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Abstract

We consider a Ramsey model with a continuum of Cournotian industries where free entry

generates an endogenous markup. The model produces two different regimes, monopoly

and oligopoly, resulting in non-smooth dynamics. We analyze the global dynamics of the

model, demonstrating the model may exhibit heteroclinic orbits connecting multiple equi-

libria. Small transitory changes in parameters can lead to large permanent effects and there

can be a Rostovian poverty trap separating a low-capital and high-markup equilibrium from

a high-capital low-markup equilibrium. The paper applies recent results from applied math-

ematics for non-smooth dynamic systems.
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DixonH@cardiff.ac.uk (Huw Dixon)

Preprint submitted to Journal of Economic Theory July 26, 2010



1. Introduction

Traditionally, the study of differential equations has been based on the assumption of

continuous differentiability of at least the first and second order, resulting in smooth dy-

namics. Furthermore, in economics most dynamic systems are restricted to a unique stable

steady-state equilibrium. In this paper, we take the analysis of dynamic systems in eco-

nomics beyond both of these boundaries in developing a model of entry in Cournot product

markets (resulting in an endogenous markup) in a dynamic general equilibrium continuous

time Ramsey model. Cournot competition has the attraction that increases in economic ac-

tivity are associated with more firms and hence lower markups, which captures the empirical

feature of counter-cyclical markups - see inter alia Martins and Scarpetta (2002). We embed

this entry process into an otherwise fairly standard intertemporal representative-household

macromodel. The Ramsey household consumes and accumulates capital. Free entry drives

profits in each instant to zero, leading to an endogenous markup and hence a wedge be-

tween the marginal product and the marginal revenue os capital. We apply recent advances

in applied mathematics (Leine (2006), di Bernardo et al. (2008)) which extend traditional

analysis to allow for non-smooth piecewise continuous dynamic systems. Furthermore, we

develop a comprehensive analysis of the local and global dynamics of an economic system

which possesses up to three steady-state equilibria, including up to two saddle-path stable

equilibria, and perform the corresponding bifurcation analysis.

Whilst there are several papers that have explored the relationship between entry and

the resultant ”endogenous markups” using the Cournot model, most have done so in the

context of discrete-time frameworks either in an OLG environment as in Chatterjee et al.

(1993), D’Aspremont et al. (1995), dos Santos Ferreira and Lloyd-Braga (2005), or Kaas

and Madden (2005), or in a unique steady-state Real Business Cycle (RBC) setting as in

dos Santos Ferreira and Dufourt (2006), Portier (1995), Costa (2001) and Costa (2006).

Continuous-time models of endogenous growth have also employed the Cournot mechanism

for endogenizing markups - Zilibotti (1994), Gaĺı and Zilibotti (1995). Related to the
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Cournotian approach of this paper is the Linneman (2001) model of entry in monopolistic

competition as used in Jaimovich (2007) and Jaimovich and Floetotto (2008), and Bilbiie

et al. (2007). Entry reduces the market share of firms, and hence reduces the ”own price

effect” of the monopolist on the aggregate price index, which increases the elasticity of

demand (see Yang and Heidra (1993))1.

Whilst we allow for entry and exit, we place a lower bound on the measure of firms at

unity. This eliminates the undesirable property of Cournot entry that the markup can go to

unity and hence the marginal revenue product of capital to zero as the ”number” of firms

gets below unity and falls towards zero2. In a symmetric Cournot equilibrium, the firm’s

elasticity of demand is the product of the number of firms n and the industry elasticity σ, nσ

hence when n = 1/σ, the firm’s elasticity is unity so that the equilibrium output is zero and

the economy ceases to produce output or accumulate capital3. Whilst placing a lower bound

on the number of firms in an industry avoids this absurd outcome, it creates a discontinuity

in the dynamic system, since when the number of firms falls to one, the markup remains

constant at σ, and the number of industries shrinks. The typical industry in the economy

can thus be in one of two states: monopoly, where there is only one firm producing each good

and charging the monopoly markup, or oligopoly where there is more than one firm and the

markup is below its monopoly ceiling. These two states result in two dynamic regimes for the

economy: for low levels of capital the dynamics is in the monopoly regime, for high levels

it is in the oligopoly regime, and in-between there is a switching boundary and resultant

non-smooth dynamics.

We find that there can be one, two or three steady-state equilibria in this economy. There

are two types of stable equilibria (saddles): one is a low-output high-markup monopoly; the

1Other papers that consider a variety of aggregate feedback mechanisms are D’Aspremont et al. (1989),

Wu and Zhang (2000).
2Recall, that in most economic analysis, the industry elasticitiy of demand σ is assumed to be elastic, so

that σ > 1
3See for example Gaĺı and Zilibotti (1995) who define this case as ”autarky”.
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other is a high-output low-markup oligopoly. All other types of equilibria are locally unstable.

We analyze the global dynamics of the model, which is non-trivial in a multiple-equilibrium

environment, demonstrating the model exhibits robust heteroclinic orbits, i.e. orbits that

connect the different equilibria together, and we do it in both the smooth and non-smooth

cases (depending on whether the orbit passes through the switching boundary). Furthermore,

we show how two fundamentally similar economies may behave very differently, as they may

be in two different regimes with distinct dynamic behavior, especially in terms of markups.

Even for the same economy, there is the possibility of regime change along the convergence

to a stable long-run equilibrium if the switching boundary is passed. From the bifurcation

analysis, the ”deep” parameters associated with the dominant market structure (fixed costs

and the elasticity of demand) play a crucial role in this model and a change in their values

may alter the dynamics in a radical way, either by inducing a discontinuous transition or a

discontinuous hysteresis. A transitory (and possibly small) technology shock can give rise to

a large permanent shift in the equilibrium. If the shock takes the economy from the initial

equilibrium across the switching boundary, the economy can amplify the initial shock and

lead the economy (through capital accumulation) to the alternative stable equilibrium.

This economy can display a ”Rostovian” threshold effect, or ”poverty trap” (Easterly

(2006)). Unless the economy starts off with a high enough capital stock, it will be trapped

in the low-output high-markup monopoly. If, however, the capital stock is high enough, the

economy will be attracted to the high-output low-markup equilibrium. The dividing line

is (for a range of parameters) a totally unstable equilibrium, i.e. an unstable focus. The

implication of this threshold effect is that an economy may be stuck in a monopoly with

a high markup, which reduces the marginal revenue product of capital below its marginal

product, and discourages saving so that only a low steady-state capital emerges. This would

make a good argument for the government to intervene in some way to enable a great leap

forward to achieve the critical capital stock so that it can then leave the outcome to the

market. This intervention could take the form of regulation (reducing the gap between the
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marginal product of capital and the return to savings), the encouragement of savings and

the accumulation of capital4.

This paper is organized as follows. In section 2, we introduce the basic Ramsey model with

capital accumulation and entry à la Cournot. In section 3, we explore in detail the switching

boundary and the dynamics in the two regions: monopolistic and Cournot. In section 4 we

characterize the steady-state equilibrium, perform the bifurcation analysis, and determine

the local dynamics of the equilibria. In section 5, we characterize the global dynamics of

our general-equilibrium system. Section 6 analyses the long-run effects of technology shocks

leading to permanent regime changes, section 7 concludes.

2. A Ramsey Model with Endogenous Markups

We assume there is a single infinitely living household that consumes a basket of goods

and supplies one unit of labor and K units of capital to firms. Total population is constant,

it was normalized to unity, and we assume that the rate of technical progress is zero5. Thus,

quantity variables may be interpreted as expressed in units of efficient labor. The household

is assumed to maximize an intertemporal utility function in the absence of uncertainty:

max
C(t)

U =

∫ ∞

0

e−ρt lnC (t) dt,

where ρ > 0 represents the rate of time preference and C stands for consumption. For sake

of simplicity we assume a logarithmic felicity function, but most results hold with a general

isoelastic function.

The final good can be used either for consumption or for capital accumulation and its price

is normalized to unity, i.e. the final good is used as numéraire. Therefore, the instantaneous

4More radical alternatives would be forced saving or the nationalization of the means of production in

the initial stages of development.
5This is for simplicity. Exogenous population growth or exogenous technical progress do not change the

main message of the model, but it complicates notation substantially.
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budget constraint is given by

K̇ (t) = w (t) +R (t)K (t) + Π (t)− C (t)− δK(t), (1)

where w is the wage rate, R stands for the rental price of capital, Π represents pure profits,

and δ > 0 is the capital depreciation rate.

Optimal consumption and labor supply paths verify the Euler and the transversality

conditions:
Ċ (t)

C (t)
= R (t)− (ρ+ δ) , (2)

lim
t→∞

e−ρtK (t)

C (t)
= 0. (3)

2.1. The final-good sector

The final good sector is perfectly competitive, with the representative firm maximizing

its profits given by

max
Y (t),[y(v,t)]

z(t)
v=0

Y (t)−

∫ z(t)

0

p (v, t) y (v, t) dv,

where Y (t) is the production of final good, y(v, t) and p (v, t) stand for intermediate con-

sumption of variety v ∈ [0, z(t)] at the moment t, and for its relative price, and z(t) is the

mass of the continuum of intermediate goods. Profit maximization is subject to a constant

returns to specialization6 CES technology that transforms a continuum of intermediate goods

into a homogenous final good:

Y (t) = z (t)
1

1−σ

[

∫ z(t)

0

y (v, t)
σ−1
σ dv

]
σ

σ−1

,

where σ > 1 represents the elasticity of substitution between inputs.

The first-order conditions lead to the demand function for each input and also to

y (v, t) = p (v, t)−σ Y (t)

z (t)
, (4)

6That is, there is no ”love of variety” and the range of intermediate goods has no effect per se on unit

cost.

6



and

1 =

(

1

z (t)

∫ z(t)

0

p (v, t)1−σ dv

)
1

1−σ

, (5)

where the left-hand side represents the price and the right-hand side is the marginal cost of

producing it.

The market-clearing condition for this sector is given by Y (t) = C (t) + I (t) where

I (t) = K̇ (t) + δK (t) is the gross investment defined as I (t) = K̇ (t) + δK (t).

2.2. The intermediate goods sector

First, we assume 0 < z (t) ≤ 1, i.e. the mass of the continuum of intermediate goods,

is bounded above by one, a fixed technological frontier. Industry V that produces good

v ∈ [0, z(t)] is composed of n(v, t) ≥ 1 producers at moment t7. Each industry can be in

one of two states: monopoly, when only one firm is operative, or oligopoly, when more than

one is operative. New firms prefer to be monopolists than to share existing industries.

When monopoly profit opportunities are still available, i.e. 0 < z (t) < 1, new firms will

set up as monopolies. Only when all industries have at least one firm operating z (t) = 1,

will new firms be forced to enter existing oligopolistic industries. Using the terminology in

D’Aspremont et al. (1997), we assume Cournotian Monopolistic Competition (CMC), i.e.

firms choose quantity to influence their own market price (as in Cournot), but treat the

aggregate price level as given (as in monopolistic competition).

The representative firm i ∈ {1, ..., n(v, t)}, in industry V , maximizes its real profits given

by

max
yi(v,t),Li(v,t),Ki(v,t)

Πi (v, t) = p (v, t) yi (v, t)− w (t)Li (v, t)− R (t)Ki (v, t) , (6)

where yi represents the output of firm i, Ki and Li represent its capital and labor inputs.

The production technology is given by the following expression valid for yi > 0:

yi (v, t) + φ = A (t)Ki (v, t)
α L(v, t)1−α, (7)

7Of course this number is an integer. However, we will treat it as a real number, for simplicity. We can

think about it as the average number of firms in each industry.
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where A (t) > 0 stands for total factor productivity, 0 < α < 1, and φ > 0 induces increasing

returns to scale. Firm i also faces the following inverse residual demand for its variety, given

the outputs of the other firms in industry V (k 6= i ∈ V ) and given the prices of firms

producing goods that are an imperfect substitute to good v,

p (v, t) =






z (t)

yi (v, t) +
∑

k 6=i∈V

yk (v, t)

Y (t)







− 1
σ

. (8)

Notice this is a static problem, as the firm does not accumulate capital. The first-order

conditions are given by

(1− µi (v, t)) (1− α)A (t)

(

Ki (v, t)

Li (v, t)

)α

=
w (t)

p (v, t)
, (9)

(1− µi (v, t))αA (t)

(

Ki (v, t)

Li (v, t)

)α−1

=
R (t)

p (v, t)
, (10)

where µi(v, t) = yi (v, t) /

(

σ
∑

s∈V

ys (v, t)

)

∈ (0, 1) is the Lerner index for firm i in industry V .

Henceforth we will call this market-power measure the ”markup”. Observe that if industry

V is a monopoly, i.e. n(v, t) = 1, then the markup is µ(v, t) = 1/σ, and if industry V is a

oligopoly, i.e. n(v, t) > 1, then 0 < µ(v, t) < 1/σ.

