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Abstract

We investigate the possibility of using public firms to regulate polluting
emissions in a Cournot oligopoly where production takes place at constant
returns to scale and entails a negative environmental externality. We model
the problem as a differential game and investigate (i) the Cournot-Nash game
among profit-seeking firms; (ii) the Markov Perfect Nash equilibrium under so-
cial planning, where the industry output is entirely controlled by a benevolent
planner aiming at the maximisation of social welfare; and (iii) the Markov Per-
fect Nash equilibrium in a mixed setup where at least one firm is public, while
the others remain profit-seeking agents. Our analysis identifies the conditions
whereby having a mixed market as a regulatory instrument suffices to drive the
industry to the same output, externality and social welfare as under planning,
both along the optimal path and in steady state.
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1 Introduction

The regulation of polluting emissions is a relevant issue and is receiving an increasing
amount of attention in the current agenda of policy makers. Several aspects of
the matter have been analysed in detail. A relatively large subset of the existing
contributions examines the existence and features of Pigouvian taxation aimed at
reducing pollution, both in monopoly and oligopoly regimes (see Bergstrom et al.,
1987; Karp and Livernois, 1992, 1994; Benchekroun and Long, 1998, 2002; and Tsur
and Zemel, 2008, inter alia). Indirectly, Pigouvian taxation is also considered as a
means for generating incentives towards R&D investments in environmental-friendly
technologies (to this regard, see Downing and White, 1986; Milliman and Prince,
1989; Damania, 1996; Chiou and Hu, 2001; and Tsur and Zemel, 2002, inter alia).
The established approach common to all of these studies consists in outlining the
social optimum, where a benevolent planner chooses a production plan for the firms
in the industry so as to maximise social welfare, as a benchmark against which the
performance of the profit-seeking firms has to be assessed. This produces corrective
policy measures which affect the firms’ incentives, and allows reproducing the same
social welfare level associated with the first best.

Another stream of literature analyses the feasibility of tradeable pollution per-
mits, which, however, may lead to the monopolization of the industry (see Newbery,
1990; and von der Fehr, 1993, inter alia). Monopolization, or at least some reduction
in the degree of competition in an industry where negative environmental external-
ities play a major role, may not look as bad as one could imagine, as any output
reduction entails two opposite effects: an increase in market price (which is, in prin-
ciple, undesirable) and a decrease in the amount of polluting emissions (which is,
instead, welcome). Accordingly, some degree of collusion and/or a wave of horizon-
tal mergers increasing concentration may actually turn out to be welfare-improving
(Lambertini and Mantovani, 2008).

A third line of research has shed light on the interplay between environmental
externalities and growth or capital accumulation, with or without environmental
taxation (Hartman and Kwon, 2005; Greiner, 2007; Bartz and Kelly, 2008; and
Itaya, 2008, inter alia).

In the literature, the typical intervention to correct environmental externalities
is aimed at modifying the agent’s incentives to produce output and the associated
amount of pollution. In general, this is done introducing tax schemes or subsidies
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(Benchekroun and Long, 1998, 2002). In this paper we target the same goal by
focusing on a different tool: the creation of a mixed market where public firms
aiming at the maximization of social welfare coexist with profit-seeking firms.1 To
investigate this issue, we consider a dynamic model in continuous time and compare
three alternative settings: the first is one where the industry is populated by N

profit-seeking firms playing a Cournot-Nash game; the second is the social planning
case, where a benevolent dictator chooses industry output to maximise social welfare;
the third is a mixed regime where at least one firm is public and maximizes social
welfare, and the remaining firms are profit-seekers and maximize profits only.

Our first result is that the dynamic game among profit-seeking firms reproduces
the same equilibrium strategies as the static counterpart. Consistent with the idea
that profit-seeking firms neglect the external effect of their production, their output
choices do not depend on the stock of pollution, nor on its evolution over time. On
the contrary, the policy function of the social planner is decreasing in the stock of
pollution. Comparing the two regimes, we find out that the planner may produce
less or more than the Cournot oligopolists depending upon the tradeoff between the
price effect and the externality effect associated to the output decision. We then
consider a mixed market composed of profit-seeking firms and public firms. We show
that the presence of public firms that internalize both the price and the externality
effect associated to the market outcomes forces the private firms to internalize the
amount of pollution produced by the industry. The regulator may therefore exploit
the strategic interaction (whose essential features are summarised by the negative
slope of the instantaneous best reply functions) to drive the industry output to the
socially optimal level. Notably, the (stationary) Markov perfect strategies entail
that the optimal industry output and the emission of pollution in the mixed market
is exactly the same as under social planning, both along the optimal path and in
steady state. This preludes to the possibility of introducing some public firm in the
market to endogenously affect the behaviour of the remaining profit-seeking units,
and drive the industry along the first best optimal path and steady state. Whether
this alternative is desirable depends on the costs associated to the introduction of
the public firms in the market. Public firms might indeed lack the appropriate
market incentives to be as efficient as private firms. We acknowledge this issue

