
WEB SERVICES COMPOSITION, EXECUTION AND VISUALIZATION

Manu De Backer, Guido Dedene, Jacques Vandenbulcke
K.U.Leuven, Department of Applied Economic Sciences,

Naamsestraat 69, B-3000 Leuven, Belgium
Manu.DeBacker, Guido.Dedene, Jacques.Vandenbulcke{@econ.kuleuven.ac.be}

Abstract

This paper presents a novel technique and a tool to Web

service composition, execution and visualization. Web ser-

vices composition refers to the act of interconnecting multi-

ple elementary (or other composite) Web services, in order

to create value-added functionality for customers. Graphi-

cal tools allow developers to define and create business pro-

cesses on a ”plug and play” basis. Runtime visualization of

a business process enables the developers to understand the

process and if necessary intervene in the process.

1. Introduction

This paper presents a short overview of Web service

composition and describes a tool for business process de-

velopment, execution and visualization. Web services are

defined as a software system identified by a URI, whose

public interfaces and bindings are defined and described us-

ing XML. Its definition can be discovered by other software

systems. These systems may then interact with the Web ser-

vice in a manner prescribed by its definition, using XML

based messages conveyed by internet protocols [4]. One of

the more interesting research areas in the Web services com-

munity today, deals with the problem how to interconnect

several Web services in a larger composite system.

The remainder of this paper is structured as follows. First

of all, Section 2 discusses the proposed system in detail as

well as the different phases of a composite Web service

architecture. In every subsection, we will especially indi-

cate the potential and usefulness of program visualization

for program comprehension. Subsequently, Section 3 gives

a brief description of the demonstration. Finally, Section 4

concludes the paper.

2. Proposed system overview

Web services composition refers to the act of intercon-

necting multiple elementary (or other composite) Web ser-

vices. These composite Web services offer organizations

the opportunity to create value-added services for their cus-

tomers. Several researchers and organizations are proposing

standards to define the process of Web services integration

(e.g. WSFL, XLANG, BPEL4WS, WSCL, WSCI, BPML,

etc.)[2, 3]. Today, BPEL4WS is becoming the leading solu-

tion in this area.

The process of creating composite Web services consists

of several sequential phases. Ranging from Web services

identification and registration over Web service workflow

or business process specification, to composite service ex-
ecution and finally, visualization. The system is by no

means finished and therefore we will clearly present at what

stage we are now and were we would like to go in the fu-

ture. The following paragraphs describe the different phases

in more detail, together with the possibilities of using visu-

alization techniques for program comprehension.

2.1. Web services Identification & Registration

Web services identification and registration refers to the

process where the composite Web service developer needs

to locate and register, if necessary, the elementary Web ser-

vices he wishes to add in his business process. The most

obvious technology to use is UDDI (Universal Description,

Discovery and Integration), which is responsible in the ser-

vice Oriented Architecture for the registration of the pro-

vided Web services. The directory service enables a look-up

mechanism where consumers can go to find a service based

on some criteria.

The identification and registration capacities of the tool

have not yet been implemented, but it is our intention to im-

plement this in the near future. We believe many interesting

opportunities exist in this area.

Visualization techniques can be applied to create a

graphical navigation structure of the UDDI registry. Users

will be able to visually navigate the large amount of infor-

mation in the UDDI registry, therefore they will be able

to explore the registry and find what they need more effi-

ciently.

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04) 
1092-8138/04 $ 20.00 © 2004 IEEE 



2.2. Web services Composition & Execution

In order to create the composite Web service scenario, a

graphical user interface (GUI) is provided. Using this GUI

and its drag and drop features, a process developer defines a

business process scenario and manually maps the output pa-

rameter of one service to one of the input parameters of the

other. This data mapping is discussed in due course. While

the business process is defined using the interface, the main

instance of the process is stored in an XML based format.

Many problems arise when coupling Web services. In or-

der to orchestrate several Web services and create a business

process, output parameters and input parameters need to be

interconnected. Therefore the data types need to be compat-

ible and if not they should be converted. This process, also

called mapping, is one of the more challenging in the Web

services community today.

One of the problems of Web services that may pre-

vent them from becoming the enabling technology in the

e-business scenario, is the lack of reliability or Quality of

service (QoS) they guarantee. In this context, we would like

to especially mention the importance of availability and per-

formance. Availability is a measure that indicates the readi-

ness of the Web service to be invoked, while performance is

the synopsis of latency, execution time, etc. Reusability has

always been a delicate issue in software engineering, it de-

notes the degree to which a software module or other work

product can be used in more than one computing program or

software system [1]. Reusability will be implemented in the

system by allowing previously created Web service compo-

sitions to be added to new projects.

2.3. Web services Execution & Visualization

The execution of the defined business process is handled

by our execution engine, which is responsible for a wide set

of tasks, ranging from code generation, type mapping, pro-

cess verification, etc. The execution engine loads the sce-

nario file, generated from our graphical editor, and then acts

like a central mediator between all involved services and di-

rects the corresponding message-flow

Our execution engine relies heavily on code generation.

The engine receives an input scenario file, generated from

the graphical editor. From this scenario file, the engine cre-

ates an executable version of the business process. Multiple

options exist for this phase: a console application, a win-

dows GUI application, or a new Web service. Each of these

options should be implemented in our tool.

Exception handling, the process of handling run-time er-

rors in a clean way, is also playing an important role. Catch-

ing exceptions is the first step, afterwards appropriate ac-

tions should be undertaken. Currently, our visualization tool

uses a post-mortem visualization technique. This means that

all the information, needed to visualize the business pro-

cess, is gathered during the execution phase. Afterwards,

when the system has executed the composite Web service,

it loads the visualization file and generates the visualiza-

tion. The next step in our visualization development would

be a kind of runtime, live visualization of the system, which

will then allow us to intervene in the execution process at

runtime. Both techniques, post-mortem and runtime visual-

ization, are called code-intrusive techniques, which means

that they instrument the source code of the targeted program

with special code that provides information to the visualiza-

tion system.

3. Demonstration of the tool

Using a simple example, we would like to illustrate the

key features of our composition tool. First of all, we will

demonstrate the modelling of a business process using a

set of registered Web services. In this phase, the process

of data mapping will also be explained. Subsequently, the

code generation step and visualization step will be demon-

strated. Finally, we would like to show the tool’s exception

handling features.

4. Conclusions

In this proposal, we have presented the ideas and imple-

mentation of a Web services composition tool. This tool al-

lows developers to easily create and compose Web services

and additionally execute and visualize these composite Web

services. Visual programming is used to interactively create

a business process, while a post-mortem visualization tech-

nique takes care of the runtime visualization of the system.

A central execution technique is used to execute the busi-

ness process. We have implemented a prototype, using C#

and the Microsoft .NET Framework.

5. Acknowledgement

This research is partially sponsored by Microsoft Bel-

gium and Luxemburg.

References

[1] Institute of Electrical and Electronics Engineers. A compi-
lation of ieee standard computer glossaries. IEEE Standard
Computer Dictionary, 1990.

[2] W. van der Aalst. Don’t go with the flow: Web services com-
position standards exposed, 2003.

[3] W. van der Aalst and A. Hofstede. Yawl: Yet another work-
flow language, 2002.

[4] World Wide Web Consortium http://www.w3.org, 2004.

Proceedings of the 12th IEEE International Workshop on Program Comprehension (IWPC’04) 
1092-8138/04 $ 20.00 © 2004 IEEE 


	footer1: 


