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Abstract 

The marine microalga Tetraselmis suecica is known for its ability to tolerate a wide range of 

salt concentrations. Cultures were grown under 48 different nutrient concentration-salinity 

conditions, ranging from 2 to 64 mM NaNO3 and from 0 to 35‰ S. Salinity was more 

important for the growth rate of the microalgae when it was related to the nutrient 

concentration in the culture medium. Optimal growth conditions were between 25 and 35‰ 

salinity and nutrient concentrations of 2, 4 and 8 mM of NaNO3, resulting in 0.55 

doublings/day and a maximum cellular density of 1.3 × 106 cells/ml. Variations in salinity and 

in nutrient concentration had a greater effect on the final biomass than on the growth 

velocity. The total protein of the culture and protein per cell increased when the salinity 

increased for a given nutrient concentration. The total protein of the cultures decreased when 

the nutrient concentration increased for a given salinity. Protein per cell decreased with 

increasing salinity up to 20‰ but from this point of the process was reversed. The nitrate-

protein transformation rate increased with the salinity and decreased with increasing nutrient 

concentrations. The maximum rate was 64%.  
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Introduction 

Microorganisms are potentially useful as food for human consumption, in the production of 

chemicals, in aquaculture and in the bioconversion of solar energy (Kharatyan, 1978; 

Goldman, 1979). The marine microalga Tetraselmis suecica (Prasinophyceae) is at present 

widely used in aquaculture (Walne, 1974; Bayne, 1976; Laing and Utting, 1980). If its growth 

response to a wide range of nutrient concentrations and salinity conditions in batch cultures 

were known we could establish some of the para-meters for a mass production which would 

enable us to obtain maximum growth velocity, cellular density and protein concentration. 

Several studies have revealed significant differences in the ability of various species or 

classes of microalgae to utilize nutrients at low concentrations. Such studies have provided 

much useful information on the adaptabilities of marine microalgae and have significant 

implications regarding competition between species under various conditions of limiting 

nutrients (Laws and Bannister, 1980). There is no doubt that many algae grow over a wide 

range of combinations of temperature, light and nutrient concentrations and yet maintain their 

elemental composition within more or less narrow limits. It is therefore clear that microalgae 

have mechanisms for regulating the uptake of each element and that these mechanisms 

serve to maintain composition and to achieve balanced growth (Stross and Pemrick, 1974). 

Materials and methods 

The microalga used was Tetraselmis suecica, isolated from the waters of Ria de Arosa 

(Fabregas, 1982). It was cultured in seawater filtered through a 0.45 µ Millipore filter, 

autoclaved at 120° C for 20 min and enriched with NaNO3 , 2 mM; NaH2PO4, 100 µ M; ZnCI2, 

1 µ M, MnCl2, 1 µ M;  Na2MoO4, 1 µ M; CoCl2, 0.1 µ M; CuSO4, 0.1 µM; ferric citrate, 20 µM; 

thiamine,35 pg/I; biotin, 5 pg/l; B12 , 3pg/l; EDTA, 26.4 µM; TRIS-HCI, 15 mM; pH 7.6. 

We used salinities of 35, 30, 25, 20, 15, 10, 5 and 0% 0. The salinity of the seawater (35%0) 

was reduced by the addition of appropriate volumes of fresh distilled water prior to medium 

preparation.  

The first nutrient concentration utilized was the one whose composition is given above and 

which corresponds to NaNNO3, 2 mM. From this we followed a geometrical progression, 

using concentrations corresponding to 4, 8, 16, 32 and 64 mM of NaNO3. Nutrient 

concentrations are expressed  as NaNO3 concentrations, but refer to the whole medium. 

Cultures were carried out in Kimax screw-capped test tubes (15 X 2.5 cm) with 40 ml of 

medium. All cultures were maintained in a controlled environment incubator (New Brunswick) 

at 15°C and 3900 lux light from fluorescent lamps (Phillips TL 20 W/55). A 12 : 12 dark: light 



regimewas maintained in order to obtain synchronous cultures. An inoculum of 1 X 104 

logarithmic phase cells/ml was used. 

Optical density (OD ) of the cultures was determined by using a Coleman II 6/20 

spectrophotometer reading at 530 nm. Protein was measured in the stationary phase by the 

dye-binding method (Bradford, 1976). Cellular density was determined by counting culture 

aliquots in a Thoma chamber. 

Stationary phases, corresponding to maximum biomass production, were compared by an 

overall multivariate one-way analysis of variance (ANOV A), and logarithmic phases, that 

indicate the growth velocity of the cultures, were compared by a one-way analysis of 

covariance (ANCOVA). 

Results and discussion 

We plotted optical density against time and against salinity for each nutrient concentration, 

obtaining three-dimensional figures (Fig. 1). Statistical treatment of these figures is 

represented in Table 1. 

