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Modelling Fertility: A Semi-Parametric Approach  

 

ABSTRACT 

 

This article presents a categorical model of fertility based on the statistical theory of the 

Generalised Linear Model (GLM). Focussing on the individual probability of giving birth to a 

child, we derive distributions which can be embedded in a GLM framework. A major advance 

of that methodology is the knowledge of the distribution of the random variable, which leads 

to a Maximum Likelihood estimation procedure. 

The approach takes into account the smooth shapes of parameter development over the age of 

the mother as well as over time. The estimation of this semi-parametric approach is done 

using the Local-Likelihood-method. The presented method provides stable results of the 

fertility, especially for smaller populations. This is illustrated by using a data set which 

consists of less than 100,000 inhabitants.  
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Modelling Fertility: A Semi-Parametric Approach  

 

INTRODUCTION  

Finding areas in today’s economic life which are not influenced crucially by topics from 

demography is hard, perhaps non-existent. This is why decision makers of economy, politics 

and administration have a considerable demand for demographic analysis.  This might be on 

aspects of pension systems, health care policy, unemployment problems or other fields of 

economic and social interest. 

Demographers are usually asked for quantitative analysis about certain compositions of a 

historical, recent or future population. Fertility, as one of the three major demographic 

components (Cannan 1895), has a remarkable impact on these types of questions. When it 

comes to the subject of long term structural changes, the analysis of childbearing behaviour 

plays a critical role in this context. Considering the impact function of demographic analysis 

for policy aspects, structural changes of fertility over time are often the focus in most cases. 

Due to the considerably strong influence of different social, economical or ethnical aspects on 

this demographic subject, the directions of explaining fertility patterns have become highly 

multi-dimensional. 

Since most of the extensive scientific literature deals with theoretical explanations of different 

fertility structures, there is, considering the extraordinary practical relevance of the problem, a 

remarkable gap between theory and the possibilities of practical applications. While 

researchers usually do not take into consideration the existing data restrictions of statistical 

sources, the interchange between these two parties is sometimes not as intensive as it should 

be. 

 



The goal of our contribution is therefore to set down a conceptual statistical model of the 

childbearing behaviour of a population, using generally available data about the mother’s age 

and over different census dates. Our approach restricts itself deliberately to data which are 

available in nearly all administration systems, at least in local administrative districts in 

developed countries. Less developed countries usually have administrative systems which can 

provide appropriate data for our approach although the aggregational level is usually higher. 

Aspects of changing behavioural patterns play a crucial role in many demographic analyses. 

We have therefore developed a model which derives information about fertility characteristics 

over time and particularly for smaller populations where random influences usually overlap 

inherent structural changes. 

This sort of demographic analysis is not new. There are huge numbers of theoretical as well as 

data driven contributions that claim to deal with exactly these problems.  

Usually, childbearing behaviour is modelled for a fixed census year over the age of the 

mother using a parametric function. Therefore, the age specific relative frequencies of a 

sample are estimated for every census date parametrically. In a second step the results of these 

estimations have to be analysed over time. Our contribution expands that approach in two 

directions. 

First, we develop a model which does not restrict itself on a heuristic formulation of relative 

fertility frequencies but provides an easy and consistent closed stochastic approach to describe 

probabilities of childbearing dependent on time and age of the mother for a given population. 

This approach is embedded into the theory of Generalised Linear Models (GLM). It is shown 

that a large number of contributions in recent demographic literature can be nested into that 

methodology. Further, a new functional description of the fertility curve is suggested.  

Secondly, using a varying-coefficient approach with simultaneous estimation over mother’s 

age and time we offset consistency problems which usually arise from the separation of these 

two dimensions. We choose the technique of Local Likelihood estimation. 



As a result of our efforts we develop an approach which: 

• models age specific fertility based on a theoretically derived distribution function 

• fulfils the requirements for these probabilities regarding development over time and 

over mother’s age 

• data requirements can be met by official statistics nearly everywhere, and 

• provides results that can used to describe structural changes in fertility patterns over 

time, especially for smaller populations which usually exhibit a large influence of 

random noise effects. 