2.3. Symmetric equilibrium and aggregation

Considering an inter-industrial symmetric equilibrium, we have n (v, t) = n (t); and

within-industry symmetry implies8 µi(v, t) = µ(t) = 1/ (σn(t)) and p (v, t) = 1.

The market-clearing condition for the labor market equates aggregate labour demand to

aggregate labour supply. The market-clearing condition in the final good market, Y (t) =

D(t), allows us to derive an aggregate production function for final output

Y = F (K)− znφ, (11)

8Note that since σ > 1 and n ≥ 1, µ(t) < 1.

8



where F (K) = AKα is a reduced-form production function for ”gross” output. Capital

market clearing generates the rate of return of capital

R = (1− µ)F ′(K). (12)

Profit income is obtained by aggregating profits across all firms in the economy, i.e.

Π = Y − w − RK. Considering the equilibrium factor prices and the aggregate production

function, total profits can be expressed as

Π = µF (K)− znφ. (13)

2.4. Entry, endogenous markups, and regime switching

In the absence of sunk entry costs there will be instantaneous free entry, i.e. wither the

continuum of intermediate goods (z) or the number of firms in each industry (n) adjust in

order to keep pure profits of all firms firm equal to zero, i.e. Π = 0.

Together, equations (11), (13), and the zero-profit condition imply that the reduced-form

production function becomes9

Y = (1− µ)F (K) , (14)

and the aggregate resource constraint of the economy, at the equilibrium is

K̇ = (1− µ)F (K)− C − δK. (15)

Up to this point the type of entry is undefined. Given the assumptions made, the incentive

scheme in the economy separates entry into two regimes and a regime-switch transition:

1. there is a Monopolistic-Competition (MC) regime when n = 1 and the best possibility

for an entrant is to start a new industry, i.e. entry determines the equilibrium value of

z ∈ (0, 1), as vertical entry can only take place for z < 1;

9Equation (14) does not depend on the specific functional form assumed in equation (7). In fact, the same

result is obtained for a general linear-homogeneous production function for ”gross” output: yi (v, t) + φ =

f (Ki (v, t) , Li(v, t)).
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2. there is a CMC regime when z = 1 and entry can only take place into existing indus-

tries, i.e. horizontal entry determines the number of firms in the industry n, such that

n > 1;

3. there is a regime-switch frontier if and only if z = n = 1, that is the case in which

new industries cannot be created and there is place for exactly one producer in each

industry.

Although we treat n as a continuous variable, we still want to impose a lower bound of

n ≥ 1, so that the markup cannot take a value greater than 1/σ, the level attained in the

MC regime. Without this restriction, the economy would possess a ”black hole” where as

n falls towards 1/σ < 1 the markup rises to unity and wages and the return on capital go

to zero along with output and consumption. Setting the lower bound at 1 seems to us a

reasonable way of avoiding this exotic and implausible phenomenon (any lower bound above

1/σ would do).

It turns out that both the markup and the regime we are in becomes endogenous and

depend on the (current) capital stock. Taking into account that n = 1/ (σµ), we obtain the

rule governing the endogenous mark-up: the actual markup µ = µ(K) is the smaller of the

free-entry MC (n = 1) markup given by 1/σ and its CMC (z = 1) counterpart given by

m(K) = (σF (K) /φ)−1/2,10

µ = µ(K) = min {1/σ,m(K)} . (16)

Then, there is a critical value for capital for which a regime switch occurs: the capital

stock for which entry reduces the number of firms per industry to exactly one in the CMC

10See dos Santos Ferreira and Lloyd-Braga (2005), equation (15), p. 852 for a similar equation to µ =

m (K). Gaĺı and Zilibotti (1995), equation (8), p. 201 is equivalent to µ = m (K) when the marginal product

of labour is constant (they assume an AK model). dos Santos Ferreira and Dufourt (2006), equation (7), p.

316 is a partial equilibrium version. Costa (2004), equation (25), p. 65 is equivalent to the one presented

here.
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regime and induces a mass of the continuum of varieties equal to its maximum (i.e. one) in

the MC regime. Equation (16) allow us to define it as K̃ ≡ { K : m(K) = 1/σ}. Given the

Cobb-Douglas production function in equation (7), the critical level for the capital stock is

given by

K̃ =

(

φσ

A

)1/α

> 0. (17)

If 0 < K < K̃ then the economy operates in a MC regime and if K > K̃ then the economy

operates in a CMC regime11. Poor economies tend to operate at the MC regime and rich

economies in the CMC regime. Regime switches may occur in two different ways. First, if

the capital stock is far away from its steady state and along the transition it passes through

K̃, triggering an endogenous change in the regime. Second, if the economy is in a steady

state and a shock to parameters α, φ, σ, or A occurs, moving it to a different regime.

2.5. Global production and return functions

Given that the critical value K̃ defines a switching boundary, the endogenous markup

function given by equation (16) has two contiguous branches. Thus, the aggregate production

function in (14) and the rate of return on capital in (12) also exhibit two contiguous branches:

Y (K) =











Y1(K) ≡ (1− 1
σ
)F (K) if 0 ≤ K ≤ K̃,

Y2(K) ≡ (1−m(K))F (K) if K ≥ K̃,

(18)

and

R(K) =











R1(K) ≡ (1− 1
σ
)F

′

(K) if 0 ≤ K ≤ K̃,

R2(K) ≡ (1−m(K))F
′

(K) if K ≥ K̃.

(19)

11Given that m(K) is positive, monotonous and has limK→0 m(K) = +∞, limK→∞ m(K) = 0, then

K̃ ≡ {K : m(K) = 1/σ} is unique. Therefore: (1) for all K in the interval (0, K̃) we have m(K) > 1/σ

which implies µ = min{m(K), 1/σ} = 1/σ, and (2) for all K in the interval in the interval (K̃,+∞) we

have m(K) < 1/σ which implies µ = min{m(K), 1/σ} = m(K).
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The first branch in both functions corresponds to the MC regime and the second cor-

responds to the CMC regime. Next we will characterize the properties of the aggregate

technology and return on capital arising from those functions.

At K = K̃ both production and return functions are continuous, because

R1(K̃) = R2(K̃) = R̃ = α(σ − 1)(A/σ)K̃α−1

Y1(K̃) = Y2(K̃) = Ỹ = (σ − 1)(A/σ)K̃α,

but classic derivatives do not exist. However, we can determine generalized gradients for the

production function as

∂Y (K) =



























Y
′

1 (K) if 0 ≤ K < K̃,

∂Y (K̃) if K = K̃,

Y
′

2 (K) if K > K̃.

(20)

where ∂Y (K̃) is the convex hull of Y
′

1 (K) and Y
′

2 (K) at K = K̃, ∂Y (K̃) = { (1− q)Y
′

1 (K̃)+

qY
′

2 (K̃) : 0 ≤ q ≤ 1}, and for the return function

∂R(K) =



























R
′

1(K) if 0 ≤ K < K̃,

∂R(K̃) if K = K̃,

R
′

2(K) if K > K̃,

(21)

where ∂R(K̃) is the convex hull of R
′

1(K) and R
′

2(K) at K = K̃, ∂R(K̃) = { (1−q)R
′

1(K̃)+

qR
′

2(K̃) : 0 ≤ q ≤ 1}.

Lemma 1. Functions Y (K) and R(K) are continuous and piecewise smooth (PWS).

All proofs are in the appendix. Next we observe that the concavity of both functions

depend critically on the elasticity of intermediate input substitution, σ. Let us define

σ̄ = σ̄(α) =
2− α

2(1− α)
> 1, (22)

an admissible value for σ considering σ̄ > 1 for all 0 < α < 1.
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Lemma 2. Let K̄ ≡ (σ̄/σ)2/α K̃. (a) If the elasticity of substitution between inputs is large,

i.e. for σ > σ̄, then the technology is concave in a generalized way, i.e. ∂2Y (K) ∈ R−−,

and there are decreasing returns, i.e. ∂R(K) ∈ R−−. (b) If max{1, σ̄/2} < σ < σ̄ then

the production function is concave and the return function is non-monotonous: R2(K) is

increasing for K ∈ [K̃, K̄), reaches a local maximum at K = K̄, and it is decreasing for

K > K̄. (c) If 1 < σ < max{1, σ̄/2} then the return function has the same properties

as in (b) but the production function becomes concave-convex: Y2(K) is locally convex for

K ∈ [K̃, K̄), reaches a local maximum at K = K̄, and it is locally concave for K > K̄. 12

Figures A.1 and A.2 below depict the first two (more plausible) cases in which the pro-

duction function is concave, i.e. for σ > σ̄, and the case in which the return function may be

locally increasing, at the onset of the CMC regime, and the production function is concave.

Figure A.1 around here

Figure A.2 around here

The existence of two regimes has interesting economic implications. First, the firm-level

production technology is one corresponding to ”natural monopoly” since there is a globally

decreasing average cost when φ > 0 with constant marginal cost. The degree of inefficiency

can be proxied by the gap between average cost ( ac) and marginal cost (mc). In both MC

and CMC regimes free entry implies that price equals average cost p = ac (zero profits) and

industry equilibrium implies marginal revenue, p(1− 1/(nσ)), equals marginal cost: hence

ac

mc
=

(

1−
1

nσ

)

.

In the MC regime where n = 1, this gap is fixed and hence output per-firm is tied down.

In the CMC regime, however, matters are different because n increases with K, n =

12The third case, is somewhat uninteresting, as we can only obtain 1 < σ̄/2 for α > 2/3.
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(σφ/F (K))−1/2. More firms means a lower markup, which narrows the gap between ac

and mc, as the zero-profit condition requires output per firm to increase. In the limit as K

(and hence n) tend to infinity, ac tends to mc, and output per firm also tends to infinity,

the condition for efficient production.

The possibility of a concave-convex technology relates to an existing literature: Skiba

(1978) and Dechert and Nishimura (1983). However, these contributions were made for

centralized economies in which the externalities are fully internalized. Therefore, the return

and the marginal product of capital are permanently equalized. In our model we retain some

of the dynamic properties of that type of model (e.g. the existence of multiple stationary

equilibria) while circumventing criticisms that those functions are ad-hoc. In addition, when

utility is logarithmic, the general equilibrium is Markovian in contrast to those models - see

Santos (2002) (see below).

3. General Equilibrium

Definition 1. General Equilibrium The general equilibrium (GE) is defined by the paths

for the mass of industries and for the number firms per industry, [(z(t), n(t))]∞t=0, by the

allocations and prices [([y(v, t)]v∈(0,z(t)], [p(v, t)]v∈(0,z(t)])]
∞
t=0, and by the aggregate capital stock

and consumption trajectories [(K(t), C(t))]∞t=0 such that both final- and intermediate-goods

firms and consumers optimize, there is symmetric equilibria in all markets for intermediate

goods, and the equilibrium conditions for both factor and final-good markets hold.

In the previous section, we proved that in a symmetric equilibrium, the paths of z, n,

and of the distributions [y(v)] and [p(v)] depend on the paths of the aggregate capital stock

K, and the last one is jointly determined with the trajectory of aggregate consumption C

at the GE level. As R(K) and Y (K) are defined by the PWS continuous functions (18) and

(19) the GE paths are generated by a dynamic system that also displays discontinuities.

Let us define the following subsets of (K,C) ∈ R
2
+:

S1 = { (K,C) ∈ R
2
+ : m(K) > 1/σ} = { (K,C) ∈ R

2
+ : 0 ≤ K < K̃}, (23)
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Σ = { (K,C) ∈ R
2
+ : m(K) = 1/σ} = { (K,C) ∈ R

2
+ : K = K̃}, (24)

S2 = { (K,C) ∈ R
2
+ : m(K) < 1/σ} = { (K,C) ∈ R

2
+ : K > K̃}, (25)

where S1 (S2) corresponds to states of the economy where a MC (CMC) regime is in place.

If the economy is in state Σ we say it is on the switching boundary between the previous

two regimes. We also know that S̄1 ∩ S̄2 = Σ.

The equilibrium trajectories [(K(t), C(t))]t∈R+ are the solutions to the system

Ċ =











(R1(K)− (ρ+ δ))C if (K,C) ∈ S1,

(R2(K)− (ρ+ δ))C if (K,C) ∈ S2,

(26)

K̇ =











Y1(K)− δK − C if (K,C) ∈ S1,

Y2(K)− δK − C if (K,C) ∈ S2.

(27)

together with the initial condition K(0) = K0 and the transversality condition in (3).