1The role of a public firm as a regulatory instrument in mixed oligopoly without environmental

externalities has been lively debated. See Cremer, Marchand and Thisse (1989, 1991) and De Fraja

and Delbono (1989, 1990).
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by allowing public firms to incur some X-inefficiency costs (see Leinbenstein, 1966,
inter alia). We focus on the case where the social planner buys some profit-seeking
firms at market prices and substitutes them with public firms. Even when both
X-inefficiencies and acquisition costs are taken into account, there exist conditions
under which creating a mixed market is feasible and welfare improving.

The basic model is laid out in section 2. The non-cooperative equilibrium be-
tween profit-maximizing firms is outlined in section 3. Section 4 contains the analysis
of the social planning equilibrium. The two regimes are comparatively assessed in
section 5. In the section 6 the mixed setting is investigated to show the optimal be-
havior of private and public firms along the optimal path and in steady state, while
in Section 7 the social desirability of the mixed market is assessed. Concluding
remarks are in section 8.

2 The setup

The basic structure of the model is borrowed from Benchekroun and Long (1998,
2002). Consider an oligopoly market over an infinite (continuous) time horizon,
t ∈ [0,∞) . Firms supply a homogeneous good, whose market demand function is

p (t) = a−Q (t) (1)

at any time t ∈ [0,∞) , with a > 0 being a positive constant parameter measuring
the reservation price and Q (t) =

∑N
i=1 qi (t) being the sum of all firms’ output

levels. Production takes place at constant returns to scale (CRS), with a marginal
cost c ∈ (0, a) constant and common to all firms, so that firm i’s instantaneous cost
function is Ci (t) = cqi (t) . The production of the final output goes along with a
negative environmental externality taking the form of a flow of polluting emissions
E (t) = Q (t) . The stock of pollution S (t) ∈ [0, Ŝ] evolves over time according to
the following dynamics:

·
S (t) = Q (t)− δS (t) (2)

where δ > 0 is the decay rate of the stock. The instantaneous external effect Θ (t)
generated by pollution consists of two components generated by the flow Q (t) and
the stock S (t), respectively:

Θ (t) = εQ (t) + γ
S2 (t)

2
, (3)
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with ε ∈ (0, a− c) and γ > 0. Consumer surplus CS (t) is measured by the area
below the demand function and above market price p (t) , minus the externality
Θ (t):

CS (t) =
Q2 (t)

2
− εQ (t)− γ

S2 (t)
2

. (4)

It is worth noting that a contraction of output has ambiguous consequences over
consumer surplus, due to the presence of a negative externality proportional to
the output: on the one hand, shrinking output goes along with increasing market
price, which is harmful; on the other hand, it entails reducing the environmental
externality, which is desirable. The balance between these components will play a
key role in the remainder of the analysis.

Social welfare, defined as the sum of industry profits and consumer surplus,
writes as follows:

SW (t) =
N∑

i=1

πi (t) +
Q2 (t)

2
− εQ (t)− γ

S2 (t)
2

, (5)

where
πi (t) = [p (t)− c] qi (t) (6)

is firm i’s instantaneous profit function.
In the remainder of the paper, we investigate three cases: (i) the non-cooperative

game where firms compete à la Cournot-Nash to maximise individual profits; (ii) the
first best solution, where the industry is governed by a benevolent planner aiming at
the maximization of social welfare; (iii) a mixed oligopoly game where K firms are
public (and maximise social welfare), while the remaining N −K are profit-seeking
units. In case (i), firm i chooses qi (t) to maximise the discounted individual profit
flow:

JCN
i (t) =

∫ ∞

0
πi (t) e−ρtdt (7)

s.t. the state dynamics (2) and the initial condition S (0) = S0. Superscript CN

stands for Cournot-Nash. Parameter ρ > 0 represents the constant discount factor
common to all firms in the industry. In case (ii), which we will refer to as social
planning (using superscript SP), the aggregate production level is chosen so as to
maximise the discounted flow of social welfare:

JSP (t) =
∫ ∞

0
[SW (t)−X] e−ρtdt (8)
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under the same constraints. The parameter X ≥ 0 summarises the X-inefficiency
costs, paid in every instant t, possibly entailed by the lack of appropriate market
incentives affecting the public firm. In case (iii), every public firm k = 1, 2, 3, ...,K

maximises
JM

k (t) =
∫ ∞

0
[SW (t)−KX] e−ρtdt, (9)

where (9) takes into account the presence of K sources of X-inefficiency, while every
private firm i = K + 1,K + 2, ..., N maximises (7) under constraint (2) and the
initial condition.