This leads to the following structure of the article. In the next section we embed the fertility 

decision into a categorical stochastic model. This leads directly to the theory of GLM. The 

modelling of fertility rates is done parametrically over mother’s age and non-parametrically 

over time.  

The third section deals with the estimation method based on the Local Likelihood principle. 

We then apply the method on two data sets where the German population is used as an 

example of a big population (60 million, as we restrict ourselves to the area of west Germany 

before reunification).  The city of Bolzano in Italy is used as an example of a small population 

(less than 100,000 inhabitants). As modelling fertility is used in many cases as input for 

population projections, we address some problems in following this approach. Although 

fashionable for decades, we are suspicious of whether time series models are an appropriate 

method to deal with these problems. 

Finally, we conclude our findings and address some further research directions. In the 

appendix we deal with the mathematical derivation of the M.L. function. 

 

A CATEGORICAL MODEL OF FERTILITY 

We consider a woman of childbearing age at the beginning of a certain year. Let p be the 

probability of a woman giving birth to a child during that year. From a theoretical point of 



view, we exclude the possibility of the bearing of twins and also the fact of becoming 

pregnant twice a year. Both cases can be taken into account on the practical side via a rise of 

the probability.  

The situation can be described statistically introducing an indicator variable for every woman 

with the value 1 if the woman has a child during this year, and 0 otherwise; that means the 

indicator is a Bernoulli variable with probability p for the value 1 and (1-p) for the value 0. p 

depends upon time and a number of individual characteristics, which are denoted by the 

vector z: p(z).   

If there are N women of childbearing age, they can be numerated from 1 to N. In this way we 

can assign the vector jz  and the indicator jS  for each woman j, Nj ≤≤1  . Now we take a 

closer look at the vector ( )NSSS ,,, 21 K=S  of all indicator variables. Assuming 

independence between the fertility probabilities, the distribution of S can be written as 
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Note that every woman can be identified through her position in S which is essential in the 

classical categorical regression approach.  

In the next step one has to decide which characteristics should be used to determine a 

woman’s fertility behaviour. Contributions addressing this question are as numerous as 

manifold. Most of the scientific literature, as Leibenstein (1957), Becker (1960) or Easterlin, 

Pollak and Wachter (1980) to name just very few from a huge list, argue on microeconomic 

levels. Macroeconomic approaches also try to derive socioeconomic theories about this 

subject. Overviews regarding this question can be found in Robinson (1997), Schultz (1997) 

or Birdsall (1988). 

Despite intensive research in this area, only few of the findings are usable for an applied 

general analysis because in most cases, the need for empirical data on a micro level is very 



high. Due to the fact that fertility is such an essential decision in every woman’s life, the 

potential determinants come from a variety of very different aspects of life e.g., political, 

economical, social, ethnical or religious origin. Modelling these effects in an empirical 

framework requires sound information about the population or at least a sample on an 

individual level. This is only possible by means of timely and costly procedures of gathering 

data, only partly done by administrative statistical institutions. However, one of our goals was 

to provide a method based on readily available data from official statistics. We therefore do 

not take into account a broad information range for modelling but restrict ourselves to the age 

of the mother as the single determinant of fertility for a given census. Further we incorporate 

structural development over time. 

Of course, further information is available from the mentioned data sources. An example is 

marital status which undoubtedly plays a central role in the childbearing behaviour of women, 

all other determinants being equal. Another additional information pattern is the ethnicity of 

the mother which is also a major fertility differential between women. Information about 

whether the new born child is the first born baby or not is stored in some cases, which could 

also contribute to the explanation of the fertility phenomena.  

The incorporation of these aspects would lead to a remarkable improvement in the estimation 

quality (see e.g. Chandola, Coleman and Hiorns 1999). The method presented here would not 

be affected heavily, but the formulation of the underlying distribution functions would grow 

in complexity, namely in its numerical optimisation. Further, it would lead to an even more 

complicated notation in the following mathematical analysis. Therefore, these dimensions 

were not taken into account. It should be mentioned that this information basket must be 

available at an individual level in order to be implemented into the model. This should be the 

case in only very few official statistical administrations. 