Equations (26) and (27) define a PWS continuous dynamic system since: (1) both

functions are smooth in the two branches; (2) they are continuous at the boundary Σ,

as R1(K̃) = R2(K̃) and Y1(K̃) = Y2(K̃); and (3) nevertheless, their derivatives differ at

K = K̃, i.e. R
′

1(K̃) < R
′

2(K̃) and Y
′

1 (K̃) < Y
′

2 (K̃) 13. In order to understand the nature of

the dynamics of our PWS system, we have distinguish between candidate and GE paths. We

denote them as Φc(t) = (Φc
K(t,K(0)),Φc

C(t,K(0))) and Φ(t) = (ΦK(t,K(0)),ΦC(t,K(0)))

respectively. Candidate trajectories, are solutions to the system (26)-(27) for a given ini-

tial capital stock K(0), belonging to one of the two possible states of the economy: MC

when 0 < K(0) < K̃ (branch S1) or CMC when K(0) > K̃ (branch S2). We denote

13Were the functions discontinuous at the boundary Σ, we would have a Filippov system, from Filippov

(1988). See di Bernardo et al. (2008), and Leine and Nijmeier (2004) for the state of the art on the analysis

of both types of dynamic systems. Fillipov systems have been subject to more attention. However, recent

advances in dealing with PWS continuous systems are presented in the above-mentioned references and also

in Freire et al. (1998) and Leine (2006). We will use the approach in di Bernardo et al. (2008) and di

Bernardo et al. (2008) from now on.
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Φc
j(t) = (Φc

j,K(t),Φ
c
j,C(t)) and Φj(t) = (Φj,K(t),Φj,C(t)) the candidate and the GE trajecto-

ries belonging to branch Sj for j = 1, 2.

The following types of behavior are possible, starting from any initial capital stock14:

if (K(0), C (0)) ∈ Sj for j = 1, 2, with an arbitrary C(0), the solution Φc(t) = Φc
j(t), for

t > 0, has one the following alternative types of trajectory. First, it may stay inside the

same area Sj converging to a steady state (K∗
j , C

∗
j ) ∈ Sj , or it may converge to zero or

unbounded values for one or both variables. Alternatively, it may contact the boundary Σ

at time t = tΣ > 0 where Φc
j,K (tΣ, K(0)) = K̃. It was proved that for PWS continuous

systems15 four types of behavior may unfold upon contact with the switching boundary: (1)

there is a steady state located at the boundary (K̃, C̃) ∈ Σ, which is reached in infinite time

and we have Φc
j(∞, K(0)) = (C∗

Σ, K
∗
Σ); (2) the trajectory crosses the boundary and proceeds

to S−j (S−j = S1 for j = 2 and S−j = S2 for j = 1), taking the value Φc
−j(t,Φ

c
j(tΣ, K(0)) at

time t > tΣ and converges to a steady state (K∗
−j, C

∗
−j) ∈ S−j to zero or unbounded values

of one or both variables; (3) the trajectory grazes the boundary and turns back inside area

Sj , converging to a steady state (K∗
j , C

∗
j ) ∈ Sj to zero or to unbounded values of one or both

variables; (4) the trajectory crosses Σ at time tjΣ, penetrates S−j , curls back to the switching

boundary Σ at time t−j
Σ > tjΣ, and re-enters the initial branch Sj - in this case, if t > t−j

Σ the

candidate path takes the value Φc
j(t,Φ

c
−j(t

−j
Σ ,Φc

j(t
j
Σ, K(0))).

GE trajectories, Φ(t), are candidate trajectories starting from a given (K(0), C(0)) ∈ Sj

such that the transversality condition holds. If the equilibrium is determinate, there is

an unique value Φj,C(0, K(0)) such that the transversality condition holds, whether that

value is not unique when indeterminacy exists. In our case this means that the trajectories

should converge to a steady state in Sj (with or without grazing the boundary Σ), in Σ or

in S−j , after traversing the boundary. If the last case occurs, the GE paths concatenate

14It is well known in the literature that solutions exist when the vector fields are continuous, as in our

model.
15See di Bernardo et al. (2008).
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the solutions belonging to both branches. If (K(0), C(0)) ∈ Sj then Φ(t) = Φj(t,K(0))

for t < tΣ, Φ(tΣ) = Φj(tΣ, K(0)) for t = tΣ, and Φ(t) = Φ−j(t,Φj(tΣ, K(0)), for t > tΣ.

Intuitively, this means that there is an endogenous and transient change in the regime from

MC to CMC, or vice-versa.

Thus, two possible changes in regime may occur: (1) a transient change in regime takes

place if the initial and the steady-state levels for the capital stock are located in different

sides of the switching boundary Σ and the adjustment dynamics involves traversing the

switching boundary; (2) a long-run regime shift occurs if there is a parameter change that

justifies it.

In the next two sections, we use global-bifurcation analysis to determine what types of

GE dynamics features our model can display. We do this by characterizing the local behavior

at equilibria, the behavior at the switching boundary, and finally global dynamics.

4. Local Dynamics

We will first examine local dynamics around the steady-states. In the last section we

presented two types of steady states that can exist in system (26)-(27): regular steady states

if they belong to the interior of Sj with j = 1, 2, (K∗
j , C

∗
j ) ≡ {(K,C) ∈ Sj : Ċ = K̇ = 0},

and boundary steady states if they belong to Σ, (K∗
Σ, C

∗
Σ) ≡ {(K,C) ∈ Σ : Ċ = K̇ = 0}. For

given values of the parameters, steady states may be isolated or multiple, and in the latter

they can belong either to the same or to different regimes.

From the properties of functions (18) and (19) we obtain the following relationship be-

tween steady-state consumption and capital stock:

C∗
j = βK∗

j , β ≡
ρ+ (1− α)δ

α
> 0, for j = 1, 2,Σ, (28)

which implies that each steady state is completely characterized using the steady-state stock

of capital, K∗
j ≡ {K ∈ Sj : Rj(K) = ρ+ δ}, j = 1, 2, or K∗

Σ = {K ∈ Σ : R1(K) = R2(K) =

ρ+ δ}, respectively for regular or boundary steady states.
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Let us define the following critical values for parameter φ:

φ̃ ≡
1

σ

(

A

(

α

ρ+ δ

(

1−
1

σ

))α)1/(1−α)

. (29)

and

φ̄ ≡
σ

σ̄2

(

A

(

α

ρ+ δ

(

1−
1

σ̄

))α)1/(1−α)

for 1 < σ ≤ σ̄. (30)

The next proposition and the bifurcation diagrams in Figure A.3 summarize the local

dynamics, in the neighborhood of steady states.

Proposition 1. Local dynamics and bifurcations at steady-state equilibria.

1. If 1 < σ < σ̄ either a unique or multiple equilibria may exist, depending on φ. For φ > φ̄

there is a unique saddle-point stable regular MC equilibrium. For φ̃ < σ < σ̄ there are

three regular equilibria, a MC saddle-point stable and a pair of CMC equilibria: a high-

markup unstable and a low-markup saddle-point stable. For φ < φ̃ there is a unique

saddle-point stable CMC equilibrium. For φ = φ̄ there are two steady states: a saddle-

point stable regular MC and a regular CMC that is locally a smooth-fold bifurcation. For

φ = φ̃ there are two equilibria: a saddle-point stable CMC equilibrium and a boundary

equilibrium displaying a non-smooth fold bifurcation.

2. If σ ≥ σ̄ there is a unique equilibrium whose type depends on φ. For φ > φ̃ it is

a saddle-point stable MC equilibrium. For φ < φ̃ it is a saddle-point stable CMC

equilibrium. For φ = φ̃ it is a boundary-equilibrium bifurcation displaying saddle-point

stable persistence.

We will derive Proposition 1 step by step in the next sub-section 4.1. However, first we

will interpret its meaning and implications.

Figure A.3 around here

Figure A.3 presents a bifurcation diagram in (K, φ) space. The left-hand-side (LHS) panel

represents the 1 < σ < σ̄ case and the right-hand-side (RHS) panel the σ ≥ σ̄ case. For
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different values of the fixed cost it shows the number of equilibria and the local stability prop-

erties of each steady-state equilibrium, including the location of the discontinuity-induced

bifurcations (persistence P on the RHS panel and the non-smooth fold NF on the LHS

panel) and the smooth fold bifurcation (F on the LHS panel).

If we start with high values of φ, on the RHS panel, the initial equilibrium is saddle-point

stable (C∗
M , K∗

M), it is a MC equilibrium, and further reductions of the fixed cost keep the

local stability properties, but force it to pass through the switching boundary (C∗
Σ, K

∗
Σ) and

further evolve into a CMC equilibrium (C∗
L, K

∗
L). We associate the later to a low markup as

the return function is locally decreasing.

If we do the same reasoning for the left-hand-panel panel, we should observe that there

is structural instability, i.e. there is a change on the number of equilibria and on their

local-dynamics properties for variations of φ close to its bifurcation levels: φ̃ associated to

a discontinuity-induced bifurcation of the non-smooth fold type16, and φ̄ associated to a

smooth fold bifurcation. If we start with high values of φ the initial equilibrium (C∗
M , K∗

M)

is also saddle-point stable and it is a MC equilibrium. If we reduce φ from φ̄, then three

equilibria emerge: (C∗
M , K∗

M), an unstable high-markup CMC equilibrium (C∗
H , K

∗
H), and a

saddle-point stable low-markup equilibrium (C∗
L, K

∗
L). Further reductions of φ from φ̃, would

result in the collision of the first two equilibria at the discontinuous boundary equilibrium

bifurcation point (C∗
Σ, K

∗
Σ), followed by their disappearance. For lower values of φ the steady-

state equilibrium is unique and again it is a saddle-point stable low-markup CMC (C∗
L, K

∗
L).

Observe that the MC steady-state level for the capital stock does not depend on φ.

However, when the fixed cost varies, the distance to the switching boundary changes: if the

fixed cost increases, the ”competitive distance” increases. If the economy is in the CMC

regime, not only the distance of the steady state to the switching boundary varies (because

K̃ depends on φ), but the steady-state stock of capital also varies. If the elasticity σ is

low and there are multiple CMC equilibria the relative ”competitive distance” of the two

16See subsection 4.1 below.
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equilibria changes in a symmetric way. When the fixed cost is reduced, the unstable high-

markup equilibrium moves towards the switching barrier and the low-markup saddle-point

stable equilibrium moves away from it.

We can also observe the same by defining a partition over the domain of (φ, σ), i.e.

R++ × (1,+∞) - see Figure A.4:

A = { (σ, φ) : σ > 1, φ > max{φ, φ̃ }}, DF = { (σ, φ) : 1 < σ < σ̄, φ = φ},

B = { (σ, φ) : 1 < σ < σ̄, φ̃ < φ < φ}, DNF = { (σ, φ) : 1 < σ < σ̄, φ = φ̃},

C = { (σ, φ) : σ > 1, 0 < φ < φ̃}, DP = { (σ, φ) : σ > 1, φ = φ̃}.

Figure A.4 around here

This pair of crucial parameters allow us to identify the region where steady-state equi-

libria lie. If (σ, φ) ∈ A, given by A1 ∪A2 in Figure A.4 , there is a single saddle-point stable

stationary MC equilibrium (K∗
M , C∗

M) ∈ S1. If (σ, φ) ∈ C, given by C1 ∪ C2 in the same

picture, there is a unique saddle-point stable stationary CMC equilibrium (K∗
L, C

∗
L) ∈ S2.

If (σ, φ) ∈ B, three stationary equilibria exist: the saddle-point stable stationary MC equi-

librium (K∗
M , C∗

M) ∈ S1 and the two CMC equilibria in the S2 region, the saddle-point

stable (K∗
M , C∗

M) and the unstable (K∗
L, C

∗
L). When we observe the limits between two of

the previous regions bifurcations occur. If (σ, φ) ∈ DF ∪DNF two stationary equilibria exist

with a fold bifurcation associated to one of them: on the DF frontier the bifurcation is a

regular smooth one and on the DNF border it is a non-smooth one. Finally, if (σ, φ) ∈ DP

persistence is the discontinuity-induced bifurcation that emerges.

We can find a single saddle-point stable MC equilibrium like (K∗
M , C∗

M) in dynamic GE

models with a Dixit and Stiglitz (1977) MC market structure - see Rotemberg and Woodford

(1995). Gaĺı and Zilibotti (1995) present a CMC model that produces a pair of equilibria

that correspond to (K∗
L, C

∗
L) and (K∗

H , C
∗
H), with the possibility of complex eigenvalues for

the latter. Gaĺı (1995) produced a different type of market structure producing endogenous

markups and also leading to multiple equilibria and non-saddle dynamics. However, the
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existence of endogenous markups is not a sufficient condition to generate multiple equilibria

as we can see in Goodfriend and King (1997), Jaimovich (2007) or even in the CMC model

of Portier (1995).

