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Abstract

The dynamics of most prominent endogenous growth models are well understood. One notable

exception is the Jones (1995) R&D growth model. This paper provides an analytical treatment of

this model’s transitional dynamics. It is shown that, given constant returns to labor in R&D (as

conventionally assumed in R&D growth models), a unique trajectory converging to the balanced

growth path exists. The equilibrium growth path can be monotonic or oscillatory. Moreover, ap-

plying a theorem from Arnold (2004), this result can be used to characterize the dynamic behavior

of the multi-country open-economy version of the model.
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1 Introduction

New growth theory has greatly improved our understanding of the causes of technical change and of

its consequences for economic growth. Three direct extensions of the Solow (1956) model are among

the most important ones: Lucas’ (1988) human capital model, Romer’s (1990) model of endogenous

technological change, and Jones’ (1995) R&D growth model with diminishing returns to knowledge

in R&D. While Lucas (1988) emphasizes the role of human capital accumulation and human capital

externalities in the growth process, Romer (1990) focuses on innovation via R&D. Jones (1995) makes

the Romer approach compatible with the observations that rising employment in R&D in the postwar

period did not cause an acceleration of economic growth and that the influence of policy measures on

long-term growth appears to be weaker than the Romer model indicates.

From a technical point of view, a common feature of these and many other growth models is that the

original papers focused on the models’ balanced-growth path, and, later on, attention turned to the

models’ dynamics. Caballé and Santos (1993), Faig (1995), Barro and Sala-i-Martin (1995, Subsection

5.2.2), and Arnold (1997) showed that the equilibrium growth path is uniquely determined in the

Lucas (1988) model without externalities emanating from human capital.1 Benhabib and Perli (1994)

demonstrated that equilibrium indeterminacy may arise if, as in Lucas (1988), one reintroduces human

capital externalities. As for the Romer (1990) model, Arnold (2000a) proved the market equilibrium to

be a saddle point. Exploiting a close analogy to the Lucas (1988) model without externalities, Arnold

(2000b) showed that the optimal growth path is also uniquely determined.2 By contrast, the dynamics

of the Jones (1995) model are not yet fully understood. Jones (1995, Section V, 2002) considers the

dynamics for a given allocation of factors of production. A complete analysis is much more demanding

because the system of differential equations one has to analyze is of order four so that one has to

find the roots’ signs for a quartic polynomial. Eicher and Turnovsky (2001) provide some analytical

and simulation results for the optimal growth path. As for the market equilibrium with optimizing

behavior, Williams (1995) and Steger (2003) analyze calibrated versions of an extended model with a

focus on the speed of convergence.3 Analytical proof that the equilibrium growth path in the Jones

(1995) model is uniquely determined is missing, however. The purpose of this paper is to fill this

1Mulligan and Sala-i-Martin (1993), Bond, Wang, and Yip (1996), Mino (1996), and Ladrón-de-Guevara, Ortigueira,

and Santos (1997) consider the model dynamics with physical capital as an input in human capital accumulation.

2Benhabib, Perli, and Xie (1994) demonstrated that the equilibrium may become indeterminate if one adds com-

plementarities between intermediate goods to the Romer (1990) model. Using numerical examples, Asada, Nowak, and

Semmler (1998) demonstrated that other kinds of dynamic behavior can than arise.

3Eicher and Turnovsky (2001) make less restrictive assumptions about the production elasticities than Jones (1995).

Steger (2003) also allows for physical capital in the R&D technology.
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gap in the literature. In accordance the bulk of new growth theory (see, for example, Romer, 1990,

and Grossman and Helpman, 1991), we assume constant returns to labor in R&D. We show that

there is, then (without any further parameter restrictions), a unique growth path converging to the

balanced growth path described by Jones (1995). This equilibrium growth path may be monotonic

or oscillatory. Applying a theorem from Arnold (2004), this finding can be adapted to the multi-

country open economy version of the model with international trade, financial capital mobility, and

international knowledge spillovers.

Section 2 briefly recapitulates the assumptions of the Jones (1995) model. Section 3 describes the

steady state. In Section 4, we prove that a unique equilibrium growth path exists. Section 5 concludes.

2 Model

Consider a closed economy in continuous time populated by a continuum of mass one of identical

households. The number of household members at time t, L(t), is initially positive (L(0) > 0) and

subsequently grows at a rate L̇(t)/L(t) = n (> 0). Each household member inelastically supplies

one unit of labor and receives the same amount of consumption, c(t). The households maximize

the intertemporal utility function
∫∞
t e−ρ(τ−t)[c(τ)1−σ − 1]/(1− σ)dτ , where ρ (> 0) is the subjective

discount rate, and σ (≥ 0) is the inverse of the intertemporal elasticity of substitution in consumption.4

There is a single final good, which is used for consumption or investment. Capital does not depreciate.

So K̇ = Y − Lc, where Y is the aggregate production of the homogeneous final good and K is the

capital stock. Output is produced using labor LY and a set of intermediates j, which are obtained

one-to-one from capital. The production function is Y = L1−α
Y

∫ A
0 x(j)αdj, where x(j) is input of

intermediate j and A is the “number” of available intermediates. α is in the interval (0, 1), and

1/(1−α) is the elasticity of substitution for any pair of intermediates. R&D enables firms to produce

new intermediates. The R&D technology is Ȧ = A1−χLA/a (a > 0, χ > 0), where LA is employment

in R&D. Notice that, in accordance with the bulk of new growth theory, we assume that the returns

to labor in R&D are constant (see, for example, Romer, 1990, and Grossman and Helpman, 1991).

Jones (1995, equations (4) and (5), p. 765) takes this R&D technology as the starting point for his

analysis, but then allows for a non-unitary production elasticity. 1 − χ captures the externalities

emanating from R&D. We allow for “fishing-out” effects, i.e. χ > 1 (see the discussion in Jones, 1995,

p. 765). Innovators are protected from imitation by infinitely-lived patents, so there is monopolistic

4Cf. Jones (1995, eqn. (A.12), p. 782). Alternatively, one could take the sum of the household members’ utilities,

so that the factor ent would appear in the utility function. It is understood that instantaneous utility is logarithmic if

σ = 1. In what follows, we suppress the time argument, t, wherever this does not cause confusion.
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competition in the intermediate-goods sector. The other markets (for labor, final goods, and financial

capital) are perfectly competitive. There is free entry into R&D. All markets clear.5

3 Steady state

In this section, we describe the economy’s steady state. Let the homogeneous final good be the nu-

meraire. Utility maximization yields the Ramsey rule ċ/c = (r− ρ− n)/σ. Profit maximization in the

final goods sector yields the inverse demand curves w = (1−α)Y/LY and p(j) = αL1−α
Y x(j)α−1, where

r is the interest rate, w is the wage rate, and p(j) is the price of intermediate j. Intermediate goods

producers maximize π(j) ≡ [p(j)− r]x(j) given the final goods sector’s demand for the intermediates.

The monopoly price is the markup price p(j) = r/α ≡ p (j ∈ [0, A]). Letting x denote the corre-

sponding demand, monopoly profits equal π(j) = (1 − α)px ≡ π. Because of symmetry with respect

to the different intermediates, we have K = Ax, Y = Kα(ALY )1−α, and w = (1 − α)A[K/(ALY )]α.