Without considering this additional information, every woman of the same age i ( )ai ≤≤1  

has the same vector z and so the same probability of giving birth to a child, say ip . Note that a 



is an age where childbearing is no longer possible in biological terms. The age years 1 to 12 

are also biologically irrelevant. However, for easiness of notation, we start the index with age 

year 1. It is useful to summarise the women of equal age i and to introduce the scalar random 

variable *
iS  denoting the number of births by these women during the specified year. In doing 

so, we assume the number of women at age i, say Ni as given. 

This leads to a binomial distribution for *
iS  
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where ih gives the number of births of the women at age i. 

In the case of independence of fertility over age we get the joint probability of 
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The probability of (3) equals (1), although in the latter notation there is no longer a difference 

between women of the same age. For the statistical description of our fertility model the 

random vector *S  is easier to handle than S.  

Usually, we have a sample containing data over several years, denoted by the index 

t ( )Tt ≤≤1 . By additionally assuming independence over time, the joint distribution of 
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By assumption, this expression contains only factors with 0≠tiN . It describes the probability 

distribution of the observed births over age as well as over time completely. 

Without additional constraints on tip , M.L. estimation of (4) obviously leads to the relative 

frequencies titititi Nhfp /ˆ == .  



 

 

FITTING OVER AGE AND TIME 

Following this plausible approach we yet have not considered two aspects:  First, the 

probability of childbearing pti has a smooth development over the mother’s age i. For a 

homogenous population this function should be unimodal. Note that the function cannot be 

considered as distribution, although it is often named as fertility distribution over age. From a 

biological point of view, the theoretical probability of childbearing below a certain lower 

boundary age, say 14 years, as well as over an upper boundary age, say 50 years does not 

need to equal 0 but should be on a very low level and reaching 0 beyond biological borders of 

age. Secondly, the probability of childbearing pti should have a smooth development over 

time. Unlike the first case, there is no more a priori information available. Obviously, the last 

50 years of demographic analysis have seen a certain amount of structural changes in fertility 

behaviour. But a brief look at some of the fertility parameters over time of populations show 

here have been ups and downs in these demographic factors which makes it even harder to 

explain the directions of structural changes. Even more difficult, and in our opinion almost 

impossible, is modelling these movements parametrically in the hope of getting information 

about future development of the parameters. The figures 1a) to 1c) present the Total Fertility 

Rate (TFR) ∑
=

=
a

i
tif

1
 , the age mode, a young age fertility index (fertility for age younger than 

18 years, ∑
=

=
17

1
18

i
ti

y fFI ) and an old age fertility index (fertility for age higher than 39 years, 

∑
=

=
a

i
ti

o fFI
40

39 ) for the observation years 1953 to 1999 for Western Germany. Note that the 

mode has been estimated calculating a polynomial function of degree two over age with the 



highest relative frequency and both neighbouring values. The mode has been identified by 

setting the first order condition of the polynomial to 0. 

It is obvious that these parameters have a constant development over certain periods while in 

other periods they change the trend or the direction in an unpredictable way. These changes 

can be explained in the historic context but at the time of their occurrence they have been 

rather unpredictable. Note that these information patterns have a smooth behaviour over time 

due to the large size of the underlying population. To illustrate the requirement of smoothness 

over both dimensions age and time, figure 2 gives an idea how the functional form of fertility 

over age and time could look. The figure is based on data from west Germany, estimated with 

the technique described in the following section.  

 

The fertility approach in the context of Generalised Linear Models (GLM) 

A major problem in empirical demographic work is that both aspects mentioned are hard to 

find in empirical raw data for smaller populations. In this case the influence of random errors 

can bias demographic structures. Therefore, we need to apply two different ways to deal with 

that problem.   

While the development of childbearing over mother’s age can be described with different 

mathematical functional forms due to the demographic knowledge about the shape of the 

curve, this is not the case for the development over time. A very general way of formulating 

the problem would be in the GLM-context (e.g. Mc Cullagh 1980) 

 ( )( )tMtti bbiprgp ,..,, 1= , 

where g denotes the response function and ( )b,ipr  the predictor, which depends upon age i 

and a ( )M×1  parameter vector b, depending on time t. Usually the predictor is assumed to be 

linear, in our case we do not necessarily need linearity. 



