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Abstract 
Over the last few decades Photonic Crystals (PhCs) have enjoyed immense attention from 

engineers, physicists and other interested parties due to its unique characteristics and its 

promise to revolutionize optical communication technologies. PhCs are made of dielectric 

materials periodic in one, two, or three dimensions and can exhibit photonic band gaps to 

certain frequencies. Therefore, it can be used to trap or guide “light” of certain frequencies 

within it. This thesis uses this very idea to construct a Photonic Crystal Slab (PCS) of finite 

thickness using photonic band gap maps, where air holes are introduced to create the 

periodicity. Cavity arrays are formed by manipulating the properties of certain air holes and 

the interactions between the modes within the cavity are analyzed. Two types of cavities are 

formed- one consisting of similar defects and one consisting of dissimilar defects. The 

software used for this thesis is Rsoft CAD Suit and the simulation tools used are 

BandSOLVE and FullWAVE.        
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1. Motivation  
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In the present world, there is a constantly increasing necessity for efficient and 

resilient systems in all aspects of technology. No matter how much systems are developed, 

there still seems to be an insatiable need for further improvement. As such, deviating from 

conventional practice, experimentation with new materials and elements has begun in hopes 

of achieving the high demands of performance. One such discovery by using new materials, 

or rather by using older materials in a new way, has lead to the advent of what we know as 

photonic crystals. 

Photonic crystals (PhC) are structures consisting of periodic dielectric materials that 

have the ability to control the propagation of light that passes through them. It was originally 

discovered in 1887 by an English physicist named Lord Rayleigh, who experimented with 

periodic multi-layer dielectric stacks and showed they exhibited a band gap in one dimension 
[1]

. However, the name “photonic crystal” was coined much later in 1987 when Eli 

Yablonovitch and Sajeev John published their revolutionary papers on the topic 
[2] [3]

. Since 

then number of research on photonic crystals sky rocketed mainly because of its never-seen-

before abilities to control the flow of light which lead to the belief that its possibilities are 

limitless.  

Since then photonic crystals have come a long way seeing extensive research in all 

possible fields where applicable. The existence of band gaps within the structure means that 

some frequencies of light can be trapped within the structure 
[4] [5]

. Due to this reason there 

has been high concentration on experimentation and fabrication of optical devices such as 

waveguides
 [6]

, lasers 
[7]

, fibers 
[8]

, etc using PhCs. At the heart of a laser there lies a cavity, 

which essentially is a defect within the perfectly symmetrical structure and allows the 

localization of light. The walls around the cavity acts as mirrors and thus light can trapped 

and built up inside the cavity with growing intensity much needed for the lasers.  

In this thesis, we have studied the properties of a cavity that is composed of several 

defects- in other words known as cavity array. We have designed the cavity in a photonic 

crystal slab (PCS) where air holes are punched to create the periodicity. The thickness of the 

slab is taken to be close to half of the lattice constant for which allows for maximum 

confinement
 [9]

. The design of the slab is done by use of photonic band gaps (PBG) and the 

band gap map. 

The second chapter of this thesis describes in brief the fundamental aspects of 

photonic crystals including their types, applications, different key components of the 

structure and the necessary details needed to learn about photonic crystals in a basic level. 

This part intends to elucidate the key ideas about photonic crystals that are necessary to fully 

understand this thesis easily. 

The third chapter is a detailed explanation of the computation methods used during 

the simulations of our structure. The chapter discusses the detailed theoretical ideas behind 

the Plane Wave Expansion (PWE) Method used in the calculation of the photonic band gaps 

and also the Finite Difference Time Domain (FDTD) method used to simulate and excite the 

structure and acquire the Intensity vs Wavelength graphs.  
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Chapter four illustrates the prime objective of this thesis detailing the set up of the 

initial structure to the design of the various forms of cavity that we have used. This chapter 

also consists of the results that we have found by using the simulation methods mentioned in 

chapter three.  

Chapter five summarizes all the results with discussions about future research 

possibilities and also tries to propose a new use for PhC cavities. 
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2. About photonic 

crystals 
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2.1 The Basic Properties of Photonic Crystals 

 

 

A crystal structure is a unique arrangement of atoms or molecules in 

a crystalline liquid or solid. A crystal structure describes a highly ordered structure, 

occurring due to the intrinsic nature of molecules to form symmetric patterns. An electron 

passing through a crystal lattice experiences a periodic potential. Both the elements of the 

crystal and the arrangement of the lattice indicate the conduction properties of the crystal. 

