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Abstract

As online markets for the exchange of goods and services become more common, the study of markets com-
posed at least in part of autonomous agents has taken on increasing importance. In contrast to traditional complete-
information economic scenarios, agents that are operating in an electronic marketplace often do so under considerable
uncertainty. In order to reduce their uncertainty, these agents must learn about the world around them. When an agent
producer is engaged in a learning task in which data collection is costly, such as learning the preferences of a con-
sumer population, it is faced with a classic decision problem: when to explore and when to exploit. If the agent has a
limited number of chances to experiment, it must explicitly consider the cost of learning (in terms of foregone profit)
against the value of the information acquired. Information goods add an additional dimension to this problem; due
to their flexibility, they can be bundled and priced according to a number of different price schedules. An optimiz-
ing producer should consider the profit each price schedule can extract, as well as the difficulty of learning of this
schedule.

In this paper, we demonstrate the tradeoff between complexity and profitability for a number of common price
schedules. We begin with a one-shot decision as to which schedule to learn. Schedules with moderate complexity are
preferred in the short and medium term, as they are learned quickly, yet extract a significant fraction of the available
profit. We then turn to the repeated version of this one-shot decision and show that moderate complexity schedules, in
particular two-part tariff, perform well when the producer must adapt to nonstationarity in the consumer population.
When a producer can dynamically change schedules as it learns, it can use an explicit decision-theoretic formulation
to greedily select the schedule which appears to yield the greatest profit in the next period. By explicitly considering
the both the learnability and the profit extracted by different price schedules, a producer can extract more profit as it
learns than if it naively chose models that are accurate once learned.
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1 Introduction

The development of electronic markets for the exchange of goods and services (such as MAGNET [6], eMediator [19]
or the University of Michigan AuctionBot [25]) has produced a need to study the behavior of economies composed
wholly or in part of autonomous agents. These agents typically do not have the sort of rich information and so-
phisticated reasoning attributed to humans, and so traditional economic approaches based on ideas such as common
knowledge are not necessarily applicable. Our research has focused on the study of economies of producer and con-
sumer agents where information goods are the objects of exchange. In particular, we are interested in how an agent
producer of information goods can efficiently learn about an unknown consumer population.

Electronic information goods are very flexible. In contrast to physical goods, marginal costs are negligible and
nearly limitless bundling and unbundling of these items is possible. Consequently, producers can offer complex
pricing and bundling schemes that would be infeasible for traditional commerce in physical goods. When articles
have a very low marginal cost, it is almost always advantageous to include them in a bundle if any consumer values
them positively. Considering only pricing structures that are based on the number of items in a bundle, and not on
the identity of the items or the identity of the consumer, there are families of such pricing schedules with one free
parameter, two parameters, and so forth. In the limit, the most general pricing function for this problem has

�

parameters, where
�

is the total number of different information goods under consideration. These different families
of schedules approximate consumer demand with different degrees of precision, thereby yielding different profits.

It would seem reasonable to assume that a producer with more free (and independent) pricing parameters to control
will want to use all of those parameters, since it will be able to fit the consumer demand curve more precisely. However,
when a producer faces uncertainty about the nature of consumer demand, the situation is not so straightforward.
Optimal pricing under more complex schemes demands more knowledge about consumer preferences than pricing
under simple schemes requires. In addition, different schedules with the same number of parameters may have different
learning curves. Learning about consumer preferences takes time; meanwhile, the firm is earning less than the optimal
profit. In a world in which a producer has a limited number of chances to interact with a consumer population, the cost
of learning becomes very important; learning a complex schedule is not useful if the producer does not have sufficient
opportunity to recoup learning costs.

Aspects of our problem have been studied by prior authors. There is an extensive economic literature on how
a firm can use multi-parameter pricing schedules to extract greater surplus when the distribution of consumers is
known, but the firm cannot tailor individual-dependent prices; see Wilson [24] for a thorough overview. Maskin and
Riley [15] present a method for deriving the most profitable unconstrained nonlinear pricing scheme when consumers
are differentiated by a single taste parameter for which the distribution is known. Economists and others have studied
how agents optimally choose between competing opportunities of unknown reward, often referred to as multi-armed
bandit problems [23]. In bandit problems, an agent weighs the benefit of gaining information by experimenting against
the cost of experimentation (manifested as foregone short-run profits). Rothschild has studied how a firm chooses a
one-parameter linear price when it faces uncertain consumer preferences [18]. Braden and Oren [2] have found that
when the distribution of consumer demands is unknown, the desire to learn leads to lower prices in early periods.

The machine learning community has also considered the problem of efficient learning. The problem of how to
determine an optimal sequence of actions, when there is a tradeoff between exploration and exploitation, is a primary
focus of the reinforcement learning literature. Sutton and Barto [20] provide an excellent overview.