Usually, one of the following response functions is used in the literature concerning GLM. 

The exponential function ( ) ( )xxg exp=  guaranteeing positive probabilities. A possible 

shortcoming could be seen in the fact that theoretically values above 1 are possible. The logit 

function ( ) ( )
( )xexp
xexpxg

+
=

1
 covers the advantage that only values can occur between 0 and 1. 

For our needs, both approaches can be used because the relative frequencies do not exceed 

0.2. Bearing in mind that the exponential function allows easier formal derivations, we 

proceed with this functional form. Note that in other demographic areas like household 

formation analysis, it might be necessary to focus on the logit function (see Haupt, Oberhofer 

and Reichsthaler 2003). However, the results of the estimation do not react very sensitively to 

the choice of the response function.  

 

Fitting over Age 

Considerably more important than the response function is the choice of an appropriate 

predictor. The typical development of age specific fertility, as shown in figure 1a, is similar to 

a slightly modified normal distribution. It is worth mentioning that the function is not 

necessarily symmetric, while the skewness could appear in both directions. One way of 

modelling these aspects parsimoniously would be the use of the exponential functional form 

for the response and a parametric spline function for the predictor: 
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where the dummy tid  is defined as 
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By reparameterising (5) one can interpret the resulting parameters in terms of demographic 

patterns: 
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As lower and upper boundary ages il and iu different age values can be defined. In 

industrialised countries it is plausible to set the lower age boundary at about 17 years and the 

higher age boundary at about 40 years. This leads to indicators for two demographic aspects 

which are of crucial interest for describing recent changes of fertility, namely the childbearing 

behaviour of very young and older women. While fertility underlies certain biological age 

restraints, there are strong social and ethnical tendencies which influence fertility at ages near 

these biological borders. Therefore these patterns claim special interest. Additionally, the 

mode of the fertility curve also serves as an indicator for fertility adjustment towards 

sociodemographic changes. Note that the four parameters ct1, ct2, ct3 and ct4 can 

unambiguously be transferred to bt1, bt2, bt3 and bt4. 

Undoubtedly our choice of the predictor function is one of a huge number of alternatives. 

Modelling fertility curves over the mother’s age has attracted the attention of many 

demographers. This has led to a huge number of different specifications. Beta and Gamma 

functions have been used (see e.g. Hoem et al. 1981, Thompson et al. 1989) as well as the 

Hadwiger function (Gilje 1969). More recent approaches use mixed models.  For example, 

mixed Hadwiger functions which lead to a more flexible form but incorporates a much higher 

number of parameters (Chandola et al. 1999).  

Interestingly, a number of methods described in the literature can be seen in the GLM context. 

Bloom (1982) applied the approach of a double-exponential function originally developed by 



Coale and McNeil (1972) to the context of fertility analysis. Although the observed variable 

was modelled in a rather different way – they used the cohort approach and focussed on the 

first birth of women. Knudsen et al. (1993) applied this functional form on fertility with an 

exponential function both as predictor and response. However, in most cases the 

considerations were made in a purely descriptive context.  

Given the mother’s age and observation year, we have full information about the distribution 

of the number of births, and can apply Maximum Likelihood estimation. In most cases GLS 

or OLS estimations are used without considering the true distribution of the random variables. 

It can be shown that under certain circumstances the results of the M.L. procedure can be seen 

as a Weighted Least Squares estimation, where the weights arise due to statistical reasons (see 

Oberhofer and Reichsthaler, 2000, 27). 

 

Fitting over Time 

While the distribution of fertility over the mother’s age is rather easy to handle 

demographically as well as statistically, the knowledge about and the handling of the 

evolution of fertility over time is more ambiguous. From the demographical side of the 

problem we have some ideas about the structural behaviour of certain parameters over time. 

One example is the suspicion that the functional mode over the mother’s age would move 

slightly towards a higher age. On the other hand, a brief look at figure 1 demonstrates that 

neither monotony nor direction of such a structural change remains constant over longer 

periods. Therefore it seems adequate to describe the movement of the parameters over time in 

a non parametric approach. Further, one needs to keep in mind the requirement of a smooth 

development of the parameters over time. Both aspects can be fulfilled using a smoothing 

procedure. To keep as much information as possible in the estimation procedure, this 

smoothing approach will not be applied in a second step of the estimation process, but will be 

carried out simultaneously using the local likelihood procedure (Tibshirani and Hastie 1987). 