Let z ≡ Y/K and γ ≡ cL/K. From zero profits in the final goods sector (Apx = Y − wLY = αY ), it

follows that r = αp = α2Y/(Ax) = α2Y/K = α2z. Moreover, K̇/K = Y/K − Lc/K = z − γ. Using

the Ramsey rule, it follows that

γ̇ = γ

[
−
(

1− α2

σ

)
z + γ +

σ − 1
σ

n− ρ

σ

]
. (1)

Monopoly profits equal π = (1 − α)px = α(1 − α)Y/A. Let v(t) ≡
∫∞
t e−

∫ τ

t
r(θ)dθπ(τ)dτ denote

the value of an innovation, ν ≡ (1 − α)Y/(Av), and l ≡ L/(aAχ). Free entry into R&D implies

wLA = vA1−χLA/a. Together with the final goods sector’s demand for labor (w = (1− α)Y/LY ) and

the labor market clearing condition (L = LY + LA), this can be used to rewrite the R&D technology

as Ȧ/A = (L−LY )/(aAχ) = L/(aAχ)− (1−α)Y/(waAχ) = L/(aAχ)− (1−α)Y/(Av) = l−ν. Hence,

l̇ = l[−χ(l − ν) + n]. (2)

Differentiating v(t) with respect to time gives v̇/v = r−π/v = r−α(1−α)Y/(Av) = α2z−αν. From

the final goods sector’s production function and demand for labor, z ≡ Y/K = [(ALY )/K]1−α =

[z(1 − α)A/w]1−α. Solving for z and using the condition for free entry into R&D, it follows that

5The model is identical to Romer’s (1990) except for two modifications: Romer assumes that population is constant

(n = 0) and that the R&D technology displays constant returns to existing knowledge (χ = 0). The consequences of these

seemingly harmless differences are striking. In Romer’s model, everything that has an impact on R&D employment, LA,

also has an impact on the rate of technical change, Ȧ/A = LA/a. In Jones’ model, if a constant fraction of the labor force

is employed in R&D (L̇A/LA = L̇/L = n), the rate of technical change converges to the exogenous level Ȧ/A = n/χ.
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z = [(1 − α)A/w](1−α)/α = [(1 − α)aAχ/v](1−α)/α. Differentiating with respect to time shows ż/z =

[(1− α)/α](χȦ/A− v̇/v). Inserting Ȧ/A = l − ν and v̇/v = α2z − αν yields

ż =
1− α

α
z[χl − (χ− α)ν − α2z]. (3)

Finally, we derive an equation for ν̇/ν = Ẏ /Y −Ȧ/A− v̇/v. From the definition of z and K̇/K = z−γ,

it follows that Ẏ /Y = ż/z + z − γ. Together with (3), Ȧ/A = l− ν, and v̇/v = α2z − αν, one obtains

ν̇ = ν

[
−
(

1− 1− α

α
χ

)
l +

(
2− 1− α

α
χ

)
ν + (1− α)z − γ

]
. (4)

Equations (1)-(4) comprise a system of four autonomous differential equations in x ≡ (l, ν, z, γ)′.

x∗ ≡ (l∗, ν∗, z∗, γ∗)′ is a steady state of the system if ẋ = 0, x = x∗ solves these equations, x∗ > 0, the

utility integral is bounded, and the transversality condition for the households’ utility maximization

problem is satisfied.

Theorem 1: A (unique) steady state exists if, and only if,

∆ ≡ σ − 1
χ

n + ρ > 0. (5)

Proof:6 Using the definition of ∆ in (5), we have, from(1)-(4),

l∗ =
1
α

(
∆ +

1 + α

χ
n

)
(6)

ν∗ =
1
α

(
∆ +

1
χ

n

)
(7)

z∗ =
1
α2

(
∆ +

1 + χ

χ
n

)
(8)

γ∗ =
1
α2

[
∆ + (1− α2)

1 + χ

χ
n

]
. (9)

Clearly, (5) ensures x∗ > 0. The utility integral is bounded if (σ − 1)ċ/c + ρ > 0. In a steady state

γ ≡ cL/K, z ≡ Y/K = (ALY /K)1−α, LY /L, and l ≡ L/(aAχ) are constant, so ċ/c = K̇/K − n =

Ȧ/A = n/χ, and (5) is necessary and sufficient for the utility integral to be bounded. It is also necessary

and sufficient for the transversality condition for the households’ utility maximization to hold.

6Derivations of many of the formulae reported subsequently are delegated to a technical appendix.
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4 Dynamics

In this section, we show that a unique growth path converges to the steady state described in the

previous section. To do so, we linearize system (1)-(4) about the steady state:
l̇

ν̇

ż

γ̇

 =



−χl∗ χl∗ 0 0

−
(
1− 1−α

α χ
)

ν∗
(
2− 1−α

α χ
)

ν∗ (1− α)ν∗ −ν∗

1−α
α χz∗

(
1− α− 1−α

α χ
)

z∗ −α(1− α)z∗ 0

0 0 −
(
1− α2

σ

)
γ∗ γ∗




l − l∗

ν − ν∗

z − z∗

γ − γ∗

 (10)

or ẋ = J(x−x∗), where J is the Jacobian in (10). The eigenvalues q satisfy the characteristic equation

f(q) ≡ |J− qI| = 0, where I is the 4× 4 identity matrix. Let δi (i = 0, . . . , 3) denote the coefficient of

qi in the characteristic equation: f(q) = δ0 + δ1q + δ2q
2 + δ3q

3 + q4.7 Developing the determinant in

the characteristic equation with respect to the fourth row gives:

δ0 = (1− α)
α2

σ
χl∗ν∗z∗γ∗ (11)

δ1 = α(1− α)
(

1 +
α

σ

)
ν∗z∗γ∗

−χ

[
(1− α)l∗ν∗z∗ − l∗ν∗γ∗ + α(1− α)l∗z∗γ∗ − α(1− α)

(
1− 1

σ

)
ν∗z∗γ∗

]
(12)

δ2 = 2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗

−χ

[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)

1− α

α
ν∗z∗ +

1− α

α
ν∗γ∗

]
(13)

δ3 = −2ν∗ + α(1− α)z∗ − γ∗ + χ

(
l∗ +

1− α

α
ν∗
)

. (14)

Letting q1, . . . , q4 denote the characteristic roots, the characteristic equation can also be written as

f(q) =
∏4

i=1(qi − q). This yields Vièta’s formulae: δ0 = q1q2q3q4, δ1 = −(q1q2q3 + q1q2q4 + q1q3q4 +

q2q3q4), δ2 = q1q2 + q1q3 + q1q4 + q2q3 + q2q4 + q3q4, and δ3 = −(q1 + q2 + q3 + q4). Our main result is:

Theorem 2: If a steady state exists, then there exists a unique path converging to the steady state.

The proof makes use of three lemmas, which establish that the stable manifold is two-dimensional.

The initial conditions determine the starting point in this stable manifold.

Lemma 1: The number of negative eigenvalues is even.

7As is well known, δ0 = DetJ and δ3 = −TrJ.
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Proof: Vièta’s formulae imply that δ0 < 0 if the number of negative eigenvalues is odd.8 However, by

(11), δ0 > 0.

Remark: According to Lemma 1, the number of negative eigenvalues is zero (complete instability),

two (determinacy), or four (indeterminacy). Our next task is to rule out instability.9 From the Vièta

formulae, δ1 < 0 and δ2 > 0 if all eigenvalues are positive.10 So if either δ1 > 0 or δ2 < 0, instability

can be ruled out. However, neither δ1 > 0 nor δ2 < 0 holds true generally. To see this, consider the

following two examples:

Example 1: Let α = 0.2, σ = 0.5, χ = 0.75, n = 0.03, and ρ = 0.03. Condition (5) (0.01 > 0) is

satisfied. The characteristic polynomial reads f(q) = 0.0134−0.0160q−0.5447q2−1.1425q3 + q4, with

δ1 = −0.0160 < 0.

Example 2: Let α = 0.33, σ = 1, χ = 0.1, n = 0.015, and ρ = 0.02. Condition (5) (0.02 > 0) is

satisfied. The characteristic polynomial is f(q) = 0.0065 + 0.3700q + 0.1109q2 − 2.0174q3 + q4, with

δ2 = 0.1109 > 0.