Problems in which an agent acquires data incrementally and must interleave learning with acting in the environment
(as opposed to processing a large dataset offline and then selecting an action) are referred to as on-line learning
problems. Researchers in both machine learning [1] and optimal control [8] have examined this problem, typically
asking questions such as how to learn a model with the smallest number of queries. Thus, they do not consider an
economically-sensible objective function, such as our objective of maximizing aggregate payoff net of any costs of
learning. When an agent is able to select data points to examine she has a decision problem in which there is a trade-
off between the opportunity cost of further exploration and the value of the information acquired. This is known as a
problem with active data selection. Thrun and Møller [21] survey common techniques, most of which assume that the
problem is stationary.

In our research, an agent producer of information goods selects parameter values that define a price schedule
offered to an unknown consumer population. This agent can select from schedules of differing complexity to represent
the consumer population. As it gathers evidence, the agent updates its beliefs about the optimal parameter values. We
point out that a price schedule can be thought of as a model of consumer demand. If a consumer’s valuation for each
good in a bundle were known, it could be expressed as a nonlinear price schedule charging that consumer’s valuation



for each good. Other price schedules are less precise, but still approximate consumer demand.
Several assumptions distinguish our on-line learning problem with active data selection from prior research. First,

we assume that the producer’s goal is economically sensible: to maximize aggregate profits. The producer is concerned
not only with the profits it can expect once it finds a good schedule, but also with the lower profits earned while
uncovering this good schedule. Second, we allow the environment to change over time. Thus the producer must also
consider the degree to which profits are affected by changes in its environment and how quickly it can “relearn” a
schedule. Finally, we endow our firm with no knowledge of its environment. These features render optimal control
methods intractable, and point to simulation as the appropriate tool for studying this problem.

We begin with a fixed-schedule problem in which a producer chooses a single schedule, then learns and updates
beliefs about the optimal value of the parameters for that schedule. Simpler schedules outperform those that are more
complex over the short and medium run, due to the higher costs of learning more parameters. The two-part tariff
performs especially well. We then allow consumer demand to change over time and evaluate schedule performance
over a range of frequencies of change. Finally, we demonstrate how a producer can improve its profits by dynamically
changing between schedules as it learns so as to combine the learnability of simpler schedules with the higher profits
of more complex schedules.

2 Modeling

In this section we present our model of producer and consumer behavior, describe the different price schedules, and
summarize the profits they extract under complete information assumptions.

2.1 Consumer Model

In each period, a monopolist offers consumers a new set of
�

articles priced according to a price schedule. Consumers
are rational utility maximizers. That is, they know their preferences and, on every iteration, will act so as to maximize
their expected utility. We assume consumer preferences follow a simple two-parameter model originally introduced by
Chuang and Sirbu [5], and described in our previous work [4, 13]. This model has the advantage of being analytically
tractable while still providing significant nonlinearities in consumer demand when consumers are heterogeneous. The
model consists of two parameters: � , which indicates a consumer’s value for its most-preferred article, and

�
, which

indicates the fraction of the
�

articles available for which the consumer has a positive valuation. The valuation �������
	
of the � th most-preferred article by consumer � is a linear function of these variables, expressed by:

(1) �������
	�
� � � ���������������� 	��! "�#�$�&% � � �' �! "�#�$�&( � � �

This equation produces a downward-sloping line representing consumer valuations, as shown in Figure 1. In
practice, consumers can only purchase integer quantities of articles, as indicated by the solid rectangles. It is worth
noting that consumers can choose which articles that they wish to consume; the producer only prices articles according
to the order in which they are consumed. For example, the first article consumed might cost $5, regardless of which
article the consumer chooses to read.

As we assume that the producer can produce an additional copy of any article without additional cost, the socially
efficient outcome would be for each consumer ) � to consume

� � �
items. This would yield a surplus of * �����+ to each

person for a total value of * �,�- for the entire population. A firm that could observe each consumer’s
� � could perfectly

price discriminate by making a take-it-or-leave-it offer tailored to each individual and extract this entire surplus. This
serves as an upper bound for the maximum profit that a monopolist could earn. (Of course, since a producer cannot
actually price discriminate between consumers, it is unlikely to reach this bound when interacting with a heterogeneous
consumer population.)

We assume that the consumer population will change over time. There are several ways in which this could happen:
for example, consumer preferences could change, the population could evolve as consumers leave and are replaced by
new consumers, or the span of market facing the producer could change due to the introduction of other producers. In
Section 4 we consider the case in which the extant consumer population periodically is removed and replaced by new
consumers drawn from a static distribution 1.

1We also allowed the parameters of the underlying distribution to follow a random walk and obtained qualitatively similar results.
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Figure 1: Consumer Valuation under the Chuang and Sirbu model.