 

Since the electron propagates as wave and the energy of an electron in an atom is 

quantized, they can have only certain discrete values. This concept is applied to the electron 

energy in a molecule or a crystal with several atoms. When atoms are brought close 

together to form a crystal, their inter-atomic interactions result in the formation of electron 

energy bands, mainly two distinct bands (Kasap, et.al 2001). It is because of this band gap, 

only the waves with certain criteria are capable of travelling through a periodic potential 

without scattering and also propagate through it while others are restricted. There are no 

allowed electron energies in the band gap- it represents the forbidden electron energies in 

the crystal. The gap can extend to cover all possible directions of propagation of an electron 

if the lattice potential of the crystal is strong. Hence, this would result in a complete band 

gap. An example of such a material would be a semiconductor. 

 

             In semiconductor, the energy of the electron in the crystal falls into two distinct 

energy level  called the valence band and the conduction band that are separated by the energy 

band gap or the forbidden energy, as shown in the figure 2.1.1. 

 

 

 

                  Figure 2.1.1 The energy band diagram of electrons in a semiconductor (Source: Kasap, et.al 2001) 

 

In case of photonic crystals, atoms, molecules or ions are replaced by materials 

having different dielectric constants and the periodic dielectric function would replace the 

periodic potential of a crystal (Joannopoulos, et.al 1998). It has been found that if the material 

used has high efficiency and if the dielectric constant of the various medium used, varies 
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considerably from each other, then the refraction and reflection of light by the interfaces of 

photonic crystal allows photons to produce different phenomenon similar to the ones that can 

be obtained due to the periodic potential created by electrons within a crystal. Here the most 

important property that determines the significance of photonic crystal is the photonic band 

gap. 

 

2.2  Photonic Band gap 

 

 

The photonic band gap (PBG) are those frequency or energy of light for which 

propagation is prohibited inside the photonic crystal, just like the band gap found in 

semiconductors. As a result photons with energy inside the PBG when incident on the 

structure are reflected back. On the other hand  if defects can be introduced into the periodic 

structure it will change the way photon interact just like the effect of introducing defect to the 

crystal structure of a semiconductor. As a result the radiation within the defect frequency will 

propagate inside the structure and for multiple defects, radiation will be guided like a 

waveguide. (Joannopoulos, et.al 1998). Details about photonic band gaps will be discussed 

in the following chapters. 

 

 

2.3 Photonic crystals in Nature: 

 

 

                        

 

 

 

 

 

 

 

 

 

 

Photonic structures are found in nature for millions of years. It has been used for the 

purpose of communication and reproduction between individuals in some species. We can 

see natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and 

other marine animals, in plants and more. An example of a certain species of butterfly is 

shown in figure 2.3.1 and figure 2.3.2 

 

Figure 2.3.1 periodic structure appears in butterfly 
from South America 

Figure 2.3.2 The periodic structure appears to be 
diffraction grating 
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2.4 Differences between semiconductors and photonic crystals: 

 

 

 Semiconductor Photonic crystal 

 

Particle 

scattered 

 

Electron 

 

Photon 

 

Periodicity 

provided by 

 

Atomic lattice 

 

Dielectric media 

  

Band Gap 

 

Electronics band gap 

 

Photonic band gap 

 

Forbidden 

in 

particular 

 

Energy 

 

Frequency(cannot propagate through 

periodicity dielectric structure) 

 

Band Gap 

 

Band gap exists naturally 

 

Fabrication is a challenge, precision need be 

the order of 0.5um, micro-lithography 

 
Table: 2.1 Differences between photonic crystals and semiconductors 

 

 

2.5  Different Dimensions of Photonic Crystal 

 

     

Photonic crystals can be divided into three categories based on the arrangement of 

the elements in the lattice. The categories are:  

 One dimensional (1D) 

 Two dimensional (2D)  

 Three dimensional (3D)  

 

 

 

Figure 2.5.1 Examples of a) 1D b) 2D c) 3D photonic crystal 
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2.5.1  One dimensional Photonic Crystal 

 

 

The simplest photonic crystal is the one dimensional photonic crystal. Here, the 

periodicity exists in one direction only, whereas in the other two directions it is uniform. 