3 The Cournot-Nash game among profit-seeking firms

Here we characterise the equilibrium of the first game, where all firms are private and
compete à la Cournot-Nash to maximise individual profits. We consider the open-
loop Nash equilibrium, and show that the optimal output of firm i never depends on
the stock of pollution because firms are completely uninterested in the externality
they produce.

Consider the current value Hamiltonian of firm i:

Hi (t) = πi (t) + λi (t)
·
S (t) . (10)

The necessary conditions are as follows:

∂Hi

∂qi
= a− c− 2qi (t)−Q−i (t) + λi (t) = 0 (11)

−∂Hi

∂S
=

·
λi (t)− ρλi (t) ⇔

·
λi (t) = (ρ + δ) λi (t) (12)

with the transversality condition being:

lim
t→+∞

e−ρtλi (t) S (t) = 0. (13)

Solving (12) yields:
λi(t) = λi(0)e(ρ+δ)t. (14)

Plugging (14) into (13), one obtains that the transversality condition holds if and
only if λi(0) = 0, i.e. for the trivial solution of (12). This leads the Cournot-Nash
differential game to collapse into the static one, whereby the optimal output of firm
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i is constant over time and coincides with the symmetric Cournot-Nash equilibrium
of the static game

qCN (t) =
a− c

N + 1
(15)

for all t. This can be ascertained by differentiating (11) w.r.t. time, imposing sym-
metry across quantities (qi (t) = q (t) for all i) and using (12). Then the following
control equation obtains:

·
q (t) =

(ρ + δ) [q (t) (N + 1)− a + c]
N + 1

. (16)

The unique solution of (16) is (15). Intuitively, as the private firms do not internalize
the effect of their production on the stock of pollution, they play the static solution of
the Cournot-Nash game irrespective of S.2 The associated profits and total output
are, respectively,

πCN (t) =
(

a− c

N + 1

)2

, (17)

QCN (t) =
N (a− c)

N + 1
. (18)

for all t and all S. In the Cournot-Nash game, the stock of pollution never vanishes:
it evolves over time as follows

S(t) =
(

S(0)− N(a− c)
δ(N + 1)

)
e−δt +

N(a− c)
δ(N + 1)

(19)

until the steady state stock of pollution SCN is reached,

SCN =
N(a− c)
δ(N + 1)

. (20)

The associated steady state social welfare is

SWCN =
N (a− c)

2δ2 (N + 1)2
{
(a− c)

[
δ2 (N + 2)− γN

]
− 2δ2ε (N + 1)

}
. (21)

Before proceeding to analyse the social optimum, we briefly evaluate the stability
properties of the dynamic system (2)-(16), by looking at the associated Jacobian
matrix:

J =

[
−δ N

0 ρ + δ

]
, (22)

2One can equivalently show that the open-loop Nash equilibrium is a degenerate Markov Perfect

Nash equilibrium where qCN (S) = (a− c) / (N + 1) for all S .
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whose trace and determinant are

Tr (J) = ρ > 0; ∆ (J) = −δ (ρ + δ) < 0. (23)

Accordingly,

Proposition 1 The Cournot-Nash equilibrium of the differential game is a saddle
point.

4 The social optimum

Here we assess the first best equilibrium where the industry is controlled by a benev-
olent planner choosing the output level so as to maximise social welfare. Given that
production takes place at CRS, we can simplify the model assuming that the planner
concentrates production in a single public firm, whose Bellman equation is:

ρVSP (S) = max
QSP

[
SW −X +

∂VSP (S)
∂S

(QSP − δS)
]

(24)

where the subscript SP stands for social planner. Note that the objective function
of the public firm includes both social welfare and the X-inefficiency. In view of
the fact that social welfare contains a quadratic externality, the problem takes a
linear-quadratic structure and therefore we set VSP (S) = ϕ1 + ϕ2S + ϕ3S