2.2 Producer Model

We focus on the producer and how its decision as to what it should learn leads to differences in performance. The
producer’s goal is to maximize its profit aggregated over time 2. This depends on the profit from the current schedule,
the cost of learning better price parameters, and the value of learning as realized through improved future profitability.

We focus on a monopolist producer interacting with a consumer population. There are two possible explanations
for the monopolist assumption: the first is that many information goods, such as journal articles and audio files,
are protected by copyright, thereby preventing other producers from selling them. Secondly, the economy we are
considering may be part of a larger system in which the producers have subdivided the consumer market into separate
niches. Within each niche, a single producer acts as a local monopolist. We have studied conditions sufficient for this
to occur elsewhere [3].

We assume that the producer can offer exactly one price schedule in a given period. Since a producer cannot
distinguish between consumers, offering multiple schedules simultaneously could confuse the learning problem, as
a producer may not be able to tell whether a schedule performs poorly because it is not valued by the consumer
population, or whether one of its other offerings is simply valued more highly. The producer offers a pricing schedule,
receives feedback in the form of profit earned, and uses this to select new prices. In Section 5, we allow the producer
to select a new schedule. The producer does not have knowledge of or tight beliefs about the distribution of consumer
preferences, and thus tries to learn only the direct relationship between price schedule parameters and profit.

We are studying the question of which schedule to learn, rather than how to optimally learn a given schedule.
Therefore, we selected an off-the-shelf optimization algorithm to use in learning prices 3. We use amoeba [17], a
variant of the Nelder-Mead direct search method for nonlinear optimization [16, 22], as a learning algorithm. Amoeba
is a hillclimbing algorithm particularly well-suited to the types of profit landscapes we are studying. It works by
initially choosing and evaluating ��� � points (where � is the number of parameters in the price schedule). The worst
point is reflected through the centroid of the convex hull formed by the other � points. If this produces an improvement,
the process is repeated. Otherwise, the worst point is contracted toward the centroid of the hull and the new worst point
is reflected. This produces a back-and-forth flipping up the gradient of a landscape which gives amoeba its name. (This
is only a rough sketch of the algorithm; a detailed description is provided in the references above.) Amoeba performs
well on discontinuous, multimodal, terraced surfaces such as the ones induced by these price schedules. This is due
both to the fact that amoeba does not explicitly use gradient information to select new points to explore and also the
fact that amoeba uses a widely separated set of points to choose new points to explore, as opposed to just examining
the profit landscape in its immediate neighborhood. This allows amoeba to skip over ridges and local optima.

2In some cases, a producer may want to discount the value of future profit. Although we do not treat it explicitly, it is straightforward to
incorporate a discounting factor into our results.

3It is possible that the question of what to learn might be sensitive to the choice of learning algorithm. For example, different price schedules
might have different algorithms that perform optimally on them, and the improvement from moving to a better algorithm might be sufficient for
some methods as to change the ranking of payoffs from the various schedules. This remains an open question for our problem.
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Pricing Schedule Parameters Optimal Profit Description
Pure Bundling � .875 Consumers pay a fixed price � for access to

all � articles.
Linear Pricing � .875 Consumers pay a fixed price � for each article

purchased.
Two-part Tariff ����� 1.037 Consumers pay a subscription fee � , along

with a fixed price � for each article
Mixed Bundling ����� 1.037 Consumers have a choice between a per-

article price � and a bundle price �
Block Pricing �
	��������� 1.094 Consumers pay a price �
	 for the first � arti-

cles ( ����� ), and a price � � for remaining
articles.

Nonlinear Pricing �
	������������� 1.152 Consumers pay a different price �� for each
article � .

Table 1: This table presents characteristics and optimal profits for a series of price schedules, when applied to the
following population: �  � ' ,

�  � ' , and
� � drawn from ��� '���'� �!#"$ Column 3 denotes the optimal profit per good

sold that can be earned by each schedule.

2.3 Price Schedules

The space of schedules that we explore (presented in Table 1) is larger than that typically considered in the sale of
physical goods. The reason for this is that digital goods typically have a high fixed cost, but negligible marginal cost.
Once a single digital copy of a good, such as a newspaper article, is produced, copies can be made virtually for free.
This makes bundling of articles into collections an attractive strategy for dealing with consumer heterogeneity [5, 7].
If an article is valued by any consumer, including it in a bundle increases the bundle’s aggregate value.

The calculation of optimal profit with perfect information for each schedule is described in more detail in our pre-
vious work [4]; we simply summarize those results here to provide a benchmark for the best possible profit that could
be obtained from a schedule once all information is learned. Table 1 shows that as the number of pricing parameters
increases, the potential profit a schedule can extract is increased. We refer to this as a schedule’s precision: what
fraction of available profit is it capable of capturing? Another factor, which is not reflected in the above table, is a
schedule’s complexity, which indicates the difficulty of learning the optimal parameters of a price schedule. Complex-
ity allows us to compare the learnability of different schedules by estimating both how well they will perform once
learned, and the cost of learning them. This will be further explored in Section 5, when we examine the producer’s
decision process as it repeatedly chooses price schedules.