4.1. Derivation of 1

Our first step is to establish the existence and number of steady states:

Lemma 3. Let σ̄, φ̃, and φ̄ be given by equations (22), (29), and (30), respectively. Then:

(1) if φ > max{φ̃, φ̄}, for any σ > 1, there is a unique regular MC steady state; (2) if

0 < φ < min{φ̃, φ̄}, for any σ > 1, there is a unique regular CMC steady state; (3) if σ ≥ σ̄

and φ = φ̃ then there is a unique boundary steady state; (4) if 1 < σ < σ̄ and φ̃ < φ < φ̄,

there are three regular steady states, a MC and two CMC steady states; (5) if 1 < σ < σ̄ and

φ = φ̄, there are two regular steady states, one MC and the other CMC; (6) if 1 < σ < σ̃

and φ = φ̃, there are two steady states, a regular CMC and a boundary one.

If the elasticity of substitution between varieties is large, σ ≥ σ̄, then the steady state is

unique, but it may be associated to any regime or belong to the switching boundary. The

type of steady-state regime depends on the cost of entry φ relative to the other parameters.

First, if the fixed cost is high (or A is low) such that φ > φ̃ then there is a unique regular

MC steady state that we can determine explicitly

K∗
1 = K∗

M ≡

(

αA

ρ+ δ

(

1−
1

σ

))1/(1−α)

< K̃.

Second, if the fixed cost is low (or A is high), such that φ < φ̃, then there is a regular

CMC steady state which is unique from Lemma 3, with capital stock defined by

K∗
2 = { K∗

C} = { K ∈ S2 : (1−m(K))F
′

(K) = ρ+ δ}.

In the transition between those two cases, i.e. if φ = φ̃, then the steady-state capital stock

is given by

K∗
Σ = K̃(φ̃) =

(

σφ̃

αA

)1/α

=

(

α2A

ρ+ δ

(

1−
1

σ

))1/(1−α)

.
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If the elasticity is low, verifying 1 < σ < σ̄ several cases may occur. In this case we

have φ̃ < φ̄ and both similar and different possibilities are produced, as in the case of

high σ. If φ > φ̄ or φ < φ̃ we have two cases that are analogous to the previous high-

elasticity ones: we observe unique steady states associated with either K∗
M or K∗

C . However,

if φ̄ > φ > φ̃ multiple steady states exist: a regular MC, K∗
M , and two regular CMC steady

states, K∗
2 = {K∗

H , K
∗
L} such that

K̃∗
Σ < K∗

H < K̄∗ < K∗
L,

where

K̄∗ = K̄(φ̄) =

(

αA

ρ+ δ

(

1−
1

σ̄

) )1/(1−α)

.

As m(K∗
H) > m(K∗

L), we call them high- and low-markup CMC steady states, respec-

tively. At last, in the boundary cases, associated to either φ = φ̄ or φ = φ̃, there are two

steady states. In the first case there is regular MC, K∗
1 = K∗

M , and a CMC steady state,

K∗
2 = K̄∗, and, in the second case, there is a boundary, K∗

Σ, and a regular low-markup CMC

steady state, K∗
2 = K∗

L. As we will see below, both cases are associated to local bifurcations,

a smooth or classic one, in the first case, and a non-smooth, in the second. The steady state

K̄∗ occurs at the local maximum of the R2(K) function if the return function is globally

non-decreasing.

In order to study the local stability and bifurcation properties, we build the generalized

Jacobian in the sense of Clarke (see Clarke (1990) and Leine (2006))

J(K∗) =



























J1(K
∗
1 ), if (K∗

1 , C
∗
1) ∈ S1,

J(K∗
Σ), if (K∗

Σ, C
∗
Σ) ∈ Σ,

J2(K
∗
2 ), if (K∗

2 , C
∗
2) ∈ S2.

If we have a regular steady state belonging to the interior of subset Sj , j = 1, 2 the classic

Jacobian is

Jj(K
∗
j ) =





0 Cj(K
∗
j )R

′

j(K
∗
j )

−1 C
′

j(K
∗
j )



 , K∗
j ∈ Sj, j = 1, 2. (31)
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where Cj(K
∗
j ) ≡ Yj(K

∗
j ) − δK∗

j for
(

K∗
j , C

∗
j

)

∈ Sj , j = 1, 2. If we have a boundary steady

state, K∗
Σ = K̃, the classic Jacobian does not exist, but we can determine the generalized

differential of Clarke evaluated at that point as the convex hull of the derivatives at that

point, which in our case becomes

J(K∗
Σ) = {(1− q)J1(K) + qJ2(K) : 0 ≤ q ≤ 1, K = K∗

Σ},

as the boundary steady state is completely characterized by the capital stock level K∗
Σ.

The eigenvalues of the Jacobians associated to regular steady states are

λ−
j =

C
′

j(K
∗

j )

2
−∆(Jj(K

∗
j ))

1/2, λ+
j =

C
′

j(K
∗

j )

2
+∆(Jj(K

∗
j ))

1/2, for j = 1, 2,

where the discriminant is

∆(Jj) =

(

C
′

j(K
∗
j )

2

)2

− Cj(K
∗
j )R

′

j(K
∗
j ), j = 1, 2.

The eigenvalues are continuous functions of the parameters, in particular of φ and σ.

If, as a result of a continuous change in a parameter, at least one eigenvalue associated

to a regular steady state crosses the imaginary axis we say the equilibrium point (K∗, C∗)

undergoes a smooth bifurcation17.

Lemma 4. 1. Assume there is a regular MC steady state (K∗
1 , C

∗
1 ) ∈ S1. Then it is

saddle-point stable.

2. Assume there is a regular CMC steady state (K∗
2 , C

∗
2) ∈ S2. Then, if R

′

2(K
∗
2 ) < 0

it is saddle-point stable, if R
′

2(K
∗
2) > 0 it is a non-oscilatory unstable node, and if

R
′

2(K
∗
2) = 0 it is a smooth fold bifurcation point.

17For the existence of classic or smooth bifurcations in PWS dynamic systems see di Bernardo et al. (2008).

Leine (2006) calls them continuous bifurcations.
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Local dynamics and bifurcations in the neighborhood of boundary steady states for PWS

continuous systems have been studied in the applied mathematics literature, though there

are different approaches and nomenclatures18. di Bernardo et al. (2008) use the expres-

sion discontinuity-induced bifurcations for a generic change in structural stability in a PWS

dynamic system, upon a change in a parameter. There is a boundary-equilibrium bifur-

cation at a boundary steady state, K∗
Σ, if for φ = φ̃ the Jacobians at the boundaries of

the two contiguous branches, S1 and S2, verify det (Jj(K
∗
Σ, φ̃)) 6= 0, for j = 1, 2. Two

types of boundary-equilibrium bifurcations may exist: persistence, if at the bifurcation point

(K∗
Σ, C

∗
Σ) a regular equilibrium in branch Sj is turned into a regular equilibrium in branch

S−j after a small variation in the bifurcating parameter, φ; or non-smooth fold, if there is a

collision on the boundary of two regular steady states with different stability properties from

both branches, and we observe their disappearance after a small change in the bifurcating

parameter.

Lemma 5. Let (K∗
Σ, C

∗
Σ) be a boundary steady state. Then a boundary-equilibrium bifurca-

tion occurs at φ = φ̃ if σ 6= σ̄19. If 1 < σ < σ̄, there is a non-smooth fold bifurcation and if

σ > σ̄, there is persistence.

We need to determine the eigenvalues of the Jacobian in order to have a specific char-

acterization of the local dynamics at the boundary steady state. As the Jacobian J(K∗
Σ) is

set-valued, so are its generalized eigenvalues,

Λ±(K∗
Σ) =

{

λ±
Σ(q) : 0 ≤ q ≤ 1

}

,

where λ±
Σ(q) are the eigenvalues of the generalized Jacobian JΣ(q) ≡ J(K∗

Σ, q) = (1 −

q)J1(K
∗
Σ) + qJ2(K

∗
Σ). Observe that, although λ±

Σ(0) = λ±
1 (K

∗
Σ) and λ±

Σ(1) = λ±
2 (K

∗
Σ), we

18For two alternative approaches see Leine and Nijmeier (2004) or di Bernardo et al. (2008). On local-

bifurcation analysis see Freire et al. (1998), Leine (2006), and the previous references.
19This is a co-dimension-one bifurcation. If φ = φ̃ and σ = σ̄ a co-dimension-two type of bifurcation may

occur, which seems to be new in the literature. It is a kind of non-smooth fold-fold bifurcation.
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have λ±
Σ(q) 6= (1− q)λ±

1 (K
∗
Σ) + qλ±

2 (K
∗
Σ).

Lemma 6. The generalized eigenvalues Λ±(K∗
Σ) are real. If σ > σ̄ then Λ− ⊂ R−− and

Λ+ ⊂ R++. If 1 < σ < σ̄ then Λ− ⊂ R and Λ+ ⊂ R++. In this case there is a value for q,

q0 ≡ (σ − 1)/(σ̄ − 1) such that λ−
Σ(q

0)) = 0.

If we consider Lemmas 5 and 6 together we can conclude the following. If the elasticity σ is

large and the bifurcation parameter φ is reduced continuously towards φ̃, in the neighborhood

of a boundary steady state, a saddle-point regular MC steady state is continued as a saddle

point at the boundary-equilibrium bifurcation, and for further reductions, into a saddle-

point regular CMC steady state. This is the meaning of persistence in our case. On the

other hand, if the elasticity σ is low and φ is slightly larger than φ̃ there will be two regular

steady states, a saddle-point stable MC and an unstable CMC, which, upon reduction of the

fixed cost will both collide at the boundary steady state and will both disappear for further

reductions. This is the particular instance of a non-smooth fold bifurcation in our model.

This type of behavior is generated by a discontinuity in the first derivatives which does not

occur in smooth dynamic systems.

4.2. Local dynamics at the switching boundary

Candidate trajectories, including equilibrium trajectories presented in section 3, may

contact the switching boundary in infinite time when there is a boundary steady-state equi-

librium. If σ > σ̄, equilibrium trajectories converge to it along the saddle paths passing

through (K∗
Σ, C

∗
Σ). Piecewise smoothness of the vector field implies that the slopes of the

saddle paths are not collinear in both branches separated by Σ. If σ < σ̄ equilibrium trajec-

tories converge to the boundary equilibrium if K(0) < K∗
Σ and they diverge from it, moving

towards the low-markup CMC equilibrium if K(0) > K∗
Σ. This is the consequence of the

existence of a non-smooth fold bifurcation.

Candidate trajectories, including equilibrium trajectories, may contact the switching

boundary in finite time if a boundary steady-state equilibrium does not exist. Advances

25



in the study of this behavior use the Filippov convex method, as we do below (see Filippov

(1988), and Leine and Nijmeier (2004)).

Let us write compactly the vector fields in the two sub-domains as fj(K,C) for (K,C) ∈

Sj and j = 1, 2. Accordingly we will use the vector-field notation Ċ = fj,C (K,C), i.e. the

RHS of equation (26), and K̇ = fj,K (K,C), i.e. the RHS of equation (27), again for (K,C) ∈

Sj with j = 1, 2. Consider a trajectory that reaches the switching boundary Σ at time tΣ,

Φc
j(tΣ) ∈ Σ, coming from branch Sj ( j = 1, 2). Recalling the definition of Σ in equation

(24), we know that Φc
j,K(tΣ) = K̃. Let us define the function h(K,C) ≡ m(K) − 1/σ. The

behavior of the vector field fj (·), as regards the normal to Σ, can be obtained from the

following two functions vj(K,C) and aj(K,C):

vj(K,C) =
∂

∂t
h
(

Φc
j(0)

)

= Lfjh(K,C), j = 1, 2, (32)

and

aj(K,C) =
∂2

∂t2
h
(

Φc
j(0)

)

= L2
fj
h(K,C), j = 1, 2, (33)

where Lfjh and L2
fj
h are the first and second Lie derivatives of function h(K,C) evaluated

at (K,C) ∈ Σ, along the projections of vector field fj (·) into the normal of h(K,C) = 0:

Lfjh(K,C) =
∂h

∂C
fj,C +

∂h

∂K
fj,K , (34)

and

L2
fj
h(K,C) =

∂

∂C

(

∂h

∂C
fj,C +

∂h

∂K
fj,K

)

fj,C +
∂

∂K

(

∂h

∂C
fj,C +

∂h

∂K
fj,K

)

fj,K. (35)

The literature on PWS continuous systems tells us that there are two main types of con-

tact of trajectories originated in branch Sj with the switching boundary, when no boundary

equilibrium points exist: traversing or grazing trajectories. This allows a partition of the

switching boundary into a traverse subset,

Σt ≡ { (K,C) ∈ Σ : v1(K,C)v2(K,C) > 0} ,
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and a subset in which grazing is observed inside Sj

Σg
j ≡ { (K,C) ∈ Σ : vj(K,C) = 0, aj(K,C) 6= 0} .