So it is not possible to prove in general either that δ1 > 0 or that δ2 < 0. Fortunately, there is an

escape route: we can show that for each set of parameter values either δ1 > 0 or δ2 < 0.

Lemma 2: The number of negative eigenvalues is not equal to zero.

Proof: We assume that δ1 < 0 and δ2 > 0 and produce a contradiction. The first term in (12) is

positive. So δ1 < 0 requires that the term in square brackets is positive too, and

χ >
α(1− α)

(
1 + α

σ

)
ν∗z∗γ∗

(1− α)l∗ν∗z∗ − l∗ν∗γ∗ + α(1− α)l∗z∗γ∗ − α(1− α)
(
1− 1

σ

)
ν∗z∗γ∗

. (15)

From (6)-(9), the term in square brackets in (13) is positive. So δ2 > 0 implies

χ <
2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗

l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)1−α
α ν∗z∗ + 1−α

α ν∗γ∗
. (16)

8This makes use of the fact that the product of two eigenvalues, qj and qk, which form complex conjugates (qj/k = β±ηi

with β < 0) is positive (qjqk = β2 + η2 > 0). We refer to both negative real eigenvalues and complex eigenvalues with

negative real part as negative eigenvalues, and analogously for positive eigenvalues.

9In their analysis of the optimal growth path, Eicher and Turnovsky (2001, fn. 12, p. 95) state that they could not

find a general condition to rule out this case. They do state simple sufficient conditions: σ ≥ 1 and α ≤ 1/(1+ σ) (in our

notation).

10Since the sum of two negative eigenvalues, qj and qk, which form complex conjugates (qj/k = β ± ηi with β < 0) is

negative (qj + qk = 2β < 0).
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In order for these inequalities to hold simultaneously, the expression on the right-hand side of (15)

must be less than the expression on the right-hand side of (16). This condition can be written as

0 < −α2

σ

[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ + (1− α2)ν∗z∗ − 1 + α

α
ν∗γ∗ + (1− α)z∗γ∗

]
−
[
−3l∗ν∗ + 2α(1− α)l∗z∗ − 2αl∗γ∗ − (1− α2)ν∗z∗ + (1 + α)ν∗γ∗ (17)

−α2(1− α)z∗γ∗ + (1− α2)
l∗ν∗z∗

γ∗
+

2
1− α

l∗ν∗γ∗

z∗
+ α2(1− α)

l∗z∗γ∗

ν∗

]
.

Using (5)-(9), we find that the first term in brackets in (17) is positive if a steady state exists:

n

α2χ
∆

[
1 + α + α2 + (1− α)

1− α2

α2
χ

]
+
(

n

αχ

)2

(1 + α)

[
1 +

(
1− α

α

)2

χ(1 + χ)

]
> 0.

So the second term in brackets in (17) must be negative. Using (6)-(9), this implies:

∆2 1 + α− α2

α2
+ ∆

n

α2χ

[
2 + α− α2 − α3 + χ(1− α)2

]
+
(

n

αχ

)2 [
1 + α3 + χ(1− α2)(1− 2α)

]
< 0.

Because of (5), the first two terms in the sum are positive if a steady state exists. So the third term

must be negative. This requires α > 1/211 and

χ >
1 + α3

(1− α2)(2α− 1)
. (18)

The fraction on the right-hand side of (18) is greater than 4 for all α > 1/2.12 But χ > 4 contradicts

(16). This proves Lemma 2.

Lemma 3: The number of negative eigenvalues is not equal to four.

Proof: The Vièta formulae imply that δ2 > 0 and δ3 > 0 if all four eigenvalues are negative.13 From

(13) and (14), it follows that (16) holds and that

χ >
2ν∗ − α(1− α)z∗ + γ∗

l∗ + 1−α
α ν∗

, (19)

respectively. This presupposes that the expression on the right-hand side of (19) must be less than the

expression on the right-hand side of (16). This condition can be written as

0 < −
[
2l∗(ν∗)2 + (1− α)(1− 2α)l∗ν∗z∗ + l∗ν∗γ∗ + α2(1− α)2l∗(z∗)2 − α(1− α)l∗z∗γ∗ + l∗(γ∗)2

−(1− α2)
1− α

α
(ν∗)2z∗ + (1− α2)(1− α)2ν∗(z∗)2 − (1− α2)

1− α

α
ν∗z∗γ∗ +

1− α

α
ν∗(γ∗)2

]
.

11Hence, α ≤ 1/2 is a simple sufficient condition for the validity of Lemma 2.

12χ < 4 is thus another simple sufficient condition for the validity of Lemma 2.

13The latter observation alone allows it to derive a simple sufficient condition for determinacy: using (14), (6)-(9), and

(5), χ < min{1 + α(1− α), 1/α} implies δ3 = ∆[−(1 + α)/α− (1− χ)/α2] + (1 + α)[1− 1/(αχ)]n/α < 0.
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We have a contradiction if the term in square brackets is positive. This is implied by (6)-(9).

Remark: Experimentation with numerical values shows that the stable eigenvalues are real for a broad

range of parameters (see Example 1 below). It is possible to construct counterexamples, however (see

Example 2 below).

Example 1: The characteristic polynomial attains a minimum at q = −0.2403 with f(−0.2403) =

0.0050 > 0. This proves that no negative real roots exist.

Example 2: The characteristic polynomial attains a minimum at q = −0.2141 with f(−0.2141) =

−0.0457 < 0. This implies the existence of two negative real roots.

Proof of Theorem 2: It remains for us to show that A(0), K(0), and L(0) uniquely determine the

starting point in the stable manifold. The initial values x(0) satisfy

x(0)− x∗ =
2∑

i=1

Bibi, (20)

where the bi’s are the eigenvectors (bi = (bli, bνi, bzi, bγi)′) corresponding to the two negative eigen-

values, qi, and the Bi’s are constants to be determined below. The definitions of ν and z yield

ν(0) =
z(0)

1
1−α K(0)

aA(0)1+χ
. (21)

(20) and (21) comprise a system of five equations in the five unknowns ν(0), z(0), γ(0), B1, and B2.

The first three equations in (20) determine a relation between ν(0) and z(0):

ν(0)− ν∗ =
(bz1bν2 − bν1bz2)[l(0)− l∗] + (bν1bl2 − bl1bν2)[z(0)− z∗]

bz1bl2 − bl1bz2
. (22)

If K(0)/A(0)1+χ = (K/A1+χ)∗ and l(0) = l∗, then ν(0) = ν∗, z(0) = z∗, γ(0) = γ∗, B1 = 0, and

B2 = 0 solve (20)-(22), and the economy is in its steady state immediately. If K(0)/A(0)1+χ and l(0)

differ slightly from their balanced growth levels (so that our local analysis applies), then (21) and

(22) determine ν(0) and z(0), and (20) then determines γ(0), B1, and B2. This completes the proof

of Theorem 2.

5 Multi-country open economy

In Arnold (2004), we analyzed a class of growth models in which the “Dixit-Norman property” (cf.

Dixit and Norman, 1980, Chapter 4), that a world economy made up of several countries replicates

the equilibrium of a hypothetical integrated economy without restrictions on factor movements, holds

true. The Jones model belongs to this class of growth models. So we can immediately infer from the
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analysis in Arnold (2004) the conditions under which a world economy made up of several countries of

the type described in Section 2 (with labor immobility) behaves just like the hypothetical integrated

world economy (with complete labor mobility):

Theorem 3: Suppose the world economy is made up of M (≥ 2) countries with identical tastes and

technologies in each country. Suppose further that there is free trade in the final good and the interme-

diates, financial capital is perfectly mobile, and knowledge spillovers are international in scope. Then,

the M -country world economy replicates the equilibrium of the hypothetical integrated world economy

if, and only if, physical capital is mobile internationally and/or multinational firms or international

patent licensing are allowed for.