2. The
first order condition (FOC) is:

QSP = a− c− ε + ϕ2 + 2ϕ3S. (25)

Plugging (25) into (24) yields

Ω (ϕ1, ϕ2) + Ψ (ϕ2, ϕ3) S + Φ (ϕ3) S2 = 0, (26)

where Ω (ϕ1, ϕ2) ,Ψ(ϕ2, ϕ3) and Φ (ϕ3) must simultaneously be equal to zero w.r.t.
ϕ1, ϕ2 and ϕ3. This yields the values for ϕ1, ϕ2 and ϕ3 (see the Appendix for the
exact values). Substituting in (25) and solving, we obtain that the policy function
of the single public firm is a decreasing function of the current amount of pollution
(Benchekroun and Long, 1998)

QSP (S) =
2 (a− c− ε) (δ + ρ)

ρ + z
− z − 2δ + ρ

2
S, (27)

8



where z =
√

4γ + (2δ + ρ)2. Note that, as the X-inefficiency only affects the level
of net social welfare, it does not affect the optimal output (27) along the optimal
path. It does affect, however, the social planner’s optimal value function (through
the parameter ϕ1) :

VSP (S) =
2 (a− c− ε)2 (δ + ρ)2

ρ (ρ + z)
− X

ρ

+
(a− c− ε) (2δ + ρ− z)2

ρ + z
S +

1
4

(2δ + ρ− z) S2. (28)

For later reference, note that the discounted social welfare WSP (S), excluding the
(discounted) X-inefficiency of running one public firm, is

WSP (S) = VSP (S) +
X

ρ
(29)

Imposing stationarity, the steady state output, stock of pollution and social welfare
(excluding the X-inefficiency cost) read as follows:

S∗SP =
(a− c− ε) (ρ + δ)

δ (ρ + δ) + γ
, (30)

Q∗
SP =

(a− c− ε) (ρ + δ) δ

δ (ρ + δ) + γ
, (31)

SW ∗
SP = (a− c− ε)2 (ρ + δ)

δ2 (ρ + δ)− γ (ρ− δ)
2 [δ (ρ + δ) + γ]2

. (32)

5 Cournot-Nash equilibrium vs. social planning

Leaving aside X, intuitively, SW ∗
SP > SWCN . Therefore, if SW ∗

SP−SWCN > X, the
overall welfare appraisal speaks in favour of public monopoly. However, a priori it is
not clear whether SCN < S∗SP and QCN < Q∗

SP . The reason is that, in deciding how
much to produce, the planner faces a tradeoff between expanding output to increase
consumer surplus via a price reduction or decreasing it to reduce the environmental
externality. To shed some light on this issue we will focus on the comparison between
S∗SP and SCN . First, note that

SCN − S∗SP =
1
δ

[
ε +

(a− c− ε) γ

γ + δ (δ + ρ)
− a− c

1 + N

]
, (33)

with the following comparative static properties

∂
(
SCN − S∗SP

)
∂N

> 0. (34)
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Second, SCN > S∗SP for all

N > Ñ = δ (ρ + δ)
a− c− ε

γ (a− c) + δ (ρ + δ) ε
. (35)

or, equivalently,

γ > γ̃ =
δ (ρ + δ) (a− c− ε)

N (a− c)
− ε

a− c
. (36)

Proposition 2 If the number of firms in the industry is sufficiently large, N > Ñ,

or equivalently, if the weight γ given to the environmental externality is sufficiently
high, γ > γ̃, the steady state output and stock of pollution of the Cournot-Nash game
are higher than is socially optimal: QCN > Q∗

SP and SCN > S∗SP .

Therefore, if the external effect is a major one, then the planner finds it optimal
to produce less than the firms do at the Cournot-Nash equilibrium, because the
tradeoff speaks in favour of an output contraction, the price effect being more than
offset by the decrease in pollution.

6 The mixed market

We now consider a mixed market where some firms are public, while the remaining
ones are profit-seekers. We will show that, despite the fact that the stock of pol-
lution does not directly affect the instantaneous profit function of private firms, it
nevertheless indirectly affects the strategic choices of profit-seeking firms because of
the market interaction with the public firms. Notably, this drives the whole industry
along the same optimal path and steady state that would be optimal under social
planning.. In other words, the evolution of aggregate output, stock of pollution and
social welfare in the mixed market exactly reproduces the first best solution.