The full grazing subset is defined as Σg = Σg
1 ∪ Σg

2.

Given our definitions of sets Sj in equations (23) and (25), and the fact that h(K,C) > 0

(h(K,C) < 0) for K < K̃ (K > K̃), if Lfjh(K,C) > 0 the trajectory crosses Σ in the

direction of a decreasing K and if Lfjh(K,C) < 0 it crosses the boundary in the direction

of an increasing K. Also, if a grazing point exists, the structure of h (·) implies that, for

aj(K,C) > 0, grazing takes place from side S1.

Lemma 7. Let C̃ = Y1(K̃)− δK̃ = Y2(K̃)− δK̃. Then:

1. Σt = {(K̃, C) : C 6= C̃};

2. For any values of the parameters, if Φc
C(K̃, tΣ) > C̃ then candidate trajectories traverse

Σ by decreasing K, i.e. ∂Φc
j,K(K̃, tΣ)/∂t < 0, for j = 1, 2. If Φc

C(K̃, tΣ) < C̃ then

candidate trajectories traverse Σ by increasing K, i.e. ∂Φc
j,K(K̃, tΣ)/∂t > 0, for j =

1, 2.

3. If φ < φ̃ then Σg = Σg
1 = {(K̃, C̃)} and Σg

2 is empty. If φ > φ̃ then Σg = Σg
2 = {(K̃, C̃)}

and Σg
1 is empty.

From Lemma 7 we conclude that grazing is unilateral. For φ < φ̃, there is a candidate

trajectory which grazes Σ within S1, i.e. Φc
1,C(K̃, tΣ) = C̃. For φ > φ̃, there is a candidate

trajectory which grazes Σ within S2, i.e. Φc
2,C(K̃, tΣ) = C̃. di Bernardo et al. (2008) call a

point like (K̃, C̃) a regular grazing point.

We call grazing trajectory to a candidate trajectory that is tangent to Σ. If grazing

happens to trajectories inside Sj, then a grazing trajectory separates Sj into a subset in which

trajectories departing from inside of it approach Σ, but do not collide with the boundary and

curl back into Sj , from a subset in which trajectories starting within traverse the boundary Σ

to branch S−j. Traversing candidate trajectories close to the grazing trajectory may exhibit

27



two types of behavior: either they curl back to Σ and traverse it returning to Sj , or they

continue only at branch S−j . Then there is a separating trajectory, that tends to converge to

an equilibrium point in Sj . In fact, this trajectory is the GE trajectory and belongs to the

stable manifold associated to a stationary equilibrium point. From this, we conclude that

grazing trajectories are candidate trajectories but are not GE trajectories.

5. Global General-Equilibrium Dynamics

Apparently, explicit solutions for equilibrium (and candidate) trajectories do not exist,

so we have to resort to qualitative analysis of the equilibrium dynamics by drawing on the

results from the two previous sections.

There are two main results in terms of global GE dynamics. First, there is the possibility

of transient or long-run change in regime from MC to CMC, depending on the relationship

between the fixed cost and the initial level of the capital stock to the remaining parameters

in the model. Second, there is the dependence of the structural dynamics on the curvature

properties of the return function, which is related to the elasticity of substitution amongst

varieties.

Next we present the most representative GE trajectories using phase diagrams for the

cases where there is either a unique steady-state equilibrium or multiple long-run equilibria.

Proposition 2. Let φ > max{φ̄, φ̃}, for any σ > 1, and assume that K(0) > 0. Then

there is a unique saddle-point stable MC stationary equilibrium (K∗
M , C∗

M). The GE path

[Φ(t,K(0))]t≥0, where Φ(t) = (ΦK(t),ΦC(t))
⊤, converges asymptotically to (K∗

M , C∗
M), inde-

pendently of the regime associated to K(0) at time t = 0. In particular, if K(0) > K̃ then

both capital and consumption adjust downwards, the convergence is PWS continuous, the

equilibrium path verifies ΦK(tΣ, K(0)) = K̃, where tΣ > 0 is the time of collision with the

boundary Σ, and Φg
C(t,K(0)) < ΦC(t,K(0)) < βΦK(t,K(0)) for 0 < t ≤ tΣ, where [Φg(t)]

is the grazing trajectory, which grazes Σ from S2 at point (K̃, C̃).
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Figure A.5 depicts the complete phase diagram associated to Proposition 2. If the initial

capital stock satisfies 0 < K(0) < K̃ then both the initial and the stationary state of

the economy exhibit a MC regime and the markup is constant, i.e. it is independent of

the transitional dynamics. The dynamics is smooth in this region (S1) and it depends on

the relative position of K(0) regarding K∗
M . If K(0) is greater (smaller) than K∗

M , then

there is a downward (upward) adjustment in both variables. If the initial capital stock is

above the switching boundary, i.e. if K(0) > K̃, then the economy starts from a CMC

regime and it shifts to the MC regime along the transition path at time t = tΣ. In the

beginning of the adjustment the markup is endogenous and counter-cyclical: both output

and consumption decrease while the markup adjusts upwards. At time tΣ there is exactly

one firm per industry, as the economy switches from a CMC to a MC regime. At this point,

the markup becomes exogenous and constant while the mass of the continuum of varieties

shrinks continuously along the convergence to the stationary equilibrium (K∗
M , C∗

M). The GE

equilibrium path lies along the stable manifold associated with MC equilibrium, represented

by W s
M = W s(K∗

M , C∗
M), which belongs to both branches S1 and S2, and is therefore non-

smooth. Notice that for K(0) > K∗
M the stable manifold lies between the schedule C = βK

and the PWS isocline K̇ = 0.

Figure A.5 around here

Proposition 3. Let φ < min{φ̄, φ̃}, for any σ > 1, and assume that K(0) > 0 . Then

there is a unique saddle-point stable CMC stationary equilibrium (K∗
L, C

∗
L). The GE path

[Φ(t,K(0))]t≥0, where Φ(t) converges asymptotically to (K∗
L, C

∗
L), independently of the regime

associated to K(0) at time t = 0. In particular, if K(0) < K̃ then both capital and con-

sumption adjust upwards, the convergence is PWS continuous, the equilibrium path veri-

fies ΦK(tΣ, K(0)) = K̃, where tΣ > 0 is the time of collision with the boundary Σ, and

Φg
C(t,K(0)) > ΦC(t,K(0)) > βΦK(t,K(0)) for 0 < t ≤ tΣ, where [Φg(t)] is the grazing

trajectory, which grazes Σ from S1 at point (K̃, C̃).
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Figure A.6 depicts the complete phase diagram associated to Proposition 3. The inter-

pretation is similar to that of Figure A.5. The GE equilibrium path lies along the stable

manifold associated with the low-markup CMC equilibrium, W s
L = W s(K∗

L, C
∗
L), which also

belongs to both branches S1 and S2, and is non-smooth. In this case, if the initial state of

the economy is in the MC regime and the initial capital stock lies in the interval
(

0, K̃
)

,

then it increases in the transition and there is a switch in the regime along the way. In

the beginning, the markup is uncorrelated with economic activity, but then intra-industrial

entry occurs as soon as the capital stock reaches K̃. From that point onwards competition

will drive the markup counter-cyclically down.

Figure A.6 around here

Multiple steady-state equilibria exist in the remaining cases. Here we deal with the

generic case in which 1 < σ < σ̄ and φ̃ < φ < φ̄. From Proposition 1, we already know

that there are three steady-state equilibria, (K∗
M , C∗

M), (K∗
H , C

∗
H), and (K∗

L, C
∗
L), which are

collinear, i.e. C∗
j = βK∗

j , j = M,H,L, with K∗
M < K∗

H < K∗
L.

As we will show next, two heteroclinic orbits exist. First, there is a smooth hetero-

clinic orbit joining the two CMC stationary equilibria (K∗
H , C

∗
H) and (K∗

L, C
∗
L) denoted by

ΓHL. This heteroclinic orbit lives in subset S2 and coincides with the intersection between

the unstable manifold associated to (K∗
H , C

∗
H), W

u
H , and the stable manifold associated to

(K∗
L, C

∗
L), W

s
L, i.e. ΓHL = W u

H ∩W s
L. There is also a second, PWS heteroclinic orbit, ΓHM ,

joining the CMC equilibrium (K∗
H , C

∗
H) ∈ S2 to the MC equilibrium (K∗

M , C∗
M) ∈ S1. Again,

the heteroclinic orbit is defined as the intersection between the unstable manifold associ-

ated to (K∗
H , C

∗
H), W

u
H , and the stable manifold associated to (K∗

M , C∗
M), W s

M . Therefore,

ΓHM = W u
H ∩W s

M is continuous, but PWS since it has a discontinuity in its derivatives at

Σ.

Proposition 4. Assume that 1 < σ < σ̄ and φ̃ < φ < φ̄, and also that K(0) > 0. Then

there are three stationary equilibria: a MC saddle-point stable equilibrium, (K∗
M , C∗

M), a
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high-markup CMC unstable equilibrium, (K∗
H , C

∗
H), and a low-markup saddle-point stable

CMC equilibrium, (K∗
L, C

∗
L), such that K∗

L > K∗
H > K∗

M and C∗
j = βK∗

j , with j = L,H,M .

If K(0) > K∗
L then the equilibrium path [Φ(t,K(0)]t≥0 adjusts downwards towards the low-

markup equilibrium (K∗
L, C

∗
L). If K(0) < K∗

M then the equilibrium path converges upwards

to the MC equilibrium (K∗
M , C∗

M). If K∗
H < K(0) < K∗

L then the equilibrium path converges

upwards to (K∗
L, C

∗
L) along the smooth heteroclinic trajectory ΓHL. If K∗

M < K(0) < K∗
H

then the economy converges downwards to (K∗
M , C∗

M) along the PWS heteroclinic trajectory

ΓHM .

Figure A.7 around here

Figure A.7 illustrates Proposition 4. The equilibrium trajectory belongs to the stable

manifolds associated to (K∗
M , C∗

M) and (K∗
L, C

∗
L), W

s
M and W s

L. Both these manifolds are

obtained as the union of two branches and exhibit a common point at the unstable steady-

state equilibrium (K∗
H , C

∗
H). The branches that start in this long-run equilibrium feature

heteroclinic trajectories ΓHM and ΓHL. The necessity of the existence of heteroclinic orbits,

which have a global nature, is obvious: the basins of attraction of the two saddle-point stable

equilibria should be bounded.

Equilibrium paths are ”trapped” by the two manifolds defined by curves C = βK and

C = C(K), i.e. the isocline K̇ = 0. Geometrically, if the latter is above (below) the former

then both capital and consumption increase (decrease).

Depending on the initial level of the capital stock, rational agents ”choose” a MC equilib-

rium (K∗
M , C∗

M) or a CMC equilibrium with a low markup (K∗
L, C

∗
L). The dividing barrier is

given by the CMC equilibrium with a high markup (K∗
H , C

∗
H). Off course, the economy may

be trapped in the high-markup CMC equilibrium, which is totally unstable. A small shift

in any parameter forces the economy to converge to one of the two saddle-point stable equi-

libria. In some sense there is a kind of juxtaposition of the two previous cases with unique
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stationary equilibria if the economy is located in one of the sides of the barrier. Nonetheless,

there is an important difference: there are restrictions on the possibility of regime shifts

along transition paths. If the economy starts from a MC equilibrium it never converges to a

CMC stationary equilibrium. However, the converse is not true: if the initial stock of capital

associated with a CMC dynamics is such that K̃ < K(0) < K∗
H then the economy converges

to a MC equilibrium. This asymmetry is related to the fact that in this case there is a small

elasticity of substitution in the demand for intermediate goods, which can be interpreted as

a case where there is an overall low level of flexibility in the economy.

In all the cases in Propositions 2, 3, and 4 the equilibrium is determinate, and it is

Markovian (in the sense of Santos (2002)), even for the cases where the function is non-

monotonic, similarly to Skiba (1978) and Dechert and Nishimura (1983). However, to our

knowledge, this type of global dynamics arising from the change in regime associated to PWS

dynamics, has not been analyzed in the macroeconomics literature. The regime switch along

the path, linked to the non-smooth dynamics, offers a novel vision on the interaction between

the industrial structure of economies and their macroeconomic equilibrium. Reasonably

competitive economies may end up in a bad equilibrium if the fixed costs faced by its firms

are high. Conversely, economies showing a poor competitive performance may end up in a

good (second-best) equilibrium if increasing returns are not substantial.

6. Technology and regime switching

One interesting possibility in this model is the effect of a permanent technological shock,

i.e. a permanent increase in A, on the long-run regime of the model. Let us start with the

simplest case and assume (σ, φ) ∈ A2. The initial long-run equilibrium is depicted by point

E0 in Figure A.8. Now, assume there is a permanent technology shock that sets a new value

A = A1 > A0. Considering equation (17), then we know that the value for K̃ decreases to

K̃ (A1).