This leads to a Likelihood function for a time window Wt  
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t = time index 

i = age index (from lower age to upper age boundary) 

N = number of women 

h = observed relative frequencies of births 

Wt= time window, { }wtswtsWt +≤≤−=  with wTtw −≤≤+1   

   t = midway of the window 

w = parameter of windows width 

 ( )( )otti biprgp ,= , where ( )4321 ,,, ttttt bbbbb =o . 

Minimisation of (6) leads to the M.L. estimators otb̂ . 

The estimated probabilities can be written as  ( )( )otti biprgp ˆ,ˆ = . 

The first order conditions of the M.L function to be used for the optimisation as well as the 

iteration steps can be found in the appendix. 

 

APPLICATION 

The Data Set 

In this analysis our aim is the estimation of age-specific fertility probabilities. We will 

illustrate our findings on the basis of a data set for the city of Bolzano in South Tyrol (Italy) 

from 1990 to 2000. This data set can clearly be described as a small region with less than 

100,000 inhabitants. The data are recorded for women of single ages from 14 to50 years. 

The data are obtained from the essentially complete reporting of births. Nevertheless, from a 

statistical point the number of births has to be viewed as a sample. In our model we assumed 

the probability of bearing a child for every woman to be p, this means the total number of 



births of all women is stochastic (see e.g. Brillinger 1986:697). This is also true if the number 

of women in the group is sufficiently high or all women of the region are incorporated in the 

observation. Thompson et al. (1989) wrote: “Our data contain full age-specific detail and are 

obtained from the essentially complete reporting of births in the Vital Statistics Registration 

System, so there is no sampling error”. This statement is misleading, as argued above. We 

prefer to follow the view of Keyfitz (1966) who suggests that “a census may be regarded as a 

sample drawn in time from all the times in which substantially the same conditions 

prevailed”. 

Note that we argue in a context of period specific age profiles instead of cohort specific ones. 

This is due to the fact that one needs a sufficient long observation record of at least 50 years 

to derive 10 to 15 cohorts with a closed fertility cycle. This data requirement can be fulfilled 

by some administrative statistical institutions, but an even greater number do not have that 

long range of data. Accordingly, we use period specific fertility rates. Further, our age 

specific data are defined as age of the mother at childbearing. This is a slightly different 

conceptual approach than the widely used method of using the age-group of the mother. 

To illustrate the problematic data situation of a small population, we compare it with fertility 

data from west Germany which is a large population with about 60 million people. Both data 

sets come from the official Statistical Institutions. As can be seen in figure 3, the data from 

Bolzano presents a more irregular schedule which is caused by the small age specific groups 

and underlines the sample character of the data. 

Comparing both fertility curves over time, one can derive a bundle of demographic 

parameters which become more unstable the smaller the relevant sample pool is (see figures 

4a-d). This becomes obvious when the shape of the parameter curves from the Bolzano data 

are compared with the German ones. Besides the visual analysis we calculate the relative 



mean deviation of the variables with its lagged values to derive a measure of irregularity of 

the curves, 
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While the tfr curve (figure 4a) for Bolzano provides a RMD of 0.059, the German one is 

0.024. 

This is similar to the picture with the age mode (figure 4b), where the Bolzano curve with an 

RMD of 0.083 is about eight times higher than the German RMD value of 0.010. It is the 

same with the Old Age ( oFI40 , figure 4c) and Young Age Fertility Indexes ( yFI18 , figure 4d), 

where Bolzano has the values 0.253 for the RMD of oFI40  and 0.463 for yFI18 whereas the 

German values are significantly lower with 0.046 for the oFI40  and 0.0544 for the yFI18 . 

The structural development of parameters obviously gets more and more biased by random 

influences the smaller the population is. This could be seen clearly when comparing both 

“fertility mountains” over age and time for Germany (big population) and Bolzano (small 

population). While the first one contains a smooth shape over both dimensions (see figure 5a), 

the latter has sharp ups and downs which are a clear contradiction against demographic 

aspects (see figure 5b). 