As for the solution under social planning, we focus on the Markov Perfect Nash
equilibrium. Let the value function of a public firm k = 1, 2, ...,K and that of a
private firm i = K + 1,K + 2, ..., N be, respectively

V M
k (S) = η1 + η2S + η3S

2, (37)

V M
i (S) = ν1 + ν2S + ν3S

2, (38)

where the superscript M stands for mixed. The Bellman equations of a public and
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a private firm read as follows:

ρV M
k (S) = max

qk

{
SW −KX +

∂V M
k (S)
∂S

(Q− δS)
}

, (39)

ρV M
i (S) = max

qi

{
πi +

∂V M
i (S)
∂S

(Q− δS)
}

. (40)

Taking the derivative of (39) and (40) w.r.t. qk and qi, respectively, and solving
allows obtaining the policy function chosen by each firm as a function of the the
other firms’ output and of the stock of pollution:

qM
k = a− c− ε + η2 − qi −Q−i −Q−k + 2η3S, (41)

qM
i =

1
2

(a− c + ν2 − qk −Q−i −Q−k) + v3S, (42)

where Q−i is the total production of the private firms, excluding firm i, and Q−k is
the total production of the public firms, excluding firm k, i.e. qi+qk+Q−i+Q−k = Q.

As expected in a market where firms compete à la Cournot, the optimal ouput
chosen by each firm is a decreasing function of the other firms’ output. Public
firms, however, are twice more reactive than profit-seeking firms than the profits-
seeking firms, and react in a one-to-one proportion to the output of the other firms.
Moreover, it is important to stress that, in the mixed market, it is no longer true that
the generic profit-seeking firm i ignores the externality S (see eq. 42). The reason
is that reaction functions depend on aggregate production, which is affected by the
amount of pollution S because public firms have objective functions that explicitly
depend on it. Therefore, even though private firms’s profits are not directly affected
by S, they are indirectly affected by S through strategic interaction on the market.

Assuming that all public and private firms choose symmetrically, i.e. qk +Q−k =
Kqk and qi + Q−i = (N − K)qi, and solving with respect to qk and qi yields the
following policy functions,

qM
k (S) =

a− c− (N −K) ν2 − (N −K + 1) (ε− η2)
K

(43)

−2
(N −K) ν3 − (N −K + 1) η3

K
S, (44)

qM
i (S) = ε + ν2 − η2 + 2 (ν3 − η3) S. (45)

Note that the optimal output of the private firms does not depend on the industry
concentration, nor on the number of public firms. Due to the market interaction
with the public firms, now the private firms make output choices conditional only on
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the stock of pollution. On the contrary, the productive choices of the public firms
also take into account the market concentration and the number of private firms.
The total output is

QM (S) = Kqk + (N −K) qi

= a− c + η2 + 2η3S. (46)

Interestingly, (46) does not depend on N and K, nor on the parameters charac-
terising the value functions of the private firms: only the parameters appearing in
the value function of the public firms are relevant in determining the total industry
output and the corresponding evolution of the stock of pollution.

We can now simplify the Bellman equations (39) and (40) for public and private
firms, respectively, as follows

Γ (η1, η2) + ∆ (η2, η3) S + Λ (η3) S2 = 0, (47)

Ξ (ν1, ν2, η2) + Υ (ν2, ν3, η2, η3) S + z (ν3, η3) S2 = 0. (48)

Solving Γ (η1, η2) = ∆ (η2, η3) = Λ (η3) = 0 and Ξ (ν1, ν2, η2) = Υ (ν2, ν3, η2, η3) =
z (ν3, η3) = 0, yields the values of the coefficients η1, η2, η2, ν1, ν2 and ν3(see the
Appendix for the exact values). Note that the parameters η2, η3 that characterize
the value function V M

k (S) of a public firm in the mixed market are the same as
those that characterize the value function VSP (S) of the public firm under social
planning. As the parameter η1takes into account the X-inefficiency entailed by the
public firms, it coincides with ϕ1 only if K = 1, i.e. if the mixed market contains a
single public firm.

Plugging in the values ν1, ν2, ν3, η1, η2 and η3 in (46), one obtains that the total
output in the mixed market coincides with the total output under social planning,

QM (S) = QSP (S) (49)

for all S. Given that the environmental externality is a linear function of the industry
output, also the evolution of the stock of pollution and social welfare coincides with
the first best solution. Moreover, given that firms’ profits are linear in the output,
also industry profits in the mixed market coincide with the first best. We are now
ready to state the main result of the paper.