1D photonic crystals has alternating layers of materials with different dielectric constants.  

 

Example of this is the Bragg mirror or the multilayer dielectric mirror such as the 

quarter wave stack. In these devices, light wave at each interface is partially reflected and 

if the reflections from multiple interfaces interfere destructively, it would eliminate the 

forward propagating wave. On the other hand, if the interference is constructive, then a 

large percentage of the incident light will undergo reflection (Kasap, et.al 2001).  

 

It is also used as anti-reflecting coatings in order to improve the quality of optical 

devices.  A 1D photonic crystal have very few variations in its photonic structure, since it 

has a layered structure, as a result only the number of layers, refractive index of each layer 

and the thickness of layers could be varied to bring out the changes.  

 

 

 
Figure 2.5.1.1 The principle of reflecting coating works 

 

 

 

 

 

 

 

 

  

Figure 2.5.1.2 Illustration of how an anti-dielectric works 
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2.5.2 Two dimensional Photonic Crystal 

 

 

For a two dimensional photonic crystal it has periodicity in two directions while 

remaining uniform in the third direction. Photonic band gap appears in the planes of 

periodicity. A further detail about the 2D photonic crystal will be discussed later in the 

following chapters. 

 

        

2.5.3 Three dimensional Photonic Crystal 
 

 

For three dimensional photonic crystal the periodicity exists in all three planes as a 

result changes can be made much more readily compared to 1D or 2D.  

New form of application can be made by changing the arrangement of elements of 3D 

photonic crystals. The example of naturally occurring 3D photonic crystal is the stone opal, 

which is famous for its unique optical properties such as showing off different colors when 

turned around. This is because of its reflectance property which depends on the incident 

angle of light, which is then reflected at different wavelengths creating the phenomenon. 

 

2.6 Applications of photonic crystals 
 

 

Due to its radical ability to manipulate the flow of light, photonic, crystals have 

already seen much practical use. Three main structures of interest are mirrors, wave guides 

and cavities. Using these three structures, much research has been done to find practical uses 

of photonic crystals. For example, one dimensional photonic crystal is already being used as 

high reflection coatings in mirrors and lens.  

Two dimensional photonic crystals have seen the most research lately. With 

theoretical applications ranging from waveguides and filters to laser cavities and chemical 

detectors, use of two dimensional photonic crystals seems to be limited only by imagination. 

One practical use of such crystal already on the verge of being commercialized is the 

photonic crystal fibers and may, in the near future, replace optical fibers in use, due to the 

crystal‟s superiority in guiding light.  

Three dimensional photonic crystals are still in their infancy. Research on three 

dimensional photonic crystals are yet not as aggressive as with the lower dimensions, but its 

uses too may be vast. In fact, with improvement in the fabrication technology, three 
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dimensional photonic crystals may be used to implement optical transistors in optical 

computers. In other words, photonic crystals may one day replace semiconductors 

completely.        

 

2.7 Reciprocal lattice and First Brillouin zone 

 

 

For understanding the operation of optical devices, it is very important to know how 

the electromagnetic field would interact with the photonic crystal device. As a result we 

need to consider the distribution of electromagnetic field inside the lattice.  Therefore to 

design photonic crystal based devices the use of reflectance spectrum, transmittance spectrum 

or the band structure of the crystal can be considered. It is best suited if band structures are 

used, since they provide complete information about electromagnetic waves propagating in 

the crystal. 

 

The first step in this process would be to find out the parameters which would 

describe the structure of a photonic crystal. This includes terms such as unit cell, lattice 

vector, reciprocal lattice, reciprocal lattice vectors and the first Brillouin zone. The above 

terms will be explained in this chapter using the 1D or 2D structures for simplicity. 

 

 

2.8 Unit Cell 
 

 

Since Photonic crystal is made up of an infinite periodic structure if the information 

of a single unit cell is understood than the information can be used to understand the entire 

structure. A unit cell is any region in space that gives us the idea of the entire function of 

the crystal. A base point is selected and each point within the unit cell is closer to this base 

point rather than the neighboring base points. The photonic crystal lattice is determined by 

its unit cell, its shape and permittivity (Sukhoivanov, et.al 2009). 