3 Learning parameters for a one-time schedule choice

In the simplest formulation of our problem, a producer selects a single price schedule and is then locked into this
decision. The producer is free to dynamically change its price parameters every period, but the selection of a schedule
is fixed.

In order to compare the performance of each schedule as prices are learned, we conducted a set of experiments in
which amoeba was run on the landscape induced by a randomly generated consumer population and a price schedule.
In these experiments, we generated a population of 1000 consumers.

� � was drawn from �%� '���'& '!(" . � was fixed at 10,
so as to remain consistent with the analytical results summarized in Table 1. This produces a consumer population in
which each consumer has the same value for its most-preferred article, but consumers vary in the number of articles
they value. Experiments were conducted for both

�  � ' and
�  � ' ' goods. The producer interacted with a fixed

population for 10000 iterations. Results are averaged over 100 runs.
Figure 2 shows our results on the six price schedules for

�  � ' and
�  � ' ' . (Note that the time axis is

log scale.) Each line indicates the average cumulative (per-article, per-customer) profit for a particular schedule. For
example, the value of about 1 for mixed bundling at iteration 10 in the left-hand graph in Figure 2 means that over the
first 10 iterations, profit averaged 1 (so cumulative profit is approximately 10). The total expected profit earned up to
time ) is the height of the curve at ) multiplied by ) . Higher lines therefore indicate schedules which have been more
profitable to date.

For
�  � ' , after an initial adjustment period of about 10 iterations, the two-parameter schemes perform quite
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Figure 2: Learning curves for each of the six price schedules. The � axis is number of iterations (log scale) and the �
axis is average cumulative profit per article, per customer for

�  � ' (left) and
�  � ' ' (right).

well, dominating for the next 100 periods. After this point, the cost of learning the nonlinear schedule has been
absorbed, and nonlinear pricing becomes the most effective strategy. Also worth noting is the poor performance of
block pricing; even though it is able to extract more profit under complete information than either two-parameter
schedule, it is unable to surpass either here. The reasons for this are discussed below.

The experimental results when
�  � ' ' are shown on the right-hand graph in Figure 2. Again, two-part tariff per-

forms well in the short and medium run before being overtaken by nonlinear pricing. The single-parameter schedules
(pure bundling and linear pricing) are simply not able to keep up due to their low precision.

While the theoretical properties of each price schedule tell us the maximal profit they can achieve, the rate at
which that profit is reached is dependent upon the structure of the profit landscape. The experiments in Figure 2 help
to illustrate some of the subtleties of this problem. First, note that the average cumulative profit per article is lower
when

�  � ' ' than when
�  � ' . Recall that a consumer is described by the fraction of articles she desires. Since

consumers can only purchase integer quantities of articles, as the number of articles increases, each consumer is able
to target more precisely what she wants, reducing the discontinuity in the landscape. Increasing the number of articles
also emphasizes the heterogeneity in the consumer population, making consumers “more different” from each other
and thereby reducing the profit (per consumer) that can be extracted using a single schedule.

Nonlinear pricing initially shows a flat line as 101 random samples are taken to fill in amoeba’s simplex when
�  � ' ' . Learning does not actually begin with this schedule until iteration 102.

Also, note the difference in performance for both mixed bundling and block pricing as the number of articles
is increased. In the case of mixed bundling, profits fell off, whereas block pricing performed better as the number
of articles increased. To understand why the performance of mixed bundling falls off, consider the topographical
depiction of the mixed bundling profit landscape shown in Figure 3. Since mixed bundling offers consumers a choice
between pure bundling and per-article pricing, one solution is to only find the bundle price, setting the per-article price
so high that no one will choose it. This places the producer on the large light-gray region of the landscape. In this case,
changing the per-article price a little has no change in profit (since no one was buying per-article) and so the producer
will remain in that region. The larger this region is, the more likely that a learner will find itself there. Since the size
of the bundle price is dependent upon the number of articles offered, as

�
increases, a greater fraction of the profit

landscape is taken up by this region.
In contrast, block pricing performs better as the number of articles offered is increased. Recall that the third

parameter of a block pricing schedule ( � ) is the number of articles a consumer must purchase in order to receive a
discount. However, when

�  � ' , consumers typically value only a few articles, and so most values of � do not
produce any additional profit beyond that of linear pricing. When

�  � ' ' , consumers will value a larger number of
articles, and so block pricing is able to effectively find two prices that capture both the high value placed on the first few
articles purchased and the low value for the remaining articles. This provides a lesson for designers of price schedules:
adding additional schedule parameters requires a producer to consider not only the ability to extract additional profit
at a schedule’s optima, but also the way in which the addition of extra parameters will affect the profit landscape.

