, v)

is strictly convex on [1,K). Q.E.D.

Proof of Proposition 2.

Recall that m (s, u, v) = u [v + (1− v)P (s, u, v)]. Therefore,

(a) the properties of the matching function m (·, u, v) with respect to s are
deduced from that of P (·, u, v) given in Proposition 1(ii).

(b) With some algebra and using Proposition 1 we get:
∂m(s,u,v)

∂v
= u [1− P (s, u, v)] + u (1− v) ∂P (s,u,v)

∂v
> 0

∂2m(s,u,v)
∂v2 = −2u∂P (s,u,v)

∂v
+ u (1− v) ∂2P (s,u,v)

∂v2 < 0

proving that m (s, u, ·) is increasing and concave with respect to v.

(c) With some algebra we get:
∂m(s,u,v)

∂u
= v + (1− v) ∂

∂u
[uP (s, u, v)]

∂2m(s,u,v)
∂u2 = (1− v) ∂2

∂u2 [uP (s, u, v)]

Simplifying by (1− θ), we deduce from (2) that

P (s, u, v) = 1−
·
1− v

s

³
θ + θ2 + · · ·+ θs

´¸s
where θ = (1− δ) (1− u). Fix v and s and let R (u) ≡ uP (s, u, v).

Clearly, R (u) is a polynomial in u of degree 2s + 1, with roots 0 and

1 (that is, R (0) = R (1) = 0) and strictly positive on (0, 1) (that is,

R (u) > 0, ∀0 < u < 1). Therefore, R0 (u) = u∂P (s,u,v)
∂u

+ P (s, u, v) is a

polynomial of degree 2s that has a unique root eu ∈ (0, 1) corresponding to
the global maximum of R on [0, 1] . From R0 (u) continuous and R0 (0) =
P (s, 0, v) > 0 we deduce that R0 (u) > 0 on (0, eu) and that R00 (u)
is negative locally around eu that is, R00 (u) < 0 on (eu− ε, eu+ ε) for
some ε > 0. We also deduce from R00 (u) = u∂

2P (s,u,v)
∂u2 + 2∂P (s,u,v)

∂u
and
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Proposition 1(ii) that R00 (0) = 2∂P (s,u,v)
∂u

|u=0< 0. If R00 (u) were to
change sign on [0, eu], by continuity ofR00 and because bothR00 (0) < 0 and
R00 (u) < 0, it would imply that R00 (u) had two distinct roots on (0, eu),
which is impossible because successive derivatives of polynomials have

nested roots, and R0 (u) has only one root on [0, 1]. Therefore, R00 (u) <
0 on [0, eu]. Let u = argmax {u ∈ [0, 1] | R0 > 0 and R00 < 0 on [0, u]}.
Clearly, 0 < eu ≤ u ≤ 1.

Lemma 1 The hiring probability h (s, u, v) = m(s,u,v)
u

is decreasing and convex

in u and increasing and concave in v. The properties of h (·, u, v) with respect

to s are the same than that of P (·, u, v).

Proof. Recall that h (s, u, v) = v+(1− v)P (s, u, v). With some algebra and
using Proposition 1 we get:

∂h(s,u,v)
∂u

= (1− v) ∂P (s,u,v)
∂u

< 0
∂2h(s,u,v)

∂u2 = (1− v) ∂2P (s,u,v)
∂u2 > 0

∂h(s,u,v)
∂v

= 1− P (s, u, v) + (1− v) ∂P (s,u,v)
∂v

> 0
∂2h(s,u,v)

∂v2 = −2∂P (s,u,v)
∂v

+ (1− v) ∂2P (s,u,v)
∂v2 < 0

which completes the proof.

Lemma 2 The filling probability f (s, u, v) = m(s,u,v)
v

is increasing in u and

decreasing in v. The properties of h (·, u, v) with respect to s are the same than

that of P (·, u, v).

Proof. Recall that f (s, u, v) = u
h
1−

³
1− 1

v

´
P (s, u, v)

i
. With some algebra

and using Proposition 1 we get:
∂f(s,u,v)

∂u
= f(s,u,v)

u
− u

³
1− 1

v

´
∂P (s,u,v)

∂u
> 0

∂f(s,u,v)
∂v

= − u
v2P (s, u, v)− u

³
1− 1

v

´
∂P (s,u,v)

∂v
< 0

which completes the proof.

Proof of Proposition 3.

Fix the network size s. We Þrst prove that along the Beveridge curve, u is

decreasing in v. Indeed, let (u, v) and (u0, v0) both satisfying (7) with v0 > v.
By deÞnition, m (s, u, v) = δ (1− u) and m (s, u0, v0) = δ (1− u0). Suppose
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that u0 ≥ u. Then, m (s, u0, v0) ≤ m (s, u, v). But we deduce from Proposition

2 that m (s, u, v) < m (s, u, v0) ≤ m (s, u0, v0) which yields to a contradiction.
Therefore, u0 < u. We now prove that along the curve in the plane (u, v)

obtained from the free entry condition (6), u is increasing in v. Indeed, from

the implicit function theorem we get: dv
du
= −

∂(m/v)
∂u

∂(m/v)
∂v

> 0 according to Lemma

2. If a labor market equilibrium exists on [0, u] × [0, 1] ⊆ [0, 1]2, it is thus

unique. We now prove existence. At v = 1, m (s, u, 1) = u. We deduce from

(7) that
³

δ
1+δ
, 1
´
belongs to the Beveridge Curve and from (6) that

³
γ r+δ
y−w , 1

´
satisÞes the free entry condition (which requires that γ r+δ

y−w ≤ 1). A necessary
and sufficient condition for an equilibrium to exist is thus γ r+δ

y−w >
δ

1+δ
. Clearly,

when γ r+δ
y−w ≤ u, the equilibrium is unique.

Proof of Proposition 4.

Suppose Þrst that s < s. Let (u, v) on the Beveridge Curve, thus satisfying

(7), and let s0 such that s < s0 < s. We know from Proposition 2 that

m (s, u, ·) increases with v and that m (s0, u, v) > m (s, u, v). Therefore, if we
keep u constant while increasing the network size from s to s0, the vacancy
rate adjusts by decreasing. As a result, the Beveridge Curve (that decreases

on the plane (u, v)) shifts downwards. Let now (u, v) satisfy (6). We know

from Lemma 2 that f (s, u, v) = m(s,u,v)
v

is an decreasing function of v and that

f (s0, u, v) > f (s, u, v). Therefore, the vacancy rate adjusts by increasing and
the curve associated to the free entry condition shifts upwards on the plane

(u, v). One can check geometrically that u∗ (s0) < u∗ (s). Suppose now that
s ≥ s and let s0 > s. Following a similar reasoning it is straightforward to see
that the Beveridge Curve now shifts upwards while the free entre condition

curve shifts downwards, implying that u∗ (s0) > u∗ (s).

29



P1 = 1 - [1-vθ]5

P2 = ... = P6 = vθ(1 - θ5)/5(1 - θ)

Figure 1a. Star centered on 1 (n = 6).

1

2 3 4 5 6

P1 = ... = P6 = 1 - [1 - vθ(1 - θ5)/5(1 - θ)]5

Figure 1b. Complete graph (n = 6).

1 2

3

45

6

Figure 1: Two Examples of Networks
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Figure 2a. Sparse network (s < s). Figure 2b. Dense network (s > s).
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curve

Labor 
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Figure 2: Equilibrium Unemployment Level
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