 

  The following method is used to determine a unit cell of a photonic crystal 

(Sukhoivanov, et.al 2009) 

 

1.    At first the base element of the photonic crystal has been selected. If the photonic 

crystal is comprised of rods in air then a single rod can be chosen as the base 

element. 

2.    Line segments are drawn to connect the base point with corresponding 

points of neighboring elements. 

3.  Straight lines are drawn through the center of each of the previously drawn 

line segments and perpendicular to them. 
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4.     The figure formed by these lines form the unit cell of the photonic crystal. 

 

 
 

Figure 2.8.1 Process of unit cell determination 

 

2.9 Lattice Vector 
 

 

As mentioned before, the unit cell is translated to map out the entire function of 

the photonic crystal. This translation depends on the lattice vector. A lattice is a set of 

discrete points in space that repeats periodically.  While choosing, it must fills out the 

entire unit cell. As photonic crystal has an infinite periodic structure, it is not possible 

to define an infinite number of lattice vectors. So a set of basis vectors, i.e. primitive 

lattice vector is defined. Its number is same as the number of dimension of the crystal 

(Sukhoivanov, et.al 2009). The lattice vector can be written in the general form 

R = la1 + ma2 + na3, for some integers l, m and n. The point R is known as lattice vector, 

while the basis vector, a1, a2 and a3 are termed primitive lattice vectors. 

 

 

 
 

Figure 2.9.1 Possible choices of primitive lattice vectors (Source: Sukhoivanov, et.al 2009) 
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2.10 The Reciprocal lattice 
 

 

For every lattice there is a second lattice associated called reciprocal lattice, which 

are inverse of each other. The lattice vectors have the dimensions of length therefore the 

reciprocal lattice vectors have dimensions of inverse length. The lattice and reciprocal 

lattice are related by the equation: 

ai.bi=δij2π 

 

The reciprocal lattice vector is defined in terms of the basis primitive lattice 

vectors as done previously for establishing lattice vectors. From the primitive lattice 

vectors of the photonic crystal, the primitive reciprocal lattice vectors can be obtained. 

 

 

2.11  The Brillouin Zone 

 

 

The unit cell of reciprocal lattice is the Brillouin Zone. It is determined in a similar 

manner as it has been done previously for the unit cell of the lattice vector in space. The 

process involved in establishing the Brillouin zone involves several steps (Sukhoivanov, 

et.al 2009): 

 

 Unit cell of the photonic crystal is determined. 

 Primitive lattice vector is set. 

 Primitive reciprocal lattice vectors are computed. 

 The base element of the photonic crystal, reciprocal lattice, is selected. 

 Line segments are joined to the point of the base element with corresponding 

points of neighbor elements. 

 Straight lines are drawn through the center of each of the previously drawn line 

segments and perpendicular to them. 

 The region that developed is the Brillouin Zone. 
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              Figure: 2.11.1 The Brillouin Zone for a 2D photonic crystal (Source: Sukhoivanov, et.al 2009) 

For the computation process of photonic crystal band structure, the reciprocal lattice 

and the brillouin zone play a major role, achieving the limits of the variation of the wave 

vectors where computation of the eigen-states will be carried out. Within a Brillouin zone, 

there exist points, known as the high symmetry points, which could be translated into 

themselves only when rotating the Brillouin zone by 90°,180°,30° 𝑜𝑟 60° depending on the 

photonic crystal lattice. Computation of the band structure starts from the centre of the 

Brillouin zone and is denoted by" Г" At this point the wave vector, k is zero. The 

computation then follows through all the high symmetry points and then returns to this point. 

This forms the k-path. 

 

Figure: 2.11.2: K-path of photonic crystal with square lattice, hexagonal lattice and 3D hexagonal lattice  
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2.12 Two Dimensional Photonic crystals:  
 

 

For a two dimensional photonic crystal, its periodicity appears in two of its axes and 

being uniform along the third, and the band gap appears in the plane of periodicity. If light 

propagates in this plane, then it is possible to divide the harmonic modes into two 

independent polarizations, each of them having their own band structure. It can also prevent 

the propagation of light in any direction within the plane, unlike the 1D crystal. 