 

Results 

Due to the smoothing procedure, the results do not cover the whole observation period, but 

are cut off on both borders of the time series. The raw data set for Bolzano originally contains 

data from 1990 to 2001 while the range of the estimation is from 1992 to 1999. In particular, 

missing estimation results for the most recent years could be unsatisfying in certain 

circumstances. This could be remedied by various estimation techniques which are not 

presented here. As a result of the estimation procedure, the development of the parameters 

over time is much smoother than the original values, as noted in figures 4a-d. 



As mentioned before, the data of the smaller population of Bolzano is more influenced by 

random effects than a larger sample like Germany. This also means that the estimation and 

smoothing procedure of our approach has a stronger effect on the Bolzano data than on the 

German data where the estimation was also applied to compare the smoothing effects. 

To demonstrate these effects we provide some measures of fit which have to be interpreted in 

a rather uncommon direction. While the Mean Absolute Percentage Error (MAPE) and the 

Mean Algebraic Percentage Error (MALPE) (see e.g. Smith 1987) are commonly used to 

describe the goodness of fit of an estimation to raw data, the results of both tests can also be 

interpreted in terms of intensity of the smoothing process of our approach.  

Both measures presented in figure 6 show clear evidence that the smoothing of the Bolzano 

data is much stronger (the mean MAPE value over the nine observation years is 14.3% 

whereas the German mean MAPE is 5.3%).  There is no bias in the smoothing procedure 

since the MALPE values move around the zero line in both cases. 

Additionally, we introduce a measure of the degree of smoothness of a three dimensional 

function. We therefore calculate the Mean Absolute Percentage Smoothness Index (MAPSI) 

between sjp  and sjp~  , ai1 ≤≤ , Tt1 ≤≤ . We approximate in the window 

{ }11,11 +≤≤−+≤≤− ijitst  psj by a quadratic function sjjs 3210 αααα +++  using least 

squares. Denoting the approximation by sjp~  the sum of squared residuals 
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sjsj pp can be regarded as a measure of relative smoothness in the point (t, i). 

This seems to be an adequate measure of smoothness over both dimensions. To analyse the 

smoothing effect of the procedure, we need to calculate the Smoothing Quotient 

dataraw

estimation

MAPSI
MAPSISQ −=1 . 

 



In the case of Germany, for the years 1990 to 1996 SQGER has the value of 0.43 while in 

Bolzano for the period 1992 to 1998 the parameter is 0.89 (see table 1). This indicates that the 

smoothing procedure has a much stronger impact on the Bolzano data than on the German 

data. The resulting fertility mountain does not contain any irregularities as seen in figure 7. 

A comparison of the estimated (and smoothed) mountains (figure 7a and 7b) with the 

mountains of the raw data (figure 5a and 5b) gives an idea of the impact of the smoothing 

intensity to be measured with the SQ parameter.  

The method derives theoretically consistent fertility parameters over time and mother’s age, 

also for smaller populations where random influences become stronger than the underlying 

structural change patterns. The presented estimation method allows analysis of the change of 

fertility parameters over time without losing too much information from the raw data.  This 

would be the case if the estimation procedure was applied without considering distributional 

information or simultaneous estimation over both dimensions. 

All four demographic parameters - the total fertility rate, the mode of the fertility function, the 

development of old age as well as young age childbearing – need to be interpreted cautiously 

to derive sound statements about underlying changes of biological, social, political, ethical or 

economic origin. This can only be done by reducing original data from samples to its 

structures and filtering random noise out. In our opinion the presented method can claim those 

requirements. 

 

 

TOWARDS PROJECTIONS 

The formulation of a fertility model usually leads to a statement about future development of 

childbearing behaviour. Many authors use the analysis of historic aspects as a starting point 

for demographic projections. 



Since the mid eighties, the scientific literature concerning this subject has been dominated by 

models arising from the time series approach of Box and Jenkins (1970).  