The proof can be sketched as follows. There are three productive activities: final goods production, in-

termediate goods production, and R&D. Final goods production and R&D are internationally mobile,

in that nothing pins down their location. Intermediate goods production is also mobile if domestically

invented goods can be produced abroad, either within multinational firms or with the help of inter-

national patent licensing agreements. Otherwise intermediate goods have to be produced where they

have been invented. There are two primary factors of production: labor and physical capital. While

labor is immobile by assumption, physical capital, once installed, can be assumed to be mobile or

not. We use lower-case letters with a superscript m to denote the country-m (m = 1, . . . ,M) levels

of variables denoted by upper-case letters so far. Let km denote physical capital owned by country-m

residents and k′m capital used in country m. Similarly, let am denote the number of intermediates

invented by firms from country m and a′m the number of intermediates produced in country m. Since

intermediate goods production is the only use of physical capital,

k′m = a′mx, m = 1, . . . ,M, (23)

where x is the uniform quantity produced of each intermediate. If physical capital is immobile (i.e.,

k′m = km) and intermediates have to be produced where they were invented (a′m = am), then (23)

is only satisfied by coincidence. With physical capital mobility, k′m is free to adjust so that (23) is

satisfied. With multinationals or patent licensing, a′m adjusts so that (23) holds. In both cases, the

allocation of labor lm to final goods production or R&D is indeterminate. If both physical capital and

intermediate goods production are internationally mobile, there is another degree of freedom.

6 Conclusion

The Jones (1995) R&D model with non-diminishing returns to labor in R&D has well-behaved dy-

namics. Whenever the parameters are such that a steady state exists, the steady state is unique, and
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a unique convergent trajectory exists. If physical capital is mobile and/or multinational firms exist or

patent licensing is possible, this result carries over to the multi-country open economy version of the

model. For one thing, this reassures us that the steady state analyses of the Jones (1995) and related

models are in fact concerned with the long-run equilibrium growth paths of the models. For another,

it potentially opens up new routes for numerical analyses of the models, especially their multi-country

open economy variants.
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Technical appendix

Steady state

From (2) and (3),

χl = χν + n (A.1)

χl = (χ− α)ν + α2z.

Hence,

α2z = αν + n. (A.2)

From (4) and (A.1): (
1− 1− α

α
χ

)
l + γ =

(
2− 1− α

α
χ

)
ν + (1− α)z(

1− 1− α

α
χ

)(
ν +

n

χ

)
+ γ =

(
2− 1− α

α
χ

)
ν + (1− α)z(

1
χ
− 1− α

α

)
n + γ = ν + (1− α)z.

From (1),
σ − 1

σ
n− ρ

σ
+ γ =

(
1− α2

σ

)
z. (A.3)

Hence, (
σ − 1

σ
− 1

χ
+

1− α

α

)
n− ρ

σ
= −ν +

(
1
α
− 1

σ

)
α2z. (A.4)

(A.2) and (A.4) can be solved for ν and z:(
σ − 1

σ
− 1

χ
+

1− α

α

)
n− ρ

σ
= −ν +

(
1
α
− 1

σ

)
(αν + n)

ν =
1
α

(
σ − 1

χ
n + ρ +

1
χ

n

)
=

1
α

(
∆ +

1
χ

n

)

z =
ν

α
+

n

α2

=
1
α2

(
∆ +

1 + χ

χ
n

)
.

These are (7) and (8) in the main text. (6) is obtained from (A.1):

l = ν +
n

χ

=
1
α

(
∆ +

n

χ

)
+

n

χ

=
1
α

(
∆ +

1 + α

χ
n

)
.
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Finally, (9) is obtained from (A.3):

γ =

(
1− α2

σ

)
z − σ − 1

σ
n +

ρ

σ

=

(
1− α2

σ

)
1
α2

(
∆ +

1 + χ

χ
n

)
− σ − 1

σ
n +

ρ

σ

=
1
α2

(
∆ +

1 + χ

χ
n

)
− 1

σ

(
∆ +

1 + χ

χ
n

)
− σ − 1

σ
n +

ρ

σ

=
1
α2

(
∆ +

1 + χ

χ
n

)
− 1

σ

(
σ − 1

χ
n + ρ +

1 + χ

χ
n

)
− σ − 1

σ
n +

ρ

σ

=
1
α2

(
∆ +

1 + χ

χ
n

)
− 1 + χ

χ
n

=
1
α2

[
∆ + (1− α2)

1 + χ

χ
n

]
.

For future reference, notice that l∗, ν∗, z∗, and γ∗ satisfy the following relations:

l∗ > ν∗, z∗ >
ν∗

α
, z∗ > γ∗, ν∗ >

l∗

1 + α
, γ∗ > (1− α2)z∗. (A.5)

The first three inequalities are obvious. The latter two are easily proved as follows:

ν∗ =
1
α

(
∆ +

1
χ

n

)
=

1
α

(1 + α)∆ + 1+α
χ n

1 + α
>

1
α

∆ + 1+α
χ n

1 + α
=

l∗

1 + α

γ∗ =
1
α2

[
∆ + (1− α2)

1 + χ

χ
n

]
=

1− α2

α2

(
∆

1− α2
+

1 + χ

χ
n

)
>

1− α2

α2

(
∆ +

1 + χ

χ
n

)
= (1− α2)z∗.

Transversality condition

The transversality condition for the households’ utility maximization problem is

lim
t→∞

e−ρt[K(t) + A(t)v(t)]λ(t) = 0,

where λ is the co-state variable and K + Av is financial wealth. According to the first-order condition

for an optimal consumption profile,

λ =
c−σ

L
.

In a steady state, Ȧ/A = n/χ, K̇/K = Ȧ/A + n = n/χ + n, v̇/v = Ẏ /Y − Ȧ/A = n, ċ/c = n/χ, and

λ̇/λ = −(ċ/c)/σ − n = −σn/χ− n. Hence, the transversality condition requires

−ρ +
(

n

χ
+ n

)
+
(
−σ

n

χ
− n

)
< 0.

Rearranging terms yields (5):

∆ ≡ σ − 1
χ

n + ρ > 0.
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The linearized system (10):

From (2):
∂l̇

∂l
= [−χ(l − ν) + n]︸ ︷︷ ︸

=0

−χl = −χl.

∂l̇

∂ν
= χl

∂l̇

∂z
= 0

∂l̇

∂γ
= 0.

Analogously, from (4):
∂ν̇

∂l
= −

(
1− 1− α

α
χ

)
ν

∂ν̇

∂ν
=
[
−
(

1− 1− α

α
χ

)
l +

(
2− 1− α

α
χ

)
ν + (1− α)z − γ

]
︸ ︷︷ ︸

=0

+
(

2− 1− α

α
χ

)
ν =

(
2− 1− α

α
χ

)
ν

∂ν̇

∂z
= (1− α)ν

∂ν̇

∂γ
= −ν.

From (3):
∂ż

∂l
=

1− α

α
χz

∂ż

∂ν
=

1− α

α
(α− χ)z =

(
1− α− 1− α

α
χ

)
z

∂ż

∂z
=

1− α

α
[χl − (χ− α)ν − α2z]︸ ︷︷ ︸

=0

−α(1− α)z = −α(1− α)z

∂ż

∂γ
= 0.