Assume also that K∗
0 > K̃ (A1), i.e. the shock is large enough to make the economy
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switch from a MC to a CMC regime. Since we know that, for the CMC region, we have

R (K) = (1−m (K))F ′ (K), an increase in A will lead to a upward shift in the R (·) schedule,

as ∂m/∂A < 0 and ∂F ′/∂A > 0. Following the shock, the economy moves to point A and

eventually to a new long-run equilibrium like point E1 in Figure A.8 20.

Figure A.8 around here

Thus, we can conclude that a small permanent technology shock hitting an economy

in a unique stable MC equilibrium close to the switching boundary may have substantial

long-run effects since the economy shifts to a CMC regime with a lower equilibrium markup.

Of course a negative shock can have the opposite effect. Notice this means the economy is

no longer in region A2, as it moved to C2.

The situation is even more interesting when (σ, φ) ∈ B and we have three equilibria.

With a similar shock we may have the case depicted in Figure A.9.

Figure A.9 around here

In this case the economy crosses the bifurcation to the A1 region and the new short-run

equilibrium would be given by point A. Considering a permanent shock, there would be new

low-markup CMC equilibrium for the long run given by point EP.

Interestingly, even if the shock is temporary, the economy may not go back to E0. Assume

the shock vanishes at t = τ > 0, when the economy is at point B. As long as it accumulated

enough capital in order to have K (τ) > K∗
H then it jumps to point C at time τ and it

converges to the new steady state E1.

20The increase in the value of K∗ is unambiguous since R (·) is always non-increasing in K.
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In the three-equilibria case, starting from the unstable equilibrium, any shock - no matter

how small or temporary - will be sufficient to move the economy towards one of the two stable

equilibria. Thus, even temporary shocks can have permanent effects in this economy with

multiple equilibria.

7. Conclusion

When we analyze dynamic systems, we may encounter structural changes associated to

non-smoothness, such as discontinuities in derivatives. We find exactly such non-smooth

dynamics in a simple dynamic general equilibrium model with Cournotian Monopolistic

Competition and instantaneous free entry. The model endogenously generates two regimes

with different economic and dynamic features: i) a stable monopoly regime associated with

very high markup levels and low welfare and ii) an oligopoly regime that may produce one

or two equilibria, a stable low-markup and an unstable high-markup one, where the latter

works as a threshold between regimes. The two regimes have different dynamics and there

is a switching boundary between them. We provide a rigorous study of the non-smooth

dynamics and we also analyze the global dynamics of the model, demonstrating that it may

exhibit robust heteroclinic orbits, either of the smooth or the non-smooth type. We show that

two economies exhibiting the same fundamental parameters may behave very differently, as

they may be in two different regimes. Additionally, it is possible for one economy to change

regime along its convergence to a stable long-run equilibrium. Fixed costs and elasticities

of demand play a crucial role in this model: changing their values may alter the dynamics

in a radical way, either by inducing a discontinuous transition or a discontinuous hysteresis.

In economic terms, we have the possibility of one, two or three steady-state equilibria,

connected by heteroclinic orbits. When there is a unique equilibrium, we have two possible

types (both saddle-point stable): one monopolistic with a high and constant markup, and the

other oligopolistic with a low and endogenous countercyclical markup. When there are three

equilibria, there can be a ”threshold” effect, with low initial levels of capital stock leading
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to the low-output monopolistic equilibrium and with high levels leading to the high-output

oligopolistic equilibrium.

In this paper we have assumed that there is an exogenous labor supply: we leave it to

further work to see how the dynamics become even richer with an endogenous labor supply.

We would also like to relax the assumption of instantaneous free entry, allowing for the flow

of entry to be determined by an endogenous cost of entry as in Brito and Dixon (2009): there

will be two state variables (the number of firms and the capital stock) driving the markup.

This would not affect the steady-state equilibria (since in steady state the cost of entry is

zero), but would influence the dynamics out of steady state.
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Appendix A. Proofs

Proof of Lemma 1. Considering F (K) is continuous and smooth, and taking into account

equations (18) and (19), then Y (K) and R(K) are continuous, but are only smooth in the

interior the subsets (0, K̃) or (K̃,∞). Both functions are also continuous at the boundary

value K̃, as Y1(K̃) = Y2(K̃) and R1(K̃) = R2(K̃). However, they are not differentiable in

the classical sense since Y
′

1 (K̃) 6= Y
′

2 (K̃) and R
′

1(K̃) 6= R
′

2(K̃) as we demonstrate below.

Following Leine and Nijmeier (2004) we use the generalized derivative of Clarke (1990),

evaluated atK = K̃, denoted here as ∂Y (K̃) and ∂R(K̃). Therefore the generalized gradients

∂Y (K) and ∂R(K), as in equations (20) and (21) are set-valued functions. We obtain

Y
′

1 (K) = (1 − 1
σ
)F

′

(K) and Y
′

2 (K) = (1−m(K)/2)F ′(K) for non-boundary K and, for

K = K̃ we have

0 < Y
′

1 (K̃) =

(

1−
1

σ

)

F
′

(K̃) < Y
′

2 (K̃) =

(

1−
1

2σ

)

F
′

(K̃)

implying that the generalized derivative at K̃ is ∂Y (K̃) =
[

Y
′

1 (K̃), Y
′

2 (K̃)
]

⊂ R++.

We derive R
′

1(K) = (1 − 1
σ
)F

′′

(K) and R
′

2(K) = (1−m(K))F
′′

(K) − m
′

(K)F
′

(K) where

m
′

(K) = −m(K)F
′

(K)/(2F (K)) < 0. Then, R
′

2(K) = (1−m(K))F
′′

(K) +m(K) (F
′

(K))2

2F (K)
,

in general and for the Cobb-Douglas production function we have

R
′

2(K) = −
(2 − α)

2

(

2(1− α)

2− α
−m(K)

)

αAKα−2. (A.1)

For boundary K = K̃ we obtain

R
′

1(K̃) =

(

1−
1

σ

)

F
′′

(K̃) < R
′

2(K̃) =

(

1−
1

σ

)

F
′′

(K̃) +
(F

′

(K̃))2

2σF (K̃)
,

in general, and for Cobb-Douglas function we have

R
′

1(K̃) =

(

1−
1

σ

)

α(α− 1)AK̃α−2 < 0, R
′

2(K̃) = −
(2− α)

2

(

2(1− α)

2− α
−

1

σ

)

αAK̃α−2,

which has an ambiguous sign. Then the generalized gradient is ∂R(K̃) =
[

R
′

1(K̃), R
′

2(K̃)
]

⊂

R has a positive measure for any K̃.
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Proof of Lemma 2. The generalized second derivative for the production function (18) is

∂2Y (K) =



























Y
′′

1 (K) if 0 ≤ K < K̃,

∂2Y (K̃) if K = K̃,

Y
′′

2 (K) if K > K̃,

(A.2)

where ∂2Y (K̃) is the convex hull of Y
′′

1 (K) and Y
′′

2 (K) at K = K̃, ∂2Y (K̃) = { (1 −

q)Y
′′

1 (K̃) + qY
′′

2 (K̃) : 0 ≤ q ≤ 1}. For the Cobb-Douglas function we have Y
′′

1 (K) =

−(1− α)(1− 1/σ)F
′

(K)/K < 0 and

Y
′

2 (K) = −
(2− α)

2

(

2(1− α)

2− α
−

m(K)

2

)

F
′

(K)

K
.

where F
′

(K)/K = αAKα−2. Now, recall the (generalized) differential of R(K) in equation

(21) and its properties from Lemma 1. Let us consider separately the two sub-domains

divided by K̃. For the first sub-domain, where K ∈ (0, K̃), we have R
′

1(K) = Y
′′

1 (K) < 0

for all possible values for the parameters. In the second sub-domain, where K > K̃, we

already know that m(K) < 1/σ. If we define m̄ = 1/σ̄, we conclude from equation (A.1)

that R
′

2(K) has the same sign as m(K) − m̄ and from equation (A.2) that Y
′′

2 (K) has

the same sign as m(K) − 2m̄. Therefore, several cases can occur: First, if σ > σ̄ then

m(K) < 1/σ < 1/σ̄ < 2/σ̄ which implies R
′

2(K) < 0 and Y
′′

2 (K) < 0 for all K > K̃. Second,

if σ < σ̄ then m̄ = 1/σ̄ < 1/σ and the relationship between m(K) and m̄ is ambiguous.

However, the critical level for the capital stock K̄ is such that m(K̄) = 1/σ. Therefore

R
′

2(K) T 0 if and only if m(K) S m̄, but m(K) S m̄ if and only if K̃ < K S K̄. In the same

sub-domain, we also have Y
′′

2 (K) T 0 if and only if m(K) S 2m̄. But m(K) S 2m̄ if and only

if K̃ < K S
(

2σ̄
σ

)2/α
K̃. However, the latter holds only if 1 < σ < σ̄/2 = (2 − α)/4(1− α),

which is only possible for α > 3/4.

Proof of Lemma 3. Equation (28) implies that steady states of system (26)-(27) are fully

characterized by steady states of the capital stock, formally determined as K∗ = { K ∈ R+ :

R(K) = ρ + δ}. From the definition and the properties of the return function, in equation
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(19) and Lemma 2, and from its depiction in Figures A.1 and A.2, we can readily see that

the following cases may occur:

1. If σ ≥ σ̄ the return function R(K) is monotonically decreasing and PWS concave (see

Lemma 1), and we have three possible cases:

(a) if ρ + δ < R1(K̃) = R2(K̃), there is a unique regular equilibrium (K∗
1 , C

∗
1) ∈ S1

given by the equilibrium condition R1(K) = ρ + δ. This case occurs if and only

if φ > φ̃ where φ̃ is defined in equation (29);

(b) if ρ + δ = R1(K̃) = R2(K̃) = R(K̃), there is a unique boundary equilibrium

(K∗
Σ, C

∗
Σ) ∈ Σ. This holds if and only if φ = φ̃;

(c) if ρ + δ > R1(K̃) = R2(K̃), there is a unique regular equilibrium (K∗
2 , C

∗
2) ∈ S2

given by the equilibrium condition R2(K) = ρ + δ. This case occurs if and only

if φ < φ̃.

2. If 1 < σ < σ̄ we proved in Lemma 1 that the return function is neither monotonically

decreasing nor globally concave. Additionally, we proved that it is decreasing for

K ∈ (0, K̃)∪ (K̄,∞), it is increasing for K ∈ (K̃, K̄), and it reaches a local maximum

at K = K̄. At point K̃, in addition to the generalized derivative, there is the convex

hull of slopes ranging to negative (at the left) to positive (at the right). Those properties

imply that R2(K̄) > R1(K̃) = R2(K̃). Then, five cases are possible:

(a) for ρ + δ > R2(K̄), there is one regular steady state (K∗
1 , C

∗
1) ∈ S1 given by the

equilibrium condition R1(K) = ρ+ δ. This case occurs if and only if φ > φ̄;

(b) for ρ+ δ = R2(K̄), there are two regular steady states: (K∗
1 , C

∗
1) ∈ S1, such that

R1(K
∗
1 ) = ρ + δ, and

(

K̄∗, C
∗
)

∈ S2, such that R2(K) = ρ + δ and R
′

2(K) = 0.

This case occurs if and only if φ = φ̄;

(c) for R(K̃) < ρ+ δ < R2(K̄), there are three regular steady states: (K∗
1 , C

∗
1) ∈ S1,

such that R1(K
∗
1 ) = ρ+ δ and a pair of (K∗

2 , C
∗
2) ∈ S2 such that K∗

2 = { K∗
H , K

∗
L}

with K̃ < K∗
M < K̄ < K∗

L, considering the condition R2(K) = ρ+ δ holds for two

values of K ∈
(

K̄,+∞
)

. This case occurs if and only if φ̄ < φ < φ̃;
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(d) for ρ + δ = R(K̃), once again two steady states exist: a boundary steady state

(K∗
Σ, C

∗
Σ) ∈ Σ and a regular steady state (K∗

2 , C
∗
2) ∈ S2, such that K∗

2 > K̄. This

case holds if and only if φ = φ̃;

(e) for ρ + δ < R(K̃), there is again an isolated regular steady state (K∗
2 , C

∗
2) ∈ S2

and the equilibrium condition is given by R2(K) = ρ+ δ. This case occurs if and

only if φ < φ̃.

Proof of Lemma 4. The classic Jacobian in equation (31), associated to a regular steady

state, has trace and determinant given by

tr(Jj(K
∗
j )) = C

′

j(K
∗
j ),
(

K∗
j , C

∗
j

)

∈ Sj , j = 1, 2,

det(Jj(K
∗
j )) = Cj(K

∗
j )R

′

j(K
∗
j ),
(

K∗
j , C

∗
j

)

∈ Sj , j = 1, 2.