Two-part tariff becomes a particularly useful schedule given these observations, since it is able to perform well for
both

�  � ' and
�  � ' ' . Unlike mixed bundling, it contains an easy-to-climb hill, and many non-optimal values
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Figure 4: Two-part tariff (left) and mixed bundling (right) landscapes. Even though they have the same number of
parameters and the same optimal profit, their landscapes are very different.

have relatively high profit, making exploration less costly. Additionally, there are no large plateaus, making it easy
to move between optima. This is discussed further in Section 4. Figure 4 shows the landscapes for mixed bundling
and two-part tariff. As we can see, even though they have the same number of parameters and the same optimal
profit, the search spaces are quite different. As we discussed previously, the mixed bundling landscape contains the
pure bundling and linear pricing landscapes as subspaces, with the pure bundling solution creating a large flat region.
Because of this, even though these two-parameter schedules have the same potential optimal profit, the two-part tariff
performs better on average after learning is complete, particularly for low

�
. Since two-part tariff’s parameters are

tightly coupled (as the fee increases a bit, the per-article price falls) the resulting landscape has a nice gradient that a
learner can ascend. Recall that the graphs in Figure 2 show results averaged over several runs with randomized starting
values. The global peak of the mixed bundling landscape was found less often than that of two-part tariff.

These results highlight the exploration-exploitationtradeoff involved in selecting schedules of different complexity.
While more highly parameterized schedules can potentially fit consumer demand more precisely, simpler, less precise
schedules can be more effective in the short run due to their learnability. Additionally, some schedules may be less
robust to a change in model parameters, such as number of articles. Therefore, it is important to consider not only the
theoretical solution, but also solutions actually realized in practice.
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Schedule ������� �������	� �������	�	� �������	�	�	� Optimal Opt. (fixed)
Pure Bundle 0.847 0.955 1.066 1.079 1.122 0.901
Linear 0.900 0.904 0.905 0.907 0.910 0.900
Two-Part 0.853 1.034 1.144 1.186 1.232 1.071
Mixed 1.016 1.090 1.146 1.154 1.240 1.071
Block 0.855 0.994 1.076 1.253 1.279 1.063
Nonlinear — — 1.112 1.312 1.393 1.205

Table 2: Time-averaged profits for each schedule for several values of shock interval



, using 10 consumers. The
second-to-last column gives the optimal profits for

�  � ' ' ; this represents the upper limit on what can be obtained
by an adaptive, fully-informed producer. The last column gives the optimal profits for

�  � ' ' for a producer using
a fixed price schedule, rather than adapting.

The analysis in this section provides a recipe for a producer choosing a single schedule: find the point on the time
( � ) axis corresponding to the number of iterations it will interact with a consumer population and select the schedule
with the highest area under its curve up to that point. (If the ending time is not known with certainty, use an expected
utility calculation for each possible ending time.)

While this is an interesting initial step, it assumes that the producer starts with no information about the consumer
population. In the following sections, we will relax our assumptions about nonstationarity and allow our producer
to track a changing consumer population. We will then allow the producer to dynamically change schedules, using
information gained from simpler schedules to “bootstrap” into more complex schedules.

4 Examining Nonstationarity Further

One interpretation of the assumptions of the previous section is that the producer is in a nonstationary environment
where the changes are so dramatic that all previous learning is without value to the producer. This is just one end of
a spectrum of potential change. In this section, we examine less dramatic nonstationary environments, with an eye
toward the question of selecting a schedule that is robust to periodic changes in the consumer population.

In our model, the consumer population is subjected to periodic shocks. When a shock occurs, the existing consumer
population is replaced with new consumers drawn from a fixed distribution.

We compared the performance of each schedule to that of a producer who knows the parameters of the consumer
distribution and selects a fixed schedule and prices targeted to this distribution. In other words, this is the best that a
producer could hope to do (in expectation) without adapting to population shocks. For this experiment, we allowed
shocks to occur every 10, 100, 1000 and 10000 iterations. Before the experiment began, the producer was allowed to
learn on a fixed population until it converged on a solution, so as to eliminate initial transients. The experiment was
ran for many (typically millions) periods, and results were averaged across shocks. The results from these simulations
are presented in Table 2.