 

It is generally accepted that a relation exists between optical density and cellular density 

(Lyon and Woo, 1980). In our experiments the relation between OD measured at 530 nm in 

screw-capped test tubes (2.5 cm light run), and cellular density fitted a power curve y = axb 

with acorrelation coefficient of 0.99. This relation was calculated for the entire culture period, 

and the values calculated for the constants were y=0.98x0.91. Nevertheless, a change in OD 



values does not always involve a change in the cellular density determined by counting, and 

this occurred with 0%0 salinity and with nutrient concentrations higher than 16 mM NaNO3. 

Salinity is known to interact with other variables (Terlizzi and Karlander, 1980). 

 

Marine unicellular algae are generally considered to be tolerant of and adaptable to a wide 

range of salinities (McLachlan, 1961). The marine microalgae T. suecica tolerates a wide 

range of salt concentrations. This is also the case for the green alga Dunaliella which is able 

to survive in a wide range of salt concentrations by changing the internal concentrations of 

glycerol and so adjusting its osmotic potential (Ben-Amotz and Avron, 1973; 1978). 

Optimal growth conditions for obtaining a maximum cellular density in the stationary phase 

were 25-35%0 salinity and 2, 4 and 9 mM NaNO3 (Fig. 1A, B, C). Ranges of optimal salinity 

for growth in media prepared from artificial seawater were found to be 15-25%0 for Isochrysis 

and 25-30%o for Tetraselmis (Laing and Utting, 1980). 

Cellular densities of about 1.3 X 106 T. suecica cells/mI were obtained in the optimal salinity 

range. Below 25%o, cellular density decreased proportionally to salinity. This relation 

occurred with nutrient concentrations up to 16 mM NaNO3. Higher concentrations reversed 

the process (Fig. lE, F). It may be supposed that a more exact adjustment of the ionic 

composition of the culture medium would allow better cellular metabolism, providing 



improved nutrient utilization and greater growth at low salinities and high nutrient 

concentrations.  

Salinity and nutrient concentrations have little effect on the growth velocity in comparison 

with the biomass production reached in the stationary phase. The maximum growth velocity 

of T. suecica was practically the same in a wide range of salinities, with 0.55 doublings/day. 

A significant decrease appeared at 0 and 5%o and with 2 to 16 mM of NaNO3 A change in 

the growth velocity occurred at higher nutrient concentrations and was not proportionally 

related to salinity variations. 

Samples for protein measurement were always collected at the same time because protein 

concentration varies depending on the moment in the light period at which the sample is 

taken (Van Liere et aI., 1979). Nutrient concentrations influenced the protein content of T. 

suecica cultures. Other authors have pointed out that nutrient supply influences the 

chlorophyll a, carbohydrate and protein content of unialgal cultures (Myklestad, 1974). 

When the nutrient concentration increased the total protein content of the cultures tended to 

diminish (Fig. 2). Protein/cell ratio also tended to diminish from 0 to 20%0 of salinity, but the 

process was reversed at higher salinities (Fig. 3), for each nutrient concentration. When the 

salinity increased the total protein content of the cultures and the protein per cell tended to 

increase. 

 



Changes in the protein content are not necessarily indicative of cellular density changes 

because the biochemical composition of T. suecica may change within more or less narrow 

limits depending on environmental conditions. 

 

We established efficiency as the ratio between nitrogen added in nitrate form to the culture 

medium and the protein nitrogen produced per culture. The efficiency increased when salinity 

increased and decreased when nutrient concentrations increased, giving values about zero 

with high nutrient concentrations (Fig. 4). The carbon source was possibly the limiting factor 

which decreased efficiency proportionally to nutrient concentrations. 

In batch cultures of microalgae without aeration and with an excess of nutrients, two growth-

limiting factors are CO2 and pH, and these may or may not be related. Furthermore, this 

excess of nutrients can introduce other limiting factors such as toxicity produced by TRIS 

concentrations (Guillard and Ryther, 1962), osmotic pressure and the lack of adjustment in 

ionic relations. 



 

With regard to pH as the limiting factor, the culture medium used was buffered with TRIS 

(Guillard and Ryther, 1962; McLachlan and Gorham, 1962; Pintner and Provasoli, 1958; 

Sorge and McLaughlin, 1970) which maintained the pH within the optimum range for growth 

of T. suecica (Fig. 5). 

 

We showed that the carbon source was the limiting factor because an increase in the nutrient 

concentration did not produce an increase in biomass production, but CO2 added to the 

cultures increased the final biomass production. If the cultures had been aerated, the final 

biomass production would have been greater because the atmospheric CO2 supply would 

have provided a carbon source. 
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