In our opinion, this is the reason why most demographic contributions about modelling 

fertility prefer time series instead of non-parametric smoothing methods to model structural 

changes over time. The results of our method are demographic parameters about fertility 

which are consistent over the mother’s age as well as over time. In particular, the last property 

can identify them as interesting input for further time series projection approaches. 

Despite widespread use, the success of this complex methodology is doubtful (Stoto 1983, 

Smith 1987); moreover, resulting confidence intervals are disappointingly large which 

diminishes the meaningfulness of the models. As Lee (1993:187) points out,   “...many of 

these methods…are ingenious and there has been some isolated success. On the whole, 

however, the state of our knowledge and understanding in this important area is discouraging, 

despite the substantial resources that have been devoted to it” 

Approaches primarily using time series analysis supply accurate estimations of the 

demographic rates in between the sample survey, but no valid extrapolations could be made 

for mid-term periods of about 10 to 20 years. This arises from the fact that time series models 

can produce a good fit for any function, at least if they are heavily parameterised. However, 

they have no ability to find demographic causalities, which are fundamental for an appropriate 

statement about future development. An interesting example is the fertility in east Germany 

which has diminished by about a half over about five years since the German reunification.   

Therefore, it seems necessary that population projections should be based on social theories, 

linking social, cultural and economic factors to demographic behaviour (Keilman 1990). This 

means that the “objective” statistical data-driven approach is repelled by a more “subjective” 

but causality driven one.  

Moreover, the opinion in literature concerning the use of socioeconomic knowledge in 

projections is thoroughly ambiguous. While Keyfitz (1981) found positive influences on the 



accuracy of demographic predictions, other research came to contrasting results (Alho 1990, 

Alho and Spencer 1990), which are caused by the “assumption drag” (Ascher 1985); 

assumptions that are too conservative(Ahlburg and Land 1992). Other findings emphasise that 

additional factors should not be too restrictive for the development of the time series model 

(Alho 1997). 

 

 



CONCLUDING REMARKS 

Describing age-specific fertility has attracted the attention of huge numbers of demographers 

over the last decades. Despite its inherent interdisciplinarity, this topic seems to contain a 

remarkable gap between demographic theory and statistical methodology.  

In this broad field of diverging aspects our contribution tries to offer an easy model of fertility 

based on statistical as well as demographic theory. Accordingly, we generated a micro 

analytically founded model of fertility, obtaining the number of births in a population, given 

the age of the mother, as a Bernoulli random variable. This is a clear deviation from the 

usually heuristic analysis of fertility patterns. 

Due to the requirement of developing an approach using only data available from official 

statistics, only three inherently given information have been used – gender, age and 

observation time. As the distribution of the childbearing probability is known, the model can 

be nested into the widely known family of GLM.  Subsequently, the age specific fertility has 

been modelled parametrically. A parsimoniously parameterised function has been used. Each 

parameter can be transformed unambiguously into a demographic attribute which makes the 

approach much more comprehensive.  

Instead of choosing the response and the predictor function due to purely mechanistic and 

statistical aspects which is more or less usual for GLM approaches, we defined both functions 

according to demographic facts. 

To derive appropriate smoothness over both dimensions age and time, we specified a Local 

Likelihood function, which is a nonparametric procedure over time. The simultaneous 

estimation over both dimensions contains much more information than the ordinary sequential 

procedure. 

The result of the approach was shown with a data set for the Italian city of Bolzano with less 

than 100,000 people serves as an example of a smaller population. As a result of our 

estimation, we got a smooth fertility mountain where random effects were filtered but 



structural changes of fertility behaviour remain in the data set.  The presented approach has 

the major advantage that the distribution of the number of births, given the mother’s age, is 

known. Therefore we do not need to estimate the parameters with an ad hoc OLS or GLS 

method, but can use the much more sophisticated M.L. technique. This leads to an additional 

information profit compared to ordinary approaches. 

The crucial improvement of the presented approach lies in the fact that we do not argue with 

heuristic facts, but define a plausible, statistically and demographically well founded and 

consistent model. It should be noted that with this approach not all information available from 

administrative statistical institution data sources was exploited. In most cases there is 

additional information available like marital status or ethnic origin, which undoubtedly has an 

impact on a woman’s childbearing behaviour.  