 

 

Figure 2.12.1 A square lattice of dielectric column, with ‘r’ and ‘a’ shown on left. 

According to the figure 2.11, the columns are considered to be infinitely long. For 

certain values of the lattice constant, “a” (column spacing), the crystal can have a photonic 

band gap along the x and y axis. Within this gap, no states are permitted and the incident light 

is reflected. 

There are an infinite number of lattice types available for a 2D photonic crystal due to 

the variation of shape of the elements and their placement. However, in general, there are two 

commonly used lattice types of the 2D photonic crystal, the square and the hexagonal type. 

The unit cell of a square lattice 2D photonic crystal has the shape of a square and in case of 

hexagonal lattice, the unit cell has the shape of a regular hexagon. 

 

 

 

 

 

 

Figure 2.12.2 Examples of 2D photonic crystal lattice types  
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2.13 The Photonic band structure and band gap  
 

 

Since the most important feature of the photonic crystal is the band gap as it is 

mentioned earlier, it corresponds to the range of light frequency or energy that is not allowed 

to propagate through the photonic crystal structure. However, by the help of a defects or 

irregularities in the structure it can be possible to guide these forbidden energies by means of 

a waveguide. 

 

 

Figure 2.13.1 The photonic band structure for on axis propagation as computed for 3 different multilayer 

films. 

The left diagram in figure 2.13 is for a homogenous medium, i.e. all the layers have 

the same dielectric constant. The middle one is for a structure where alternate layers have 

dielectric constants of 13 and 12. The rightmost one is for a multilayer whose alternate layers 

have dielectric constants in the ratio 13:1.  

It is found that if other parameters are kept constant, then the band gap increases with 

increase in dielectric constant. 

The problem associated with band structure computation of a photonic crystal is to 

find the dispersion relation, that is, the dependence of resonant frequencies of the photonic 

crystal on the wave vector of the radiation passing through it. In order to obtain the dispersion 

relation, it is necessary to solve the eigen problem equation inside infinite periodic structure. 

 

2.14 The band gap and its size  

 

 

For determining the extent of its band gap the scale of the crystal is an important 

factor. For this reason, the extent of the band gap cannot be characterized by only considering 
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its frequency width. Thus, the gap-mid gap ratio is used to determine the extent, since it is 

independent of the scale factor of a crystal. Let the frequency width of the band gap be Δ𝜔 

and 𝜔𝑚 be the frequency at the middle of the gap, and then gap-mid gap ratio is Δ𝜔/𝜔𝑚. If 

the system undergoes scaling all the frequencies undergo scaling by the same factor and the 

gap- mid gap ratio remains the same. For this reason, in band diagrams the frequency and 

wave vector are plotted in dimensionless units, 𝜔𝑎/2𝜋𝑐 and 𝑘𝑎/2, where frequency is equal to 

𝑎/𝜆 and 𝜆 is wavelength in vacuum as shown in Fig 2.13 

 

 

 Figure 2.14.1 The photonic band structure of a multilayer film.  

 

2.15 Analysis of the band structure 
 

 

 

Figure 2.15.1 Complete and partial photonic band gaps 
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As mentioned earlier, the wave vector space could be connected to the coordinate 

space by connecting some points of the Brillouin Zone with the radiation propagation 

direction within the photonic crystal. Hence it could be inferred that within each direction of 

the photonic crystal there exists a band gap, and these specific areas are referred to as the 

partial photonic band gaps. At some points these band gaps exist in all possible angles by 

overlapping with each other and hence creating the complete photonic band gap. Therefore, 

any one of the mentioned ways, by calculating the gap- mid gap ratio or by specifying the 

frequencies where photonic band gap appears, it is possible to locate the band gap in a 

photonic crystal. 

 

 

2.16 The Photonic Band Gap Maps 
 

 

While designing a phonic crystal it is important to determine the photonic crystal 

parameter from known frequency characteristics. For example, in order to design the device 

with the band gap at the required frequency, it is important to be aware of the permittivity 

of the materials, the structure and size of elements being used or about the crystal lattice. 

To solve these problems, the photonic band gap map or the reduced band structure is used. 