From (1)
∂γ̇

∂l
= 0

∂γ̇

∂ν
= 0

∂γ̇

∂z
= −

(
1− α2

σ

)
γ

∂γ̇

∂γ
=

[
−
(

1− α2

σ

)
z + γ +

σ − 1
σ

n− ρ

σ

]
︸ ︷︷ ︸

=0

+γ = γ.
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The characteristic equation

The characteristic equation is:

f(q) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−χl∗ − q χl∗ 0 0

−
(
1− 1−α

α χ
)

ν∗
(
2− 1−α

α χ
)

ν∗ − q (1− α)ν∗ −ν∗

1−α
α χz∗

(
1− α− 1−α

α χ
)

z∗ −α(1− α)z∗ − q 0

0 0 −
(
1− α2

σ

)
γ∗ γ∗ − q

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Developing the determinant in the characteristic equation with respect to the fourth row gives:

f(q) =

(
1− α2

σ

)
γ∗∆1(q) + (γ∗ − q)∆2(q), (A.6)

where

∆1(q) =

∣∣∣∣∣∣∣∣∣
−χl∗ − q χl∗ 0

−
(
1− 1−α

α χ
)

ν∗
(
2− 1−α

α χ
)

ν∗ − q −ν∗

1−α
α χz∗

(
1− α− 1−α

α χ
)

z∗ 0

∣∣∣∣∣∣∣∣∣
and

∆2(q) =

∣∣∣∣∣∣∣∣∣
−χl∗ − q χl∗ 0

−
(
1− 1−α

α χ
)

ν∗
(
2− 1−α

α χ
)

ν∗ − q (1− α)ν∗

1−α
α χz∗

(
1− α− 1−α

α χ
)

z∗ −α(1− α)z∗ − q

∣∣∣∣∣∣∣∣∣ .
∆1(q) can be written as:

∆1(q) =

∣∣∣∣∣∣∣∣∣
−χl∗ − q χl∗ 0

−
(
1− 1−α

α χ
)

ν∗
(
2− 1−α

α χ
)

ν∗ − q −ν∗

1−α
α χz∗

(
1− α− 1−α

α χ
)

z∗ 0

∣∣∣∣∣∣∣∣∣
= −1− α

α
χ2l∗ν∗z∗ −

(
1− α− 1− α

α
χ

)
χl∗ν∗z∗ −

(
1− α− 1− α

α
χ

)
ν∗z∗q

= −(1− α)χl∗ν∗z∗ −
(

1− α− 1− α

α
χ

)
ν∗z∗q. (A.7)

As for ∆2(q):

∆2(q) =

∣∣∣∣∣∣∣∣∣
−χl∗ − q χl∗ 0

−
(
1− 1−α

α χ
)

ν∗
(
2− 1−α

α χ
)

ν∗ − q (1− α)ν∗

1−α
α χz∗

(
1− α− 1−α

α χ
)

z∗ −α(1− α)z∗ − q

∣∣∣∣∣∣∣∣∣
= (−χl∗ − q)

[(
2− 1− α

α
χ

)
ν∗ − q

]
[−α(1− α)z∗ − q]

+
(1− α)2

α
χ2l∗ν∗z∗ +

(
1− 1− α

α
χ

)
χl∗ν∗[−α(1− α)z∗ − q]

−(1− α)
(

1− α− 1− α

α
χ

)
ν∗z∗(−χl∗ − q).
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The first term in this sum can be rewritten as:

(−χl∗ − q)
[(

2− 1− α

α
χ

)
ν∗ − q

]
[−α(1− α)z∗ − q]

=
[(

2− 1− α

α
χ

)
ν∗ − q

]
{α(1− α)χl∗z∗ + [χl∗ + α(1− α)z∗]q + q2}

= α(1− α)
(

2− 1− α

α
χ

)
χl∗ν∗z∗

+
[(

2− 1− α

α
χ

)
χl∗ν∗ − α(1− α)χl∗z∗ + α(1− α)

(
2− 1− α

α
χ

)
ν∗z∗

]
q

+
[
−χl∗ +

(
2− 1− α

α
χ

)
ν∗ − α(1− α)z∗

]
q2

−q3.

The remaining terms can be rewritten as:

(1− α)2

α
χ2l∗ν∗z∗ +

(
1− 1− α

α
χ

)
χl∗ν∗[−α(1− α)z∗ − q]

−(1− α)
(

1− α− 1− α

α
χ

)
ν∗z∗(−χl∗ − q)

= (1− α)χl∗ν∗z∗
[
1− α

α
χ− α

(
1− 1− α

α
χ

)
+
(

1− α− 1− α

α
χ

)]
+
[
−
(

1− 1− α

α
χ

)
χl∗ν∗ + (1− α)

(
1− α− 1− α

α
χ

)
ν∗z∗

]
q

= (1− α)
[
−α

(
1− 1− α

α
χ

)
+ 1− α

]
χl∗ν∗z∗

+
[
−
(

1− 1− α

α
χ

)
χl∗ν∗ + (1− α)

(
1− α− 1− α

α
χ

)
ν∗z∗

]
q.

Taken together, it follows that

∆2(q) = (1− α)χl∗ν∗z∗

+
[
χl∗ν∗ − α(1− α)χl∗z∗ + (1− α2)

(
1− 1− α

α
χ

)
ν∗z∗

]
q

+
[
−χl∗ +

(
2− 1− α

α
χ

)
ν∗ − α(1− α)z∗

]
q2

−q3. (A.8)

Equations (11)-(14):

From (A.6)-(A.8), one can calculate the expressions for δi (i = 0, 1, 2, 3) in (11)-(14):

δ0 = −(1− α)

(
1− α2

σ

)
χl∗ν∗z∗γ∗ + (1− α)χl∗ν∗z∗γ∗

= (1− α)
α2

σ
χl∗ν∗z∗γ∗
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δ1 = −
(

1− α2

σ

)(
1− α− 1− α

α
χ

)
ν∗z∗γ∗

+γ∗
[
χl∗ν∗ − α(1− α)χl∗z∗ + (1− α2)

(
1− 1− α

α
χ

)
ν∗z∗

]
− (1− α)χl∗ν∗z∗

=

[
−
(

1− α2

σ

)(
1− α− 1− α

α
χ

)
+ (1− α2)

(
1− 1− α

α
χ

)]
ν∗z∗γ∗

−(1− α)χl∗ν∗z∗ + χl∗ν∗γ∗ − α(1− α)χl∗z∗γ∗

= α(1− α)
(

1 +
α

σ

)
ν∗z∗γ∗

−χ

[
(1− α)l∗ν∗z∗ − l∗ν∗γ∗ + α(1− α)l∗z∗γ∗ − α(1− α)

(
1− 1

σ

)
ν∗z∗γ∗

]

δ2 = γ∗
[
−χl∗ +

(
2− 1− α

α
χ

)
ν∗ − α(1− α)z∗

]
−
[
χl∗ν∗ − α(1− α)χl∗z∗ + (1− α2)

(
1− 1− α

α
χ

)
ν∗z∗

]
= 2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗

−χ

[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)

1− α

α
ν∗z∗ +

1− α

α
ν∗γ∗

]

δ3 = −γ∗ −
[
−χl∗ +

(
2− 1− α

α
χ

)
ν∗ − α(1− α)z∗

]
= χl∗ −

(
2− 1− α

α
χ

)
ν∗ + α(1− α)z∗ − γ∗

= −2ν∗ + α(1− α)z∗ − γ∗ + χ

(
l∗ +

1− α

α
ν∗
)

.

The term in square brackets in (13) is positive.

From (A.5) and x∗ > 0,

l∗ν∗ − α(1− α)︸ ︷︷ ︸
=(1−α2)−(1−α)

l∗z∗ + l∗ γ∗︸︷︷︸
>(1−α2)z∗

−(1− α2)
1− α

α
ν∗z∗ +

1− α

α
ν∗ γ∗︸︷︷︸

>(1−α2)z∗

> l∗ν∗ − (1− α2)l∗z∗ + (1− α)l∗z∗ + (1− α2)l∗z∗ − (1− α2)
1− α

α
ν∗z∗ + (1− α2)

1− α

α
ν∗z∗

= l∗ν∗︸︷︷︸
>0

+(1− α)l∗z∗︸ ︷︷ ︸
>0

(A.9)

> 0.