As we can see from Table 2, when the consumer population is changing rapidly, a producer can do better by simply
staying in place. The profits from not changing a “good” schedule even as the consumer population changes, depicted
in the final column, are greater than the profits of trying to adapt to frequent changes, depicted in the second column.
The producer simply doesn’t have enough time to make up profits lost due to learning. (This advantage is dependent
upon new consumers being drawn from a stationary distribution; if the distribution of potential consumers changes
over time, then adaptation is more likely to be a successful strategy.) As the shock rate decreases, learning becomes
more useful, with the two-parameter schedules again performing well. One result worth noting is the performance
of nonlinear pricing. In this experiment, nonlinear pricing did quite well, whereas in the experiments in Section 3, it
initially performed poorly. This is a direct result of the way in which the experiments were performed. In the experi-
ments depicted in Figure 2, the producer was started cold on a stationary population. In the experiment summarized in
Table 2, the producer was first allowed to learn on a stable population to eliminate the initial transient, then the shocks
began. This illustrates the huge difference that initial knowledge about the consumer population, or, alternatively, the
ability to learn about the population before the experiment begins, can play in selecting a price schedule.

A persistent question in our research is identifying characteristics of different landscapes that make them easier
or harder to learn. For example, two-part tariff appears quite resistant to nonstationarity; the reason for this can be
seen by examining a topological depiction of the two-part tariff landscape, shown in Figure 5. The landscape consists
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Figure 5: One instance of a two-part tariff landscape, as seen from above. Notice the plateau at the top of the hill, and
the sharp drop to the northwest. Dots indicate the global optima from 100 different randomly generated landscapes.

of a single large hill with a large mostly-flat region at the top. The “northeast” face of this hill contains a sharp
dropoff. Optima are scattered on this plateau, all with similar profits. Once amoeba finds this plateau, it is easy to
move between optima without significant cost. As the consumer population changes, the exact angle and direction of
the dropoff changes, moving the plateau somewhat, but the landscape retains its overall structure. Superimposed on
the landscape shown in Figure 5 are the results of running amoeba on 100 randomly generated landscapes. As we can
see from this figure, optima tend to be located on or near the plateau, regardless of the particular instantiation of the
consumer population. This implies that it is easy for a producer to track consumer change using this schedule. Even
though the optima move, the landscape’s overall structure is stable enough that, once a producer finds the plateau at
the top, it is able to stay on it and easily track optima.

5 Dynamic Schedule Selection

In the previous sections, we have assumed that the choice of a pricing schedule is a once-and-for-all decision. However,
it may be more advantageous for a producer to instead change the schedule it is offering as information is acquired.
Initially, a simple schedule is learned, allowing a producer to accrue some profit quickly. As information about
consumer preferences is gathered, the producer eventually switches to a higher-precision schedule, thereby earning
higher profits. To get an intuitive idea of how this works, consider two-part tariff, a two parameter schedule, and linear
pricing, a one parameter schedule. As we saw in Section 3, linear pricing is easily learned, but two-part tariff yields
higher profit once learned. Now consider that linear pricing is simply two-part tariff with a subscription fee of zero.
This means that when a producer has learned a linear schedule, it has learned a slice of the landscape for two-part
tariff. It need not start over, since this solution is hopefully somewhat near to the solution in the higher-dimensional
space. In this section, we will make this idea more concrete and describe it in terms of a decision procedure that a
producer can engage in to select the optimal sequence of schedules to learn with.

5.1 Models and Model Families

Recall that a price schedule can be thought of as a model of consumer demand. In this context, we use the term ‘model’
to refer to a set of features of interest and an assignment of values to each of those features. If a consumer’s valuation
for each good in a bundle were known, it could be expressed as a nonlinear price schedule charging that consumer’s
valuation for each good. This is a model which contains

�
features, one for each article, and a numerical valuation

associated with each feature. Other price schedules are less precise, but still act as models of consumer demand.
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Pricing Schedule Number of Parameters Profit Precision

Pure Bundling 1 .875 0.76
Linear Pricing 1 .875 0.76
Two-part Tariff 2 1.037 0.90
Mixed Bundling 2 1.037 0.90
Block Pricing 3 1.094 0.95
Nonlinear Pricing � 1.152 1.0

Table 3: An example of precision for various pricing schedules for a consumer population with �  � ' ,
� �� , and� � drawn from ��� '& '&��'& '!("

To begin, we introduce some terminology to help with the decision problem of selecting price schedules. We refer
to the set of all price schedules of a given type as a model family. A model family is the set of all models that share
the same set of features; however, there is no binding of value assignments to these features in a model family. For
example, the family of linear pricing models consists of all models which use a single parameter to represent per-article
price. When a producer decides to use linear pricing, it is actually selecting a model family; it then searches through
the space of models in that family for the one that maximizes profit.

A model family can be characterized by its precision and its complexity. Precision indicates the fraction of single-
period profit that the best model in this family can capture. In other words, precision tells us how well we can hope
to do using a model from a given family. For example, we see from Table 1 that linear pricing yields a maximum
per-consumer, per-article profit of 0.875. If the total possible profit available is 1.75, then the family of linear pricing
models has a precision of

��� ���	�� � � ��+  '� �!�

. Precision for each family of price schedules is shown in Table 3.