If the steady-state equilibrium point (K∗
1 , C

∗
1) belongs to branch S1, then we obtain tr(J1(K

∗
1 )) =

C
′

1(K
∗
1 ) = Y

′

1 (K
∗
1)− δ = ρ > 0 and det(J1(K

∗
1)) = C1(K

∗
1 )R

′

1(K
∗
1 ) = −(1 − α)(ρ+ δ)β < 0.

Therefore, the eigenvalues of J1(K
∗
1 ) are both real and given by λ−

1 < 0 < λ+
1 . If the

steady-state equilibrium point (K∗
2 , C

∗
2) belongs to branch S2 then

C2(K
∗
2 ) = Y2(K

∗
2 )− δK∗

2 = (1−m(K∗
2 ))F (K∗

2)− δK∗
2 =

=

(

(1−m(K∗
2 ))

F
′

(K∗
2 )

α
− δ

)

K∗
2 = βK∗

2 ,

and

R
′

2(K
∗
2)K

∗
2 = −

[

1− α− (2− α)
m(K∗

2 )

2

]

F
′

(K∗
2 ) =

= −(1−m(K∗
2 ))F

′

(K∗
2) + α

(

1−
m(K∗

2 )

2

)

F
′

(K∗
2 ) =

= −R2(K
∗
2) + αδ + αC

′

2(K
∗
2 ) =

= α

(

C
′

2(K
∗
2)−

C2(K
∗
2)

K∗
2

)

=

= α
(

C
′

2(K
∗
2)− β

)

.
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Thus

tr(J2(K
∗
2 )) = C

′

2(K
∗
2) = β +R

′

2(K
∗
2 )K

∗
2/α,

and

det(J2(K
∗
2 )) = C2(K

∗
2 )R

′

2(K
∗
2 ) = βR

′

2(K
∗
2 )K

∗
2 .

If R
′

2(K
∗
2 ) < 0 then det(J2(K

∗
2 )) < 0 and the equilibrium point is saddle-point stable, i.e.

λ−
2 < 0 < λ+

2 . If R
′

2(K
∗
2 ) = 0 then det(J2(K

∗
2)) = 0 and λ−

2 = 0 < λ+
2 = β. If R

′

2(K
∗
2 ) > 0

then tr(J2(K
∗
2 )) > β > 0 and det(J2(K

∗
2)) > 0, and since

0 <

(

β − R
′

2(K
∗
2 )K

∗
2/α

2

)2

< ∆(J2) <

(

β +R
′

2(K
∗
2 )K

∗
2/α

2

)2

,

then the eigenvalues are real and verify λ+
2 > λ−

2 > 0. Considering that 1 < σ < σ is a

necessary condition to obtain R
′

2(K
∗
2 ) = 0 and it is verified if φ crosses continuously the

value of φ, then the point K∗
2 is a continuous bifurcation point - see Leine (2006).

Proof of Lemma 5. If K∗ = K̃(φ̃) = K∗
Σ, from the expressions in the proof of Lemma 4 we

obtain the determinants of the Jacobians evaluated at the closures of branches S1 and S2,

det(J1(K
∗
Σ)) = −(1− α)(ρ+ δ)β < 0, and det(J2(K

∗
Σ)) = −β(1− α)(ρ+ δ)(σ − σ̄)/(σ − 1),

which is different from zero for σ 6= σ̄. If this condition holds then an equilibrium such

that K∗ = K̃, occurring for φ = φ̃ in which case K̃(φ̃) = K∗
Σ, is a boundary-equilibrium

bifurcation. To characterize the type of bifurcation we use the method in di Bernardo et al.

(2008). Let us consider the system (26)-(27) and study a perturbation of the parameter φ

about the value φ̃ of the equilibrium away from K∗
Σ by linearizing it locally. If we write the

system (26)-(27) compactly as

ẋ =











f1(x, φ) if h(x, φ) > 0,

f2(x, φ) if h(x, φ) < 0,

where x = (C,K)⊤. Let x∗ be the boundary equilibrium for φ = φ̃. For any pair (x, φ) we

have f2(x, φ)−f1(x, φ) = g(x, φ)h(x, φ). Those authors prove that, under the non-degeneracy
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conditions det ( ∂
∂x
f
1
(x∗, φ̃)) 6= 0, D1 ≡

∂
∂φ
h(x∗, φ̃)− ∂

∂φ
h(x∗, φ̃)⊤ ∂

∂x
f1(x

∗, φ̃)−1 ∂
∂µ
f1(x

∗, φ̃) 6= 0

and D2 ≡ 1+ ∂
∂φ
h(x∗, φ̃)⊤ ∂

∂x
f1(x

∗, φ̃)−1g(x∗, φ̃), there is persistence at the boundary equilib-

rium bifurcation if D2 > 0 and there is a non-smooth fold bifurcation if D2 < 0. In our case,

the non-degeneracy conditions hold at a boundary equilibrium bifurcation as det(J2(K
∗
Σ) 6= 0,

due to D1 = (2σφ̃)−1 > 0 and D2 = (σ − σ̄)/(σ − 1). Then D2 > 0 (D2 < 0) if σ > σ̄

(1 < σ < σ̄) and D2 6= 0 for a boundary-equilibrium bifurcation (of co-dimension-one).

Proof of Lemma 6. At the boundary equilibriumK∗
Σ we have 0 < tr(J1(K

∗
Σ) = ρ < tr(J2(K

∗
Σ)) =

ρ + (ρ + δ)/(2(σ − 1)) and det(J2(K
∗
Σ)) = det(J1(K

∗
Σ))(σ − σ̄)(σ − 1) and det(J1(K

∗
Σ)) =

−(1− α)(ρ+ δ)β < 0. Therefore, sign{det(J2(K
∗
Σ))} = sign{σ̄ − σ}. Then

tr(JΣ(q)) = ρ+
q(ρ+ δ)

2(σ − 1)
,

and

det(JΣ(q)) = −β(1− α)(ρ+ δ)

(

1− q

(

σ̄ − 1

σ − 1

))

.

Thus, tr(JΣ(q)) > 0 for any 0 ≤ q ≤ 1 and det(JΣ(q)) < 0 if σ > σ̄ for any q, and

det(JΣ(q)) ≤ 0 if 1 < σ < σ̄ and 0 ≤ q ≤ q0 where q0 ≡ (σ − 1)/(σ̄ − 1), and det(JΣ(q)) > 0

if 1 < σ < σ̄ and q0 < q ≤ 1. Then the trace and the determinant of the generalized Jacobian

are the sets

tr(J(K∗
Σ) =

[

ρ, ρ+
ρ+ δ

2(σ − 1)

]

⊂ R++,

and

det(J(K∗
Σ) =

[

det(J1(K
∗
Σ)), det(J1(K

∗
Σ)))

(

σ − σ̄

σ − 1

)]

,

is a subset of R−− if σ > σ̄ and of R if 1 < σ < σ̄. The generalized eigenvalues are

λ∓
Σ(q) =

tr(JΣ(q))

2
∓∆(JΣ(q))

1/2, 0 ≤ q ≤ 1,

where the discriminant is

∆(JΣ(q)) =
1

4

{

[

q

2

(

ρ+ δ

σ − 1

)

+ ρ− 2αβ

]2

+ 4(1− α)αβ2

}

,

is positive for any q. Therefore, all the generalized eigenvalues are real and Λ+ is a subset

of R++ and Λ− is a subset of R−− if σ > σ̄ and of R if σ < σ̄.
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Proof of Lemma 7. If we evaluate equations (32) and (34) we obtain

v1(K̃, C) = v2(K̃, C) = −
α
(

C̃ − C
)

σK̃
,

where ∂
∂K

f1(K̃) = ∂
∂K

f2(K̃) = (1 − 1/σ)F (K̃) − δK̃ − C = C̃ − C. Then v1(K̃)v2(K̃) =
(

α
(

C̃ − C
)

/(σK̃)
)2

and v1(K̃, C)v2(K̃, C) > 0 if and only if C 6= C̃. We also obtain the

projection of the two vector fields to the normal of h, v1(K̃, C) > 0 (v1(K̃, C) < 0) if and

only if C > C̃ (C < C̃). The grazing subset of Σ possesses a unique element, a grazing

point, at C = C̃. At this point we have v1(C̃, K̃) = v2(C̃, K̃) = 0. If we evaluate the second

Lie derivative in (35), we obtain

a1(K̃, C̃) = a2(K̃, C̃) =
α(ρ+ δ)C̃

2σK̃





(

φ̃

φ

)
1−α
α

− 1



 .

Therefore, if φ < φ̃ (φ > φ̃ ) then a1(K̃, C̃) > 0 (a1(K̃, C̃) < 0) and grazing occurs from

the side S1 (S2).

Proof of Proposition 2. From Lemmas 3 and 4 we already know there is a unique equilibrium

steady state (K∗
M , C∗

M) ∈ S1 that is saddle-point stable. The local dynamics for initial points

belonging to set S1 is similar to the Ramsey model: the isocline Ċ = 0 is vertical, the isocline

K̇ = 0, has slope dC
dK

∣

∣

K̇=0
= C

′

1(K
∗
M) = tr(J1(K

∗
M)) = ρ, and the steady-state equilibrium

points are located along the equilibrium radius C∗ = βK∗. The transversality condition

(3) is met if the GE trajectories Φ(t) are tangent to the stable manifold passing through

(K∗
M , C∗

M), W s
M = W s(K∗

M , C∗
M). Locally, W s

M is tangent to the linear subspace Es
M , with

slope dC
dK

∣

∣

Es
M

= λ+
M > 0. It can be proved that ρ < λ+

M < β, which implies that the stable

manifold W s
M has a slope asymptotically verifying the following inequalities

0 <
dC(K∗

M)

dK

∣

∣

∣

∣

K̇=0

<
dC(K∗

M)

dK

∣

∣

∣

∣

Es
M

<
dC(K∗

M)

dK

∣

∣

∣

∣

C=βK

.

Then, equilibrium trajectories are unique, positively slopped, and are located between the

equilibrium radius C = βK and the isocline K̇ > 0. One implication from this results is that
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ifK(0) = K̃ then there is a unique equilibrium value for consumption ΦC(0, K̃). It belongs to

stable manifold, and therefore, should verify βK̃ > ΦC(0, K̃) > (1− 1/σ)F (K̃)− δK̃. If the

initial point belongs to subset S2, K(0) > K̃, and the proof involves non-smooth-dynamics

analysis. As the steady state equilibrium is unique, the GE trajectory starting in branch S2

should reach the switching boundary Σ at time t = tΣ > 0. From Lemma 7 and section 4.2 we

know that if there is continuation to subset S1, then the equilibrium trajectory should cross Σ

with a value for consumption larger than C̃ = Y2(K̃)−δK̃, with both variables decreasing in

time. Therefore the equilibrium trajectory should verify ΦC(t,K(0)) > Φg
C(t,K(0)), where

[Φg(t)] is the candidate grazing trajectory that grazes Σ from side S2 and it is tangent to Σ

at the intersection with the isocline K̇ = 0. The equilibrium trajectory has also an upper

bound on S2 given by schedule C = βK. To prove this observe that

dΦc
C

dΦc
K

∣

∣

∣

∣

C=βK

=
βK(R2(K)− (ρ+ δ)

Y2(K)− δK − βK
= αβ <

dC

dK

∣

∣

∣

∣

C=βK

= β. (A.3)

As K̇ < 0 and Ċ < 0 for candidate trajectories verifying Φc
C(t) > Φg

C(t), then candidate

trajectories intercept the curve C = βK from below and they diverge from the steady state.

The equilibrium trajectory, converging to the steady state, is the unique candidate trajectory

which cuts that schedule at the equilibrium point. Therefore, the saddle path should lie below

C = βK if K∗
M ≤ ΦK(t,K(0)) ≤ K(0) at both branches.

Proof of Proposition 3. The proof is similar to the proof of Proposition 2, mutatis mutandis.