Equation (17):

The expression on the right-hand side of (15) is less than the expression on the right-hand side of (16)

if

α(1− α)
(
1 + α

σ

)
ν∗z∗γ∗

(1− α)l∗ν∗z∗ − l∗ν∗γ∗ + α(1− α)l∗z∗γ∗ − α(1− α)
(
1− 1

σ

)
ν∗z∗γ∗
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<
2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗

l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)1−α
α ν∗z∗ + 1−α

α ν∗γ∗
.

Since the denominators on both sides of the inequality are positive, this can be rewritten as:

0 < [2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗]

×
[
(1− α)l∗ν∗z∗ − l∗ν∗γ∗ + α(1− α)l∗z∗γ∗ − α(1− α)

(
1− 1

σ

)
ν∗z∗γ∗

]
−α(1− α)

(
1 +

α

σ

)
ν∗z∗γ∗

×
[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)

1− α

α
ν∗z∗ +

1− α

α
ν∗γ∗

]
or, after division by (1− α)ν∗z∗γ∗, as

0 < [2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗]

×
[

l∗

γ∗
− 1

1− α

l∗

z∗
+ α

l∗

ν∗
− α

(
1− 1

σ

)]
−α

(
1 +

α

σ

)
×
[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)

1− α

α
ν∗z∗ +

1− α

α
ν∗γ∗

]
.

Multiplying out yields:

0 < 2l∗ν∗ − 2
1− α

l∗ν∗γ∗

z∗
+ 2αl∗γ∗ − 2α

(
1− 1

σ

)
ν∗γ∗

−(1− α2)
l∗ν∗z∗

γ∗
+ (1 + α)l∗ν∗ − α(1− α2)l∗z∗ + α(1− α2)

(
1− 1

σ

)
ν∗z∗

−α(1− α)l∗z∗ + αl∗γ∗ − α2(1− α)
l∗z∗γ∗

ν∗
+ α2(1− α)

(
1− 1

σ

)
z∗γ∗

−α

(
1 +

α

σ

)
l∗ν∗ + α2(1− α)

(
1 +

α

σ

)
l∗z∗ − α

(
1 +

α

σ

)
l∗γ∗

+(1− α2)(1− α)
(

1 +
α

σ

)
ν∗z∗ − (1− α)

(
1 +

α

σ

)
ν∗γ∗.

Collecting terms, we have:

0 <

[
2 + (1 + α)− α

(
1 +

α

σ

)]
l∗ν∗

+
[
−α(1− α2)− α(1− α) + α2(1− α)

(
1 +

α

σ

)]
l∗z∗

+
[
2α + α− α

(
1 +

α

σ

)]
l∗γ∗

+
[
α(1− α2)

(
1− 1

σ

)
+ (1− α2)(1− α)

(
1 +

α

σ

)]
ν∗z∗

+
[
−2α

(
1− 1

σ

)
− (1− α)

(
1 +

α

σ

)]
ν∗γ∗

18



+α2(1− α)
(

1− 1
σ

)
z∗γ∗

−(1− α2)
l∗ν∗z∗

γ∗
− 2

1− α

l∗ν∗γ∗

z∗
− α2(1− α)

l∗z∗γ∗

ν∗
.

Simplifying terms, we obtain:

0 <

(
3− α2

σ

)
l∗ν∗

+α(1− α)

(
−2 +

α2

σ

)
l∗z∗

+

(
2α− α2

σ

)
l∗γ∗

+(1− α2)

(
1− α2

σ

)
ν∗z∗

+(1 + α)

(
−1 +

1
α

α2

σ

)
ν∗γ∗

+(1− α)

(
α2 − α2

σ

)
z∗γ∗

−(1− α2)
l∗ν∗z∗

γ∗
− 2

1− α

l∗ν∗γ∗

z∗
− α2(1− α)

l∗z∗γ∗

ν∗
.

Collecting terms yields (17):

0 < −α2

σ

[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ + (1− α2)ν∗z∗ − 1 + α

α
ν∗γ∗ + (1− α)z∗γ∗

]
−
[
−3l∗ν∗ + 2α(1− α)l∗z∗ − 2αl∗γ∗ − (1− α2)ν∗z∗ + (1 + α)ν∗γ∗

−α2(1− α)z∗γ∗ + (1− α2)
l∗ν∗z∗

γ∗
+

2
1− α

l∗ν∗γ∗

z∗
+ α2(1− α)

l∗z∗γ∗

ν∗

]
.

The first term in square brackets in (17) is positive:

l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ + (1− α2)ν∗z∗ − 1 + α

α
ν∗γ∗ + (1− α)z∗γ∗

=
1
α2

(
∆ +

1 + α

χ
n

)(
∆ +

1
χ

n

)
−1− α

α2

(
∆ +

1 + α

χ
n

)(
∆ +

1 + χ

χ
n

)
+

1
α3

(
∆ +

1 + α

χ
n

)[
∆ + (1− α2)

1 + χ

χ
n

]
+

1− α2

α3

(
∆ +

1
χ

n

)(
∆ +

1 + χ

χ
n

)
−1 + α

α4

(
∆ +

1
χ

n

)[
∆ + (1− α2)

1 + χ

χ
n

]
+

1− α

α4

(
∆ +

1 + χ

χ
n

)[
∆ + (1− α2)

1 + χ

χ
n

]

19



= ∆2 1
α2

[
1− (1− α) +

1
α

+
1− α2

α
− 1 + α

α2
+

1− α

α2

]

+∆
n

α2χ

{
1 + α + 1

−(1− α)(1 + α + 1 + χ)

+
1
α

[
1 + α + (1− α2)(1 + χ)

]
+

1− α2

α
(1 + 1 + χ)

−1 + α

α2

[
1 + (1− α2)(1 + χ)

]
+

1− α

α2
[1 + χ + (1− α2)(1 + χ)]

}

+
(

n

αχ

)2
[
1 + α

−(1− α)(1 + α)(1 + χ)

+
1
α

(1 + α)(1− α2)(1 + χ)

+
1− α2

α
(1 + χ)

−1 + α

α2
(1− α2)(1 + χ)

+
1− α

α2
(1− α2)(1 + χ) +

1− α

α2
(1− α2)χ(1 + χ)

]

= ∆2 1
α2

(
1− 1 + α +

1
α

+
1
α
− α− 1

α2
− 1

α
+

1
α2

− 1
α

)
+∆

n

α2χ

{
2 + α

−2 + α + α2 − (1− α)χ

+
2
α

+ 1− α + (1− α)
(

1
α

+ 1
)

χ

+
2
α
− 2α + (1− α)

(
1
α

+ 1
)

χ

− 2
α2

− 2
α

+ 1 + α + (1− α)
(
− 1

α2
− 2

α
− 1

)
χ

+
2
α2

− 2
α
− 1 + α + (1− α)

(
2
α2

− 1
)

χ

}

+
(

n

αχ

)2
[
1 + α

+(1− α2)(1 + χ)
(
−1 +

1
α

+ 1 +
1
α
− 1

α2
− 1

α
+

1
α2

− 1
α

)
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+
1− α

α2
(1− α2)χ(1 + χ)

]

= ∆
n

α2χ

[
1 + α + α2 + (1− α)

1− α2

α2
χ

]

+
(

n

αχ

)2

(1 + α)

[
1 +

(
1− α

α

)2

χ(1 + χ)

]
> 0.