Within a model family, we can also consider the accuracy of a model. A model’s accuracy indicates the fraction
of profit it extracts, relative to the optimal model in its family. If �� is the optimal model in a given family, then the
accuracy of a given model � is �

�����
�
���  � , where ����� 	 indicates the profit yielded by a model. For example, if we had

a linear pricing schedule which yielded a normalized profit of 0.6, its accuracy would be
��� ���� ���	�  '& 
��

.
While precision and accuracy serve to capture the static characteristics of a model and its family, they don’t say

anything about how easily a model family can be learned. To capture this, we must characterize a model family’s
complexity. We propose a PAC-learning style framework in which a model family ��� ’s complexity � ����� ��� �� 	
indicates the number of samples � needed to reach an accuracy of

 
with probability

�
. The more complex a model

family is, the longer a learner will need (on average) to attain a given accuracy. Of course, more complex model
families will likely have a higher precision, assuming that the behavior of the agent being modeled is actually complex.

The actual calculation of complexity will depend upon the specifics of the domain at interest. In some cases, either
PAC-learning estimates [12] or Monte Carlo estimation [14] can be applied. Unfortunately, our in our model neither
are applicable, since the trials (price-profit offerings) are not independent and some schedules yield higher reward than
others, rather than there being a set of schedules that are “equally bad.”

Empirically, we have found that a sigmoid function works well for approximating complexity, at least when applied
to pricing data. Since profit landscapes tend to be composed of large plateaus, dotted with hills that are easy to locate
and ascend initially, but which have multiple peaks, we would like to estimate complexity with a function that increases
steeply initially, then tails off as it approaches an asymptote. We have had good results when applying the following
formula as an estimate of the solution quality ! (an inverse of complexity) after � iterations:

(2) ! ���#" � �"	� �%$'& ) �)( ��* � ��+
� � & ,�-.0/21436587)9;:

where <%=?> is the dimensionality of the model family. An analytical proof of complexity is difficult to construct in
a domain-independent manner; our current work involves using landscape theory [10, 11] to characterize theoretical
properties of profit landscapes for this purpose. For the decision procedure described in the following section, it does
not particularly matter where a producer’s complexity estimate comes from, only that it has one. Of course, more
accurate estimates of complexity yield more optimal decisions, and therefore greater profit.

For example, a producer that knew it would have 20 iterations to interact with a consumer population could use
this formula to predict its performance using two-part tariff. Two-part tariff has a precision of 0.90, from Table 1, and
its dimensionality is 2. For example, assume that prices are within the range [0,100] and

�  � ' ' . Plugging in these
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numbers, we find that ! �������&���	��
� ��� ' 	� '& '!���

. So, in the 20th iteration, a producer using two-part tariff would

extract
� � ������ � � ��+  
����

of the available profit (in expectation). By summing this calculation over each iteration from 0
to 19, we get the total profit (per customer). A producer using 2-part tariff for 20 iterations can expect to earn a total
undiscounted profit of 12.09, or 52% of the available profit. Similarly, a producer using block pricing would have
! ����������� ��� ' 	  '� 
��� 

and a cumulative profit of 11.79, so two-part tariff would be a better model family. At 200
iterations, this has changed. Now two-part tariff has ! �������&���	��
� ��� ' ' 	& '& �!���

and cumulative profit of 171.7,
whereas block pricing has ! �"�#���$��� ��� ' ' 	  '� �!���

and a cumulative profit of 176.8. At this point, both schedules are
nearly learned, and block pricing’s higher precision begins to dominate.

5.2 Schedule Selection

Now that we have a way for a producer to compare the performance of different price schedules, we are almost ready
to propose a decision procedure for sequentially selecting schedules. However, there is one more detail to consider.
Our description of complexity tells how quickly a price schedule is learned when the producer is using that schedule.
Recall our previous example that, when linear pricing is offered, the producer also learns something about two-part
tariff. We must characterize the amount of information learned about more complex schedules from experimentation
with simpler ones. We accomplish this using a simple assumption: the inputs of a < -dimensional schedule are a subset
of the inputs of a < �$� -dimensional schedule. In other words, a simple schedule can be thought of as a more complex
schedule with some inputs held constant. As a producer is learning a lower-dimensional schedule, it can also update
its model of a more complex schedule. The question then becomes: how quickly is a higher-dimensional schedule
being learned, using the information acquired with a lower-dimensional schedule?