In this case, observe that the unique steady-state equilibrium point is (K∗
L, C

∗
L) ∈ S2 and

the transversality condition is met if the trajectories, for every admissible initial capital

stock K(0), belong to the stable manifold W s
L = W s(K∗

L, C
∗
L), which is also non-smooth and

extends to branches S1 and S2. Asymptotically the GE trajectory converges to the subspace

tangent to the stable manifold in the neighborhood of (K∗
L, C

∗
L) ∈ S2, E

s
L, which has again

a steeper slope than the isocline K̇ = 0, but is less steep than the ray C = βK, since

0 <
dC(K∗

L)

dK

∣

∣

∣

∣

K̇=0

= C
′

2(K
∗
L) = tr(J2(K

∗
L)) <

dC(K∗
L)

dK

∣

∣

∣

∣

Es
L

= λ+
L < β,
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as we will prove next. An implication is that the equilibrium trajectory traverses Σ below

the isocline K̇ = 0 and both variables are increasing in Σ. As in the last case, equation (A.3)

is still valid, meaning that candidate trajectories cross the line C = βK with a slope smaller

than β. Again, equilibrium trajectories are the only ones that intercept the line C = βK at

the equilibrium point. This means that, if K(0) ≤ K̃ then βΦK(tΣ, K(0)) < ΦC(tΣ, K(0)) <

Y2(ΦK(tΣ, K(0)))− δΦK(tΣ, K(0)). Thus, equilibrium trajectories starting in S1 should pass

below the grazing trajectory, Φg(t), which in this case grazes Σ from side S1.

Proof of Proposition 4. Proposition 1 presents the number of steady states and the local dy-

namics for the case in which 1 < σ < σ̄ and φ < φ < φ̃. There are three equilibria (K∗
M , C∗

M),

(K∗
H , C

∗
H), and (K∗

L, C
∗
L). Geometrically, these equilibria are located in the intersection of

the equilibrium ray C = βK and the isocline K̇ = 0, which is a PWS one-dimensional man-

ifold in (C,K). We prove below that the equilibrium trajectories, for any initial value of the

capital stock belong to the stable manifolds associated to the two saddle point stable steady

states (K∗
M , C∗

M) and (K∗
L, C

∗
L). Those trajectories are located between the two schedules

mentioned above, they are split by steady state (K∗
H , C

∗
H), and they are connected to this

steady state by two heteroclinic trajectories, ΓHL and ΓHM . We prove their existence in that

order.

First, we prove there is a smooth heteroclinic orbit connecting stationary equilibria

(K∗
H , C

∗
H) and (K∗

L, C
∗
L). We first address local dynamics and the prove there is a connecting

orbit.

Steady state (K∗
L, C

∗
L) is saddle-point stable and its Jacobian exhibits eigenvalues λ−

L <

0 < λ+
L . In addition, Es

L = (λ+
L , 1)

⊤ is the eigenvector associated to λ−
L and Eu

L = (λ−
L , 1)

⊤ is

the eigenvector associated to λ+
L . The stable subspace Es

L is tangent to the stable manifold

W s
L = W s(K∗

L, C
∗
L). Locally, the eigenspaces verify

dC(K∗
L)

dK

∣

∣

∣

∣

C=βK

= β >
dC(K∗

L)

dK

∣

∣

∣

∣

Es
L

= λ+
L >

dC(K∗
L)

dK

∣

∣

∣

∣

K̇=0

> 0 >
dC(K∗

L)

dK

∣

∣

∣

∣

Eu
L

= λ−
L ,

since 0 <
dC(K∗

L
)

dK

∣

∣

∣

K̇=0
= C

′

2(K
∗
L) = tr(J2(K

∗
L)) < λ+

L < β. Then the eigenspace tangent to
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the stable manifold is delimited by lines K̇ = 0 and C = βK. Steady state (K∗
H , C

∗
H) is

unstable and its Jacobian has eigenvalues 0 < λ−
H < λ+

H . Furthermore, Eu,+
H = (λ−

H , 1)
⊤

is the eigenvector associated to λ+
H and Eu,−

H = (λ+
H , 1)

⊤ is the eigenvector associated to

λ−
H . They span the subspace tangent to the unstable manifold W u

H = W u(K∗
H , C

∗
H). In the

neighborhood of (K∗
H , C

∗
H) we have

dC(K∗
H)

dK

∣

∣

∣

∣

K̇=0

>
dC(K∗

H)

dK

∣

∣

∣

∣

Eu,−
H

= λ+
H >

dC(K∗
H)

dK

∣

∣

∣

∣

C=βK

= β >
dC(K∗

H)

dK

∣

∣

∣

∣

Eu,+
H

= λ−
H ,

as 0 < λ−
H < β < λ+

L <
dC(K∗

H
)

dK

∣

∣

∣

K̇=0
=tr(J2(K

∗
H)). Then the eigenspace associated to the

smaller eigenvalue in absolute value is also delimited by lines K̇ = 0 and C = βK.

Now consider the global dynamics in the trapping area for K∗
H ≤ K ≤ K∗

L and delimited

by schedules C = βK and C = C2(K) = Y2(K)− δK (i.e. K̇ = 0):

T1 ≡ {(K,C) ∈ S2 : C2(K) ≥ C ≥ βK, K∗
H ≤ K ≤ K∗

L}.

The behavior of candidate trajectories in the boundaries of the trapping area are described

next. First, on the first manifold we have
dΦc

C(t,K)

dt

∣

∣

∣

C=C2(K)
= (Y2(K)− δK)(R2(K

∗
H)− (ρ+

δ)) > 0 and
dΦc

K
(t,K)

dt

∣

∣

∣

C=C2(K)
= 0. Therefore the slope of the candidate flows in the (K,C)

space is given by
dΦC(t,K)

dΦK(t,K)

∣

∣

∣

∣

C=C2(K)

= ∞.

Thus, the dynamic paths point outwards at side K̇ = 0. Second, the candidate flows at

C = βK verify
dΦc

C(t,K)

dt

∣

∣

∣

C=βK
= βK(R2(K) − (ρ + δ)) > 0 and

dΦc
K(t,K)

dt

∣

∣

∣

C=βK
= Y2(K) −

(β + δ)K > 0. This implies that the slope of the candidate paths verify

dΦc
C(t,K)

dΦc
K(t,K)

∣

∣

∣

∣

C=βK

=
βK(R2(K)− (ρ+ δ))

(R2(K)− α(β + δ))K/α
= αβ < β =

dC

dK

∣

∣

∣

∣

C=βK

.

Again, as in Proposition 3, candidate trajectories approach the schedule C = βK with a

smaller slope, which means that they move outwards from the trapping area T1. Then, with

the exception of one path that converges to the steady state (K∗
L, C

∗
L), all the other candidate

paths starting within the trapping area T1 eventually move outwards. The convergent path
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is the equilibrium path, Φ(t). Then the stable manifold W s
L has a branch inside the trapping

area T1 and the equilibrium trajectory belonging to it lay along the heteroclinic trajectory,

ΓHL, joining K∗
H and K∗

L. The heteroclinic trajectory is tangent to Eu,−
H in the neighborhood

of (K∗
H , C

∗
H) and to Es

L in the neighborhood of (K∗
L, C

∗
L), which lies within T1, as we have

seen. Geometrically, it separates the paths that start on side C = C2(K) from those leaving

from side C = βK.

Next, we prove that there is a unique PWS heteroclinic orbit connecting both stationary

equilibria, (K∗
H , C

∗
H) and (K∗

M , C∗
M), and this is an equilibrium trajectory. In order to do

that, we apply the same method used above, but taking into account the non-smoothness

properties of the dynamic system, as two branches (S1 and S2) are crossed. We also define

a trapping area, joining two contiguous subsets belonging to each branch, in which the

dynamics is governed by different equations. For K∗
M ≤ K ≤ K̃, then the dynamics is driven

by equations Ċ = C(R1(K)− (ρ+ δ)) and K̇ = Y1(K)− C − δK, and for K̃ ≤ K ≤ K∗
M ,

it is given by Ċ = C(R2(K) − (ρ + δ)) and K̇ = Y2(K) − C − δK. The trapping area is

delimited by two manifolds, a smooth one C = βK and the non-smooth manifold C = C(K)

where C(K) = Yj(K)− δK for (K,C) ∈ S̄j, j = 1, 2,

T2 ≡ { (K,C) ∈ S̄1 ∪ S̄2 : βK ≥ C ≥ C(K), K∗
H ≥ K ≥ K∗

M}.

In Proposition 2 we showed that equilibria (K∗
M , C∗

M) is saddle-point stable and (K∗
H , C

∗
H)

is a source. The stable manifold associated to (K∗
M , C∗

M), W s
M , has a tangent, Es

M , that lies

inside the trapping area due to

0 <
dC(K∗

M)

dK

∣

∣

∣

∣

C=C1(K)

= tr(J1(K
∗
M)) <

dC(K∗
M)

dK

∣

∣

∣

∣

Es
M

= λ+
M <

dC(K∗
M)

dK

∣

∣

∣

∣

C=βK

= β.

On the other hand, we showed that the eigenspace associated to the smaller eigenvalue of

the Jacobian J2 evaluated at (K∗
H , C

∗
H), also lies inside the trapping area, as

dC (K∗
H)

dK

∣

∣

∣

∣

C=C2(K)

= tr(J2(K
∗
H)) >

dC (K∗
H)

dK

∣

∣

∣

∣

Eu,−
H

= λ+
H >

dC (K∗
H)

dK

∣

∣

∣

∣

C=βK

= β > 0.
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This means that the heteroclinic orbit ΓHM should depart from inside the trapping area in

the neighborhood of the MC equilibrium. For K∗
M < K < K∗

H , all candidate trajectories

crossing C = βK point outwards T2, as their slope is smaller in the (K,C) space:

dΦc
C

dΦc
K

∣

∣

∣

∣

C=βK

=
βK(R1(K)− (ρ+ δ))

Y1(K)− (δ + β)K
=

βK(R2(K)− (ρ+ δ))

Y2(K)− (δ + β)K
= αβ < β,

and

βK̃(Ri(K̃)− (ρ+ δ)) <
dΦc

C(t,K)

dt

∣

∣

∣

∣

C=βK

= βK(Ri(K)− (ρ+ δ)) < 0, i = 1, 2,

and
dΦc

K(t,K)

dt

∣

∣

∣

∣

C=βK

= (Ri(K)/α− (δ + β))K < 0, i = 1, 2.

For K∗
M < K < K∗

H , all candidate trajectories crossing C = C(K) also point outwards T2,

as

C1(K
∗
M)(R1(K

∗
M)− (ρ+ δ)) = 0 >

dΦc
C(t,K)

dt

∣

∣

∣

∣

C=C1(K)

= C1(K)(R1(K)− (ρ+ δ)) >

> C1(K̃)(R1(K̃)− (ρ+ δ)),

C2(K̃)(R2(K̃)− (ρ+ δ)) <
dΦc

C(t,K)

dt

∣

∣

∣

∣

C=C2(K)

= C2(K)(R2(K)− (ρ+ δ)) <

< C2(K
∗
H)(R2(K

∗
H)− (ρ+ δ)) = 0,

and
dΦc

K(t,K)

dt

∣

∣

∣

∣

C=C1(K)

=
dΦc

K(t,K)

dt

∣

∣

∣

∣

C=C2(K)

= 0.

The later implies that candidate trajectories, not converging to steady-state equilibria, cross

the PWS continuous manifold C = C(K) and head outwards of T2 with slope

dΦc
C(t,K)

dΦK(t,K)

∣

∣

∣

∣

C=C(K)

= ∞.

This includes the grazing trajectory, which is tangent to C = C(K) at point K = K̃.

This means that both the heteroclinic ΓHM and the equilibrium trajectories departing from
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K̃ < K(0) < K∗
H are located between a grazing trajectory departing from (K∗

H , C
∗
H), which

grazes Σ from the side S2, and the line C = βK cross Σ within the interval (C(K̃, βK̃). This

also implies that they asymptotically converge to the equilibrium point (K∗
M , C∗

M). It can

also be proved that the heteroclinic trajectory is located between the loci Eu,−
H and C = βK

(C = C(K) and Eu,−
H ) if

K∗

H
−K̃

K̃−K∗

M

−
β−λ+

M

λ+
H
−β

> 0 (< 0).
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Figure A.1: Aggregate return and marginal product of capital, and production functions for σ > σ̃.
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Figure A.2: Aggregate return and marginal product of capital, and production functions for

max{σ̃/2, 1} < σ < σ̃.
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Figure A.3: Bifurcation diagram for 1 < σ < σ̄ (left panel) and for σ > σ̄ (right panel) with φ as the

bifurcation parameter. Legends: persistence (P), smooth fold bifurcation (F), non-smooth fold bifurcation

(NF). Steady states: saddle point (filled line), unstable steady state ( dashed line).
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Figure A.4: Bifurcation diagram in the (σ, φ)-space.

Figure A.5: Phase diagram 1 - φ > max{φ̃, φ̄} Unique MC stationary equilibrium.
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Figure A.6: Phase diagram 2 - φ < φ̃ Unique CMC stationary equilibrium.

Figure A.7: Phase diagram 3 - φ̃ < φ < φ̄ and 1 < σ < σ̄ Multiplicity of stationary equilibrium.
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Figure A.8: Permanent increase in productivity for σ > σ̄.

Figure A.9: Temporary increase in productivity for 1 < σ < σ̄.
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