Second term in square brackets in (17):

−3l∗ν∗ + 2α(1− α)l∗z∗ − 2αl∗γ∗ − (1− α2)ν∗z∗ + (1 + α)ν∗γ∗

−α2(1− α)z∗γ∗ + (1− α2)
l∗ν∗z∗

γ∗︸ ︷︷ ︸
>(1−α2)l∗ν∗

+
2

1− α

l∗ν∗γ∗

z∗︸ ︷︷ ︸
>2(1+α)l∗ν∗

+α2(1− α)
l∗z∗γ∗

ν∗︸ ︷︷ ︸
>α2(1−α)z∗γ∗

> α(2− α)l∗ν∗ + 2α(1− α)l∗z∗ − 2αl∗γ∗ − (1− α2)ν∗z∗ + (1 + α)ν∗γ∗

=
2− α

α

(
∆ +

1 + α

χ
n

)(
∆ +

1
χ

n

)
+

2(1− α)
α2

(
∆ +

1 + α

χ
n

)(
∆ +

1 + χ

χ
n

)
− 2

α2

(
∆ +

1 + α

χ
n

)[
∆ + (1− α2)

1 + χ

χ
n

]
−1− α2

α3

(
∆ +

1
χ

n

)(
∆ +

1 + χ

χ
n

)
+

1 + α

α3

(
∆ +

1
χ

n

)[
∆ + (1− α2)

1 + χ

χ
n

]
= ∆2 1

α2

[
α(2− α) + 2(1− α)− 2− 1− α2

α
+

1 + α

α

]

+∆
n

α2χ

{
α(2− α)(1 + α + 1)

+2(1− α)(1 + α + 1 + χ)

−2[1 + α + (1− α2)(1 + χ)]

−1− α2

α
(1 + 1 + χ)

+
1 + α

α

[
1 + (1− α2)(1 + χ)

]}

+
(

n

αχ

)2
[
α(2− α)(1 + α)

+2(1− α)(1 + α)(1 + χ)

−2(1 + α)(1− α2)(1 + χ)
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−1− α2

α
(1 + χ)

+
1 + α

α
(1− α2)(1 + χ)

]

= ∆2 1
α2

(
2α− α2 + 2− 2α− 2− 1

α
+ α +

1
α

+ 1
)

+∆
n

α2χ

[
4α− α3

+2− 2α2 + 2(1− α)(1 + χ)

−2− 2α + (−2− 2α)(1− α)(1 + χ)

− 1
α

+ α +
(
− 1

α
− 1

)
(1− α)(1 + χ)

+
1
α

+ 1 +
(

1
α

+ 2 + α

)
(1− α)(1 + χ)

]

+
(

n

αχ

)2
[
2α + α2 − α3

+
(

2− 2− 2α− 1
α

+
1
α

+ 1
)

(1− α2)(1 + χ)

]

= ∆2 1 + α− α2

α2

+∆
n

α2χ

[
1 + 3α− 2α2 − α3 + (1− α)2(1 + χ)

]
+
(

n

αχ

)2 [
2α + α2 − α3 + (1− α2)(1− 2α)(1 + χ)

]
= ∆2 1 + α− α2

α2

+∆
n

α2χ

[
2 + α− α2 − α3 + χ(1− α)2

]
+
(

n

αχ

)2 [
1 + α3 + χ(1− α2)(1− 2α)

]
.

The fraction in (18) is greater than 4:

Denote the denominator of the fraction on the right-hand side of (18) as g(α) ≡ (1 − α2)(2α − 1) =

−2α3 + α2 + 2α− 1. The first and second derivatives are

g′(α) = −6
(

α2 − 1
3
α− 1

3

)

g′′(α) = −6
(

2α− 1
3

)
.

g(α) assumes a local maximum at α = (1 +
√

13)/6 with

g

(
1 +

√
13

6

)
=

13
√

13− 35
54

.
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Since g(0) = −1 < 0, this is a global maximum, given α > 0. So the denominator is less than

(13
√

13 − 35)/54. For α > 1/2, the numerator is greater than 9/8, and, consequently, the fraction is

greater than 243/(52
√

13− 140) = 5.117 > 4. (Actually, the fraction is greater than 6.464.)

χ > 4 is inconsistent with (16):

Suppose χ > 4 and (16) holds true. Then:

4 <
2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗

l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)1−α
α ν∗z∗ + 1−α

α ν∗γ∗

Using the fact that x∗ > 0, that the denominator is greater than l∗ν∗ + (1 − α)l∗z∗ (cf. (A.9)), that

2/α < 4 for α > 1/2, and that 2(1 + α) < 4, it follows that

4 <
2ν∗γ∗

l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)1−α
α ν∗z∗ + 1−α

α ν∗γ∗

<
2ν∗γ∗

l∗ν∗ + (1− α)l∗z∗

4l∗ν∗ + 4(1− α)l∗z∗ − 2ν∗γ∗ < 0
2
α

l∗ν∗ + 2(1 + α)(1− α)l∗z∗ − 2ν∗γ∗ < 0

2
α

l∗ν∗ + 2(1− α2)l∗z∗ − 2ν∗γ∗ < 0

1
α

l∗ν∗ + (1− α2)l∗z∗ − ν∗γ∗ < 0

Using (6)-(9), it follows that

0 >
1
α3

(
∆ +

1 + α

χ
n

)(
∆ +

1
χ

n

)
+

1− α2

α3

(
∆ +

1 + α

χ
n

)(
∆ +

1 + χ

χ
n

)
− 1

α3

(
∆ +

1
χ

n

)[
∆ + (1− α2)

1 + χ

χ
n

]
= ∆2 1

α3

[
1 + (1− α2)− 1

]
+∆

n

α3χ

{
1 + α + 1 + (1− α2)(1 + α + 1 + χ)−

[
1 + (1− α2)(1 + χ)

]}
+
(

n

χ

)2 1
α3

[
1 + α + (1− α2)(1 + α)(1 + χ)− (1− α2)(1 + χ)

]
= ∆2 1

α3
(1− α2)

+∆
n

α3χ
(1 + α)(2− α2)

+
(

n

χ

)2 1
α3

(1 + α) [1 + α(1− α)(1 + χ)]

> 0,
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a contradiction.

Lemma 3:

The expression on the right-hand side of (19) is less than the expression on the right-hand side of (16)

if
2ν∗ − α(1− α)z∗ + γ∗

l∗ + 1−α
α ν∗

<
2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗

l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)1−α
α ν∗z∗ + 1−α

α ν∗γ∗
.

It has been shown above that the denominator on the right-hand side (i.e., the term in square brackets

in (13)) is positive. So this condition can be manipulated as follows:

0 <

(
l∗ +

1− α

α
ν∗
) [

2ν∗γ∗ − (1− α2)ν∗z∗ − α(1− α)z∗γ∗
]

− [2ν∗ − α(1− α)z∗ + γ∗]
[
l∗ν∗ − α(1− α)l∗z∗ + l∗γ∗ − (1− α2)

1− α

α
ν∗z∗ +

1− α

α
ν∗γ∗

]
= 2l∗ν∗γ∗ − (1− α2)l∗ν∗z∗ − α(1− α)l∗z∗γ∗

+2
1− α

α
(ν∗)2γ∗ − (1− α2)

1− α

α
(ν∗)2z∗ − (1− α)2ν∗z∗γ∗

−2l∗(ν∗)2 + 2α(1− α)l∗ν∗z∗ − 2l∗ν∗γ∗ + 2(1− α2)
1− α

α
(ν∗)2z∗ − 2

1− α

α
(ν∗)2γ∗

+α(1− α)l∗ν∗z∗ − α2(1− α)2l∗(z∗)2 + α(1− α)l∗z∗γ∗ − (1− α2)(1− α)2ν∗(z∗)2 + (1− α)2ν∗z∗γ∗

−l∗ν∗γ∗ + α(1− α)l∗z∗γ∗ − l∗(γ∗)2 + (1− α2)
1− α

α
ν∗z∗γ∗ − 1− α

α
ν∗(γ∗)2

= −2l∗(ν∗)2

+[−(1− α2) + 2α(1− α) + α(1− α)]l∗ν∗z∗

+(2− 2− 1)l∗ν∗γ∗

+[−α2(1− α)2]l∗(z∗)2

+[−α(1− α) + α(1− α) + α(1− α)]l∗z∗γ∗

+(−1)l∗(γ∗)2

+
[
−(1− α2)

1− α

α
+ 2(1− α2)

1− α

α

]
(ν∗)2z∗

+
(

2
1− α

α
− 2

1− α

α

)
(ν∗)2γ∗

+[−(1− α2)(1− α)2]ν∗(z∗)2

+
[
−(1− α)2 + (1− α)2 + (1− α2)

1− α

α

]
ν∗z∗γ∗

+
(
−1− α

α

)
ν∗(γ∗)2

= −
[
2l∗(ν∗)2 + (1− α)(1− 2α)l∗ν∗z∗ + l∗ν∗γ∗ + α2(1− α)2l∗(z∗)2 − α(1− α)l∗z∗γ∗ + l∗(γ∗)2

−(1− α2)
1− α

α
(ν∗)2z∗ + (1− α2)(1− α)2ν∗(z∗)2 − (1− α2)

1− α

α
ν∗z∗γ∗ +

1− α

α
ν∗(γ∗)2

]
.