Our solution is to weight the number of data points seen by the more complex model by the ratio of dimensionalities
of the two models. That is, if a producer collected � data points from a model of dimensionality < , we would treat this
as �&%%�' � data points for the purposes of evaluating the complexity of a model of dimensionality < � �

.
If we let the total available surplus in a population equal ( , then the most that any model family � � can extract

is �)
+*��-,/.,0��1 �)� �&	324( . If we assume that the accuracy of models in a family fits an unskewed distribution so that, in
expectation, a randomly chosen model �65 in ��� has an accuracy of 0.5, and we know that �  � �)� � � � �	 	 is the
number of iterations needed to learn a model in �#" (from scratch) to within

 
with probability

�
, then, for any model

�  in �#" with an accuracy 7 , it will take � 5  ��� '�  7 � � 	 iterations to learn �  within
 

with probability
�

.
So, if a producer is to learn using a given model � � from family ��� for � iterations, it can expect to receive a

profit of:

8 �39  :�;<

��= � �
�%$'& ) �)( ��* �����#" 	?>@7 ),)A $ 7�) � �4� � 	?>B( 	 �

C � :�;<

�D= � �
�%$'& ) �)( �2* ���4�#" 	?>B(�	

(3)

If we assume that a producer will make this decision once and only once, then this reduces to the problem described
in Section 3, and the producer selects the schedule with the highest expected profit. If a producer is able to make
this decision more than once, it can break the � iterations into subintervals and use any algorithm for solving a
Markov decision process, such as dynamic programming or greedy search, to select the optimal series of schedules.
If the number of subintervals is large, the problem will be intractable using an optimal procedure such as dynamic
programming, and so heuristic methods will be necessary.

We implemented this procedure within a producer which continually reexamined its selection of price schedule
every iteration and used a greedy approach; that is, it continually selected the schedule it believed would yield the
greatest aggregate profit in the next iteration, given current information. As in previous sections, the producer used
amoeba to search the profit landscapes. A model of each price schedule was maintained, and all were updated in
parallel.

A graph comparing the performance of an adaptive producer to producers using a fixed price schedule is shown in
Figure 6. As we can see from the graph, the adaptive producer (denoted as ‘Adaptive Pricing’) is able to outperform
most of the static schedules for the majority of the experiment. The schedules used by the adaptive producer are
indicated at the top of the figure. It begins by trying a number of different schedules to collect data, and then settles on
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Figure 6: Learning curves comparing the performance of an adaptive pricing producer to producers using fixed sched-
ules. The � axis is the number of iterations (log scale), and the � axis indicates cumulative profit per article, per period,
per customer. (

�  � ' ) (averaged over 10 runs)

linear pricing for approximately 35 iterations. It then switches to two-part tariff for about 60 iterations before moving
on to block pricing. Finally, at around 300 iterations, it switches to nonlinear pricing. Since the graph averages
performance over a number of iterations, these boundaries are approximate; in different runs, the adaptive producer
changed its schedule at different times. This experiment illustrates how the producer uses the simpler schedules to
bootstrap itself into more complex schedules: linear pricing is two-part tariff with a fee of 0, and two-part tariff is
block pricing with a threshold of 1.

Also, we note that there is no static schedule that dominates adaptive pricing over the course of the entire experi-
ment. This implies that if a producer is unsure of how long it will have to interact with a population, adaptive pricing
is an effective approach. In addition, adaptive pricing performs particularly well in the ‘intermediate’ range of 10-200
iterations. In this range, learning is able to play an important role. If a producer has only a few iterations to interact
with a population, there is not enough time to learn much. (Recall the

�  � ' ' experiments shown in Figure 2, where
nonlinear pricing’s random guesses initially performed well.) Conversely, if a producer has a long time to interact with
a given population, nonlinear schedules can be learned exactly and long-run steady-state profits will dominate.

6 Discussion

In this paper, we have addressed the problem of a monopolist producer selecting a model of a population to learn
when it must account for the cost of learning. We have demonstrated how, in a single-decision scenario, learning costs
can outweigh optimal profits if there are a small number of periods of interaction. In general, moderately complex
schedules appear to perform well in terms of the exploitation/exploration tradeoff.

Moderately complex schedules, particularly two-part tariff, also perform well under moderate amounts of nonsta-
tionarity. The distribution of their optima allows a learning producer to adapt without too much unnecessary explo-
ration. As the frequency of shocks to the consumer population increases, it becomes more difficult for a producer to
adapt its model in time, and schedules which tend to learn the mean of the generating distribution are more effective
than adaptation.

Finally, we have illustrated how a producer can continually update its selection of schedules, estimating both the
information gained from past experiments with other schedules and the expected future performance of a schedule so
as to make an informed, decision-theoretic selection as to the model(s) that will maximize aggregate profit.

There are still a number of open questions regarding this model. As discussed above, we are working to extend
our estimates of model complexity using statistical characteristics of profit landscapes. Our model of nonstationarity
could also be extended to include an evolutionary approach in which consumer entry and exit is a function of pro-
ducer behavior. Finally, we plan to more closely reconcile this work with our research involving multiple learning
producers [3, 9] and characterize the selection of learning models in a competitive environment.
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