The map is obtained by projecting the complete band gap, obtained at different values of 

the photonic crystal parameters such as refractive index, elements size, frequency etc. The 

band gap map is drawn by gathering information about the complete band gap from the 

band structure and then plotting it against the ratio: radius/lattice constant. 

 

 

 
Figure 2.16.1: Gap map for a square lattice of dielectric rods (Source: Joannopoulos, et. al 1998). 

 

For overcoming the problems in the designing process of photonic crystal device, 

photonic band gap map can be used. In addition to that these maps can also be used to 

determine the parameters at which maximum reflection occur.   



Page | 18  
 

3. Computational 

methods used: Plane Wave 

Expansion (PWE) and 

Finite Difference Time 

Domain (FDTD) 
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3.1 The Plane Wave Expansion Method (PWE Method) 

 

 

 This is a technique which uses an eigen formulation of the Maxwell‟s equation and 

solves the eigen frequencies for each of the propagation directions of the wave vectors in a 

photonic crystal. (Danner et.al 2011). 

The PWE method is used for calculating electromagnetic band gaps (Satpathy, et al. 

1990). It can also be used to simulate the field distribution in photonic crystals but the FDTD 

method is preferred to calculate the field distribution because the FDTD algorithm does not 

need to solve integral equations and it is easier to obtain frequency domain data from time 

domain results rather than the converse. It would be easy to obtain the frequency domain 

from the time domain when many frequencies are involved. 

If we want to get the evaluation of the Plane Wave Expansion Method, it starts with 

the Maxwell‟s equations. The following derivations of equations are for 2D photonic crystals.  

The common symbols with their meanings are: 

 

 ∇. : Divergence operator  

 ∇×: Curl operator  

 B: Magnetic flux density or magnetic field density or magnetic induction measured in 

tesla (T)  

 H: Magnetic field strength or magnetic field measured in ampere per meter (A/m)  

 D: Electric displacement field or electric flux density measured in coulomb per square 

meter (C/m2)  

 E: Electric field measured in newton per coulomb (N/C)  

 J: Current density measured in ampere per meter square (A/m2)  

 𝜌: Electric charge density measured in coulomb per meter square (C/m2) 

                                                         (3.1.1) 

                                                              (3.1.2) 

                                                          (3.1.3) 

                                                          (3.1.4) 

We considered that there is no charge and current density in a 2D photonic crystal. 
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    (3.1.5) 

    (3.1.6) 

  (3.1.7) 

   (3.1.8) 

 

With equation 3.1.7 and equation 3.1.8 it can be written as 

 (3.1.9) 

 

H is written as inverse Fourier transform in time and space, 

   (3.1.10) 

𝑘′ is the wave vector in the material.  

A plane wave of frequency 𝜔 is, 

      (3.1.11) 

So it can be said that above equation is summation of plane waves with infinite 

frequencies and wave vectors. . This is the basic equation for plane wave expansion. Equation 

3.1.10 is used in equation 3.1.11 and the new equation formed is, 
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  (3.1.12) 

  (3.1.13) 

𝑘′ and r are in the y-z plane. Next the equations defining the reciprocal lattice of a 2D 

photonic crystal are required for further development of the plane wave expansion method. 

 

Figure 3.1.1 Lattice of a 2D hexagonal Photonic crystal. R represents radius. 

The figure 3.1.1 shows the lattice of a 2D hexagonal photonic crystal where a1 and a2 

are the basis vectors of the lattice. The blue enclosure defined by the basis vectors is the unit 

cell.  

The translational vector in the lattice is,  

R=n1a1+n2a2       (3.1.14) 

n1, n2∈ integers.  

Because of the periodicity of the lattice, 

   (3.1.15) 

    (3.1.16) 

G is called the reciprocal vector, 

G=m1b1+m2b2    (3.1.17)

      

m1, m2∈ integers. 
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b1 and b2 are the basis vectors of the reciprocal lattice (shown in the figure 3.1.2). 

 

 

            Figure 3.1.2  Reciprocal lattice of a 2D hexagonal photonic crystal. BZ stands for Brillouin zone.  