Proposition 3 In the mixed market:
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1. along the optimal path, the industry output, industry profits and social welfare
are the same as under social planning for all levels of pollution S,

2. the evolution of pollution is the same as under social planning,

3. in steady state, the stock of pollution, the industry output, the industry profits
and social welfare are the same as under social planning.

It is instructive to consider what are the production levels of the private and
public firms along the optimal path leading to the steady state. Note first that
η3 < ν3 < 0, which implies that the optimal output (45) is increasing in the stock of
pollution for the private firms, and decreasing for the public ones (eq. 43). Overall,
however, the total industry output (46) is decreasing in the stock of pollution (as it
is under social planning).3 Second, as ε + ν2− η2 > 0, the optimal output produced
by a private firm is always positive. The industry output, and the output produced
by a public firm, however, can be negative for large enough stocks of pollution. Let

z =
√

4γ + (2δ + ρ)2 and define Ŝ as the threshold stock of pollution below which
the industry output along the optimal path is positive,

Ŝ =
4 (δ + ρ) (a− c− ε)
(z + ρ) (z − 2δ − ρ)

(50)

< SM∗ = S∗SP . (51)

When describing the setup in Section 2, we assumed that the stock of pollution S

is always below such a level. This does not guarantee, however, that the output of
a public firm is always positive, as it also depends on the market concentration (see
eq. 45). The condition for the output of a public firm to be positive all along the
optimal path is that both the initial and terminal production levels are positive, i.e.
qk(S0) ≥ 0 and qk(SM∗) ≥ 0. This is equivalent to requiring

S0 ≤ S̄(K), (52)

SM∗ ≤ S̄(K), (53)

where
S̄(K) =

1
2

a− c− ν2 (N −K)− (ε− η2) (N −K + 1)
ν3 (N −K)− η3 (N −K + 1)

≤ Ŝ(K) (54)

is the threshold stock of pollution below which the public firm’s output is positive.
When the above conditions hold, the mixed market where private and public firms

3Convergence to the steady state is guaranteed by the fact that η3 < 0 < δ.
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coexist will follow the first best optimal path. If instead this were not the case,
one might exploit the fact that ∂S̄(K)/∂K > 0 and limK→N S̄(K) = Ŝ(K), and
consider a mixed market where the number of public firms is large enough to ensure
that S̄ (K) satisfies both (52) and (53).

Proposition 4 For a given stock of pollution S0, in the mixed market there exists
a number K∗ ∈ [1, N ] of public firms such that, for all K ≥ K∗ :

1. all private and public firms have positive productions levels along the optimal
path,

2. the industry output, the stock of pollution and social welfare coincide with the
first best outcome both along the optimal path and in steady state.

The above proposition states that there exists a minimum number of public
firms such that the mixed market is able to reproduce the first best outcome. Such
a minimum number could be just one, provided that

S0 ≤ S̄(1) (55)

SM∗ ≤ S̄(1). (56)

As an example, consider the case where (i) the industry is at the steady state of the
Cournot-Nash game among profit-seeking firms, S0 = SCN , and (ii) the Cournot-
Nash outcome is associated to more production and pollution than would be socially
desirable in steady state: SM∗ < SCN . From Proposition 2 we know that the latter
case occurs if N > Ñ. Define N̂ as the number of firms such that SCN = S̄(1), then
the following holds

Proposition 5 Suppose the market is in the Cournot-Nash steady state. If there
exists an integer number N such that N ∈

(
max{2, Ñ}, N̂

]
, one public firm suffices

to regulate the market and drive it along the optimal path to the first best outcome.

See the Appendix for the proof. Given specific values for the parameters, it is
possible to verify whether the number of firms in the industry satisfies the above
requirements. For instance, consider the case where a = 10, c = 0, ρ = 1/20,

δ = 2/5, ε = 1/10, γ = 1/10. Then Ñ = 1.75, and N̂ = 2.1. Hence, if N = 2,

Proposition 5 holds and having a single public firm suffices to yield the first best.
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7 Regulating the market using public firms

In the previous section we have shown that a mixed market suffices to regulate
production and pollution according to the first best solution. While this regulating
task is a possible option, it might not be a desirable option if the associated costs
more than offset the benefits. In this section we explicitly consider these costs
and benefits, and we show the conditions under which creating a mixed market is
desirable.