Our model can be extended in these dimensions. While the estimation procedure would not be 

affected heavily by such an extension, the distribution of the random variable would become 

far more complex. Additionally, one needs to answer the question of modelling the inferences 

between different determinants such as age with marital status, ethnic origin with time and so 

on.  A lot of work remains in answering these questions. In our opinion, the presented 

approach is an interesting alternative to the usual methods and can serve as an initial point to 

deal with new, demanding demographic as well as statistical questions. 

 



APPENDIX: THE MAXIMUM LIKELIHOOD ESTIMATION 

The first order conditions of  the log likelihood for a fixed t 
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The Iterations finishes if the difference between two following estimations  ( ) ( )ll bb −+1  is 

sufficiently small. 

As mentioned before, this approach delivers no estimators for qt ,...,1=  and .,...,TqTt −=  

One could use methods to derive values for these data borders, but we do not follow this path 

here. 
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TABLE 1. MEAN ABSOLUTE PERCENTAGE SMOOTHING INDEX (MAPSI) FOR 
WESTERN GERMANY AND BOLZANO: 1990-1998. 

 Western Germany Bolzano 
 MAPSIa,b in %  MAPSIa,b in %  

Year Raw Data Fitted Data SQb Raw Data Fitted Data SQb 

1990 3.26 1.37 0.58    
1991 1.75 1.23 0.30    
1992 1.56 1.27 0.19 17.34 1.87 0.89 
1993 2.13 0.94 0.56 14.59 1.72 0.88 
1994 1.94 1.05 0.46 14.02 1.28 0.91 
1995 1.95 1.32 0.32 18.99 1.61 0.92 
1996 1.98 1.05 0.47 14.57 1.38 0.91 
1997    14.21 2.07 0.86 
1998    17.62 2.03 0.88 

Mean Value over observation period of six Years 
 2.09 1.18 0.43 15.87 1.71 0.89 

a Calculated for the ages 15 to 43. 
b See text for detailed information about the indexes. 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

FIGURE 1a. TOTAL FERTILITY RATE FOR WEST GERMANY; 1954 TO 1999
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FIGURE 1b. MODE OF MOTHERS' AGE FOR WEST GERMANY; 1954 to 1999
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FIGURE 1c. YOUNG AGE AND OLD AGE FERTILITY INDEX 
FOR WEST GERMANY; 1954 TO 1999
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FIGURE 2. SMOOTH FERTILITY MOUNTAIN OVER WOMEN'S AGE AND TIME; 
EXAMPLE BASED ON DATA FOR WEST GERMANY 
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FIGURE 3. FERTILITY FUNCTION OVER MOTHERS' AGE 
FOR WEST GERMANY AND BOLZANO; 1999
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FIGURE 4a. TOTAL FERTILITY RATE FOR WEST GERMANY 
AND BOLZANO; 1990 TO 2001
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FIGURE 4b. MODE OVER MOTHERS' AGE FOR WEST GERMANY AND 
BOLZANO; 1990 TO 2001
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FIGURE 4c. OLD AGE FERTILITY INDEX FOR WEST GERMANY 
AND BOLZANO; 1990 TO 2001
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FIGURE 4d. YOUNG AGE FERTILITY INDEX FOR WEST GERMANY AND 
BOLZANO; 1990 TO 2001
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FIGURE 5a. FERTILITY MOUNTAIN OVER WOMEN'S AGE AND TIME 
FOR WEST GERMANY; 1990 TO 1999.
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FIGURE 5b. FERTILITY MOUNTAIN OVER WOMEN'S AGE AND TIME 
FOR BOLZANO;  1990 TO 2001.
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FIGURE 6. GOODNESS OF FIT MEASURES FOR WEST GERMANY 
AND BOLZANO; 1988 TO 1999. 
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FIGURE 7a. SMOOTHED FERTILITY MOUNTAIN OVER WOMEN'S AGE
 AND TIME FOR WEST GERMANY; 1990 TO 1997.
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FIGURE 7b. SMOOTHED FERTILITY MOUNTAIN OVER WOMEN'S AGE 
AND TIME FOR BOLZANO;  1991 TO 1999.
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