We have to show that the term in square brackets is positive. To do so, we use five preliminary results
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(obtained using (A.5)):

(1− α)(1− 2α)l∗ν∗z∗ = (1− α)2l∗ν∗z∗ − α(1− α)l∗ν∗z∗ > −α(1− α)l∗ν∗z∗

l∗︸︷︷︸
>ν∗

ν∗ γ∗︸︷︷︸
>(1−α2)z∗

> (1− α2)(ν∗)2z∗

l∗(γ∗)2 = l∗ γ∗︸︷︷︸
>(1−α2)z∗

γ∗ > (1− α2)l∗z∗γ∗ = (1 + α)(1− α)l∗z∗γ∗ > α(1− α)l∗z∗γ∗

−(1− α2)
1− α

α
(ν∗)2z∗

= −(1− α + α)(1− α2)
1− α

α
(ν∗)2z∗

= −(1− α2)
(1− α)2

α
(ν∗)2z∗ − (1− α2)(1− α)(ν∗)2z∗

= −(1− α2)
(1− α)2

α
(ν∗)2z∗ − (1− α2)(ν∗)2z∗ + α(1− α2) ν∗︸︷︷︸

> l∗
1+α

ν∗z∗

> −(1− α2)
(1− α)2

α
(ν∗)2z∗ − (1− α2)(ν∗)2z∗ + α(1− α)l∗ν∗z∗

(1− α2)(1− α)2ν∗(z∗)2 = (1− α2)(1− α)2ν∗ z∗︸︷︷︸
> ν∗

α

z∗ > (1− α2)
(1− α)2

α
(ν∗)2z∗

1− α

α
ν∗(γ∗)2 =

1− α

α
ν∗ γ∗︸︷︷︸

>(1−α2)z∗

γ∗ > (1− α2)
1− α

α
ν∗z∗γ∗.

Using these results and x∗ > 0, we find:

>0︷ ︸︸ ︷
2l∗(ν∗)2

>−α(1−α)l∗ν∗z∗︷ ︸︸ ︷
+(1− α)(1− 2α)l∗ν∗z∗

>(1−α2)(ν∗)2z∗︷ ︸︸ ︷
+l∗ν∗γ∗

>0︷ ︸︸ ︷
+α2(1− α)2l∗(z∗)2−α(1− α)l∗z∗γ∗

>α(1−α)l∗z∗γ∗︷ ︸︸ ︷
+l∗(γ∗)2

−(1− α2)
1− α

α
(ν∗)2z∗︸ ︷︷ ︸

> −(1− α2)
(1−α)2

α
(ν∗)2z∗

−(1− α2)(ν∗)2z∗

+α(1− α)l∗ν∗z∗

+(1− α2)(1− α)2ν∗(z∗)2︸ ︷︷ ︸
>(1−α2)

(1−α)2

α
(ν∗)2z∗

−(1− α2)
1− α

α
ν∗z∗γ∗ +

1− α

α
ν∗(γ∗)2︸ ︷︷ ︸

>(1−α2) 1−α
α

ν∗z∗γ∗

> −α(1− α)l∗ν∗z∗ + (1− α2)(ν∗)2z∗ − α(1− α)l∗z∗γ∗ + α(1− α)l∗z∗γ∗

−(1− α2)
(1− α)2

α
(ν∗)2z∗ − (1− α2)(ν∗)2z∗ + α(1− α)l∗ν∗z∗ + (1− α2)

(1− α)2

α
(ν∗)2z∗

−(1− α2)
1− α

α
ν∗z∗γ∗ + (1− α2)

1− α

α
ν∗z∗γ∗

= 0.

Equation (22):
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bie
qit are particular solutions to (10) (bi = (bli, bνi, bzi, bγi)′, i = 1, . . . , 4). From ẋ = J(x − x∗), it

follows that qibie
qit = Jbie

qit, that is (J−qiI)bi = 0. The characteristic equation, f(q) = |J−qI| = 0,

ensures that non-zero solutions bi exist. bi is the eigenvector corresponding to eigenvalue qi (i =

1, . . . , 4). The general solution of system (10) is x(t)−x∗ =
∑4

i=1 Bibie
qit, where the Bi’s are constants

to be determined below (i = 1, . . . , 4). Since two eigenvalues, q3 and q4, say, are positive, we must have

x(t)− x∗ =
∑2

i=1 Bibie
qit. Evaluating this equation at t = 0 yields (20):

x(0)− x∗ =
2∑

i=1

Bibi
l(0)− l∗

ν(0)− ν∗

z(0)− z∗

γ(0)− γ∗

 = B1


bl1

bν1

bz1

bγ1

+ B2


bl2

bν2

bz2

bγ2

 . (A.10)

From the first the line in (A.10),

B2 =
l(0)− l∗ − bl1B1

bl2
. (A.11)

Inserting this into the third line in (A.10) yields:

z(0)− z∗ = B1bz1 +
l(0)− l∗ − bl1B1

bl2
bz2

=
bz2

bl2
[l(0)− l∗] + B1

(
bz1 −

bl1bz2

bl2

)

B1 =
z(0)− z∗ − bz2

bl2
[l(0)− l∗]

bz1 − bl1bz2
bl2

. (A.12)

Using (A.11) and (A.12) in the second equation in (A.10) yields (22):

ν(0)− ν∗ = B1bν1 +
l(0)− l∗ − bl1B1

bl2
bν2

=
bν2

bl2
[l(0)− l∗] + B1

(
bν1 −

bl1bν2

bl2

)

=
bν2

bl2
[l(0)− l∗] +

z(0)− z∗ − bz2
bl2

[l(0)− l∗]

bz1 − bl1bz2
bl2

(
bν1 −

bl1bν2

bl2

)

= [l(0)− l∗]

bν2

bl2
−

bz2
bl2

bz1 −
bl1bz2

bl2

(
bν1 −

bl1bν2

bl2

)+ [z(0)− z∗]
bν1 − bl1bν2

bl2

bz1 −
bl1bz2

bl2

= [l(0)− l∗]

[
bν2

bl2
−

bz2
bl2

(bν1bl2 − bl1bν2)

bz1bl2 − bl1bz2

]
+ [z(0)− z∗]

bν1bl2 − bl1bν2

bz1bl2 − bl1bz2

= [l(0)− l∗]
bν2
bl2

(bz1bl2 − bl1bz2)− bz2
bl2

(bν1bl2 − bl1bν2)

bz1bl2 − bl1bz2
+ [z(0)− z∗]

bν1bl2 − bl1bν2

bz1bl2 − bl1bz2
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= [l(0)− l∗]
bz1bν2 − bν1bz2

bz1bl2 − bl1bz2
+ [z(0)− z∗]

bν1bl2 − bl1bν2

bz1bl2 − bl1bz2

=
[l(0)− l∗](bz1bν2 − bν1bz2) + [z(0)− z∗](bν1bl2 − bl1bν2)

bz1bl2 − bl1bz2
.
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