For concreteness, consider the case where the the Cournot-Nash game among N

profit-seeking firms is at the steady state and the social planner is contemplating
the possibility of buying K ≥ K∗ firms out of the N profit-seeking firms populating
the market. For any given stock of pollution S, the regulation of the market via
public firms is desirable if and only if the discounted stream of social welfare of
the mixed market WM , minus the X-inefficiency costs and the acquisition cost β

of each private firm, is larger than discounted stream of social welfare under the
Cournot-Nash game WCN :

WM (S)−
(

X

ρ
−B

)
K > WCN (S). (57)

In the case under consideration, the initial stock of pollution is S0 = SCN because
the economy is in the Cournot-Nash steady state. In such a case the discounted social
welfare associated to the Cournot-Nash game is computed from (21) as follows

WCN (SCN ) =
1
ρ
SWCN (58)

Firms are bought at market price. Assume that the acquisition cost β of each profit-
seeking firm is equal to the present value of the discounted profits accruing to firm
i (eq. 17),

β =
1
ρ
πCN =

(a− c)2

ρ (n + 1)2
, (59)

To compute WM (S) we can use the fact that, for every S, social welfare is the same
under social planning and in the mixed market (Proposition 3). For a generic S,

this implies WM (S) = WSP (S) and, in the case under consideration,

WM
(
SCN

)
= WSP (SCN ). (60)

Substituting in (57) yields the following (see the Appendix for the exact value of
X∗):
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Proposition 6 There exists a threshold level of X-inefficiency X∗ such that, if
X < X∗, it is socially desirable to nationalize K private firms and drive the industry
steady state output, stock of pollution and social welfare to the first best outcome.

Even when the cost of buying and running the public firms are taken into ac-
count, there are conditions under which creating a mixed market is welfare improving
and allows regulating a Cournot oligopoly where production takes place at constant
returns to scale and entails a negative environmental externality. As a final remark,
it is worth mentioning that we have implicitly assumed that the market concentra-
tion remains constant. In other words, we have considered the case where all K

firms must produce after being nationalised. Without this requirement, the social
planner might exploit the linear technology, and concentrate the production of K

public firms in a single (big) public firm to save on the X-inefficiency costs associ-
ated to running the remaining K − 1 public firms. Clearly, this implies that the
requirement indicated in Proposition 6 would become less stringent.

8 Conclusions

We have addressed the issue of regulating pollution using public firms as a tool for
finely-tuning the industry output. In principle, modifying the overall amount of
production in an industry with polluting emissions has two opposite effects: one
is the classical price effect, the other is the external effect, that is, any output
expansion has the welcome effect of reducing price, but the undesirable effect of
increasing polluting emissions.

Indeed, the foregoing analysis has shown that industry output at the social
planning equilibrium may be lower than the Cournot-Nash industry output if the
number of firms is sufficiently large. In this respect we have identified sufficient
conditions on the parameters such that, if the weight attached to the external effect
is high enough, then the planner would always shrink production as compared to
the Cournot-Nash equilibrium. Then we have shown that in a mixed market it is
possible to obtain the same output and welfare, and the same evolution for the stock
of pollution, as under social planning. This outcome is due to the fact that, although
the environmental externality does not directly affect private firms’s profits, it does
so indirectly through market interaction because the public firms do include the
external effect into account. Interestingly, there exist conditions under which a
single public firm suffices to perform such a regulating action.
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Public firms might however lack the appropriate market incentives to be as ef-
ficient as private firms. We ackwnowledge this issue, and we allow public firms
to incur some X-inefficiency costs at each point in time. Even when taking X-
inefficiency costs into account, it may be socially convenient for the social planner
to buy some profit-seeking firms at market prices and substitute them with public
firms. We conclude that the creation of a mixed market candidates as an alterna-
tive policy tool for the regulation of externalities with respect to using Pigouvian
taxation or the efficient allocation of polluting rights. The feasibility of regulat-
ing environmental externalities via public firms in industries where the technology
features either increasing or decreasing returns to scale remains to be investigated.
This extension is left for future research.
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Appendix

Parameters of the value function under social planning

Let z =
√

4γ + (2δ + ρ)2, then the parameters of the value function VSP (S) =
ϕ1 + ϕ2S + ϕ3S

2 are as follows

ϕ1 =
(a− c− ε) (2 δ + ρ− z)

ρ + z
− X

ρ
(61)

ϕ2 =
(a− c− ε) (2 δ + ρ− z)

ρ + z
(62)

ϕ3 =
2 δ + ρ± z

4
(63)

The negative root of ϕ3 is chosen to ensure concavity of the value function.
Parameters of the value functions of public and private firms in the

mixed market
The parameters of the value function V M

j (S) = η1 + η2S + η3S
2 of each public

firm are as follows:

η1 =
(a− c− ε) (2 δ + ρ− z)

ρ + z
−K

X

ρ
, (64)

η2 = ϕ2, (65)

η3 = ϕ3. (66)

The parameters of the value function V M
i (S) = ν1 +ν2S+ν3S

2 of the profit-seeking
firms are as follows:

ν1 =
1
ρ

[(
(a− c− ε) (2 δ + ρ− z)

ρ + z
− ε

)2

+
2 (a− c)

δ + ρ

(
(a− c) (2 δ + ρ− z)2

4 (2 δ + ρ)
+

(a− c− ε) (2 δ + ρ− z)2

2 (ρ + z)
− ε (2 δ + ρ− z)

2

)]
(67)

ν2 =
2

δ + ρ

[
(a− c) (2 δ + ρ− z)2

4 (2 δ + ρ)
+

(a− c− ε) (2 δ + ρ− z)2

2 (ρ + z)
− ε (2 δ + ρ− z)

2

]
(68)

ν3 =
(2 δ + ρ− z)2

4 (2 δ + ρ)
(69)

Given SM∗ < SCN = S0, a single public firm suffices to regulate the mixed
market
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We are considering the case where the Cournot-Nash pollution is larger than the
first best pollution:

S∗SP = SM∗ < SCN = S0. (70)

According to Proposition 3, this occurs if N > Ñ.

The conditions to guarantee that one firm suffices to regulate the mixed market
are as follows

S0 ≤ S̄(1), (71)

SM∗ < S̄(1). (72)

Thus we have to find the conditions under which

SCN ≤ S̄(1), (73)

N > Ñ. (74)

Condition (73) is satisfied if

AN2 + BN + C ≥ 0 (75)

where

A = 2 (2 δ + ρ) [(a− c) γ + δ ε (δ + ρ)] (δ − z) < 0,

B = 2 (a− c) (δ + ρ)
(
2δ2 + γ + δ ρ

)
z − 2 (δ + ρ) {4 (a− c) δ γ

+δ ε (δ + ρ) (2 δ + ρ) + (a− c)
[
2 δ3 +

(
δ2 + γ

)
ρ
]}

> 0,

C = δ
[
2 (a− c) γ ρ− 2 ε (δ + ρ) (2 δ + ρ)2 + (a− c) (δ + ρ) (2 δ + ρ) (4 δ + 3 ρ)

]
+2 δ z

[
2 (a− c) γ − (a− c− 2 ε)

(
2 δ2 + 3 δ +2 ρ

)]
> 0.

Given that C is positive, (75) is satisfied for N ∈
(
0, N̂

]
, where N̂ is the positive

root of the parabola (75).
To sum up, Proposition 6 holds if there exists an integer number N such that

the following conditions are met:

1. N ≥ 2,

2. N > Ñ (the Cournot-Nash output is larger than the first best output),
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3. N ≤ N̂ (the initial output is non negative).

Critical X-inefficiency cost
The condition for the desirability of a mixed market with respect to a Cournot-

Nash oligopoly at the steady state is

WM (SCN )−K∗X

ρ
−K∗β > WCN (SCN ), (76)

where

WCN (SCN ) =
(a− c) N

(
2 δ2 (a− c− ε) +

(
δ2 (a− c− 2 ε) + (−a + c) γ

)
N
)

2 δ2 (1 + N)2 ρ
,

β =
(a− c)2

ρ(1 + N)2
(77)

WM (SCN ) =
(a− c)2 N2 (2 δ + ρ− z)

4 δ2 (1 + N)2
+

2 (a− c− ε)2 (δ + ρ)2

ρ (ρ + z)2

+
(a− c) (a− c− ε) N (2 δ + ρ− z)

δ (1 + N) (ρ + z)
. (78)

Substituting and solving in (76) yields the following critical inefficiency cost:

X∗ =
(a− c) (a− c− ε) N ρ (z − ρ)

δ (1 + N) K∗ (ρ + z)
− (a− c)2

(1 + N)2

−2 (a− c− ε)2 (δ + ρ)2

K∗(ρ + z)2
− 2 N ρ (a− c) (a− c− ε)

(1 + N) K∗ (ρ + z)

−(a− c) N [(a− c) (2 + N)− 2 ε (1 + N)]
2 K∗(1 + N)2

−
(a− c)2 N2

(
2 γ + 2 δ ρ + ρ2 − ρ z

)
4 K∗δ2 (1 + N)2

. (79)
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