   (3.1.18) 

                                                                 (3.1.19) 

                                                                 (3.1.20) 

n(r) and u(r) can be now written as fourier series in terms of G, 

                                                                (3.1.21) 

    (3.1.22) 

K=k+g is substituted in equation (3.1.6) 

  (3.1.23) 
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This is similar to Bloch‟s theorem which states that the energy eigen-function for a 

system where the wave function of a particle is placed in a periodic potential is written as the 

product of a plane wave envelope function and periodic function ((𝑟)) that has the same 

periodicity as the potential. The equation takes the following form, 

   (3.1.24) 

The energy eigen-values are 𝜖𝑛𝑘=(𝑘+𝐺) which is periodic with periodicity G of the 

reciprocal lattice vector. The energies associated with the index n differ with wave number k 

and form an energy band defined by band index n. The eigen-values for n are periodic in k 

and all values of 𝜖𝑛𝑘 occur for k values within the first Brillouin zone. 

Equations 3.1.23 to 3.1.24 are used to get a generalized eigen-value equation in terms 

of magnetic field H, 

 

 

We used PWE method for computations to prove to that it is advantageous because as 

it follows the Fourier method it suffers from Gibb‟s phenomenon (the unusual manner in 

which the Fourier series of a piecewise continuous differentiable periodic function behaves at 

a discontinuity) and converges slowly to the solution. Though it has some demerits PWE is 

commonly used for calculating band gaps and dispersion relations. 

 

3.2 Band Gap Calculation using Plane Wave Expansion  

 

 

The Band Gap of a photonic crystal states the behavior of the incident light which 

propagates in a specific direction inside the photonic crystal. In this section it is explained 

how the Band Gap is calculated using the Plane Wave Expansion Method. For simplicity the 

process to calculate the Band Gap for a 1D photonic crystal is shown. 2D photonic crystal 

band gap calculation follows a similar process.  

It is required to solve the eigen-problem for Helmholtz equation in order to calculate the band 

gap. The Helmholtz equation in terms of magnetic field is, 
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   (3.2.1) 

The eigen-function of an infinite periodic structure such as a photonic crystal is also 

infinitely periodic. Thus, the Bloch theorem is used to represent the eigen-function of the 

photonic crystal. 

    (3.2.2) 

Here ℎ𝑘,(𝑥) is a periodic function and 𝑛 is the state number. 

Equation (3.2.2) is expanded to Fourier series by reciprocal lattice vectors, 

          (3.2.3) 

ℎ𝑘, (G) is a periodic function in terms of wave vectors also known as Fourier 

expansion coefficient.  

The dielectric function is also periodic, thus for convenience its reverse is taken as a 

Fourier series function, 

   (3.2.4). 

Equation (3.2.4) is not dependent on co-ordinates but only on the reciprocal lattice vector.  

The operator in equation (3.2.4) can be represented in the form of a matrix, whose element 

can be found from the following equation, 

  (3.2.5) 

Set of solutions of system of equations (3.2.5) can be found as the eigen-value of matrix 

differential which is acting as an operator 

    (3.2.6) 

The set of G and G‟ should be the same so that the matrix is a square one.  

Equation (3.2.6) is a Hermitian matrix. A Hermitian matrix has the following condition, 
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    (3.2.7) 

 

Equation (3.2.7) means that it has a complex conjugate. The eigen-value of the matrix 

is 𝜔 2 𝑐 2 which gives the eigen frequency of the structure. The result of the eigen-problem 

solution is represented as a band structure which is shown in Figure 19, 

 

 

Figure 3.2.1 Band structure of a 1D Photonic Crystal 

The x-axis of the band structure represents the wave-vector and the y-axis represents 

the normalized frequency which is 𝜔𝑎2 . The frequency is normalized by the period of the 

photonic crystal, so the scale of the structure does not matter. The period of the photonic 

crystal can be of micrometers of millimeters but the band structure remains unchanged 

regardless of the size of the period due to the normalized frequency. The layer thickness ratio 

and permittivity is kept constant in this case.  

 

Analyzing the band structure of figure 3.2.1 in detail, the eigen-frequencies of the 

photonic crystal start from zero frequency at k=0. Higher on the frequency axis exists the 

photonic band gap. The photonic crystal does not have eigen-states within the photonic band 

gap. The bands and photonic band gaps appear consecutively on the frequency axis except 

when the photonic band gap width is almost equal to zero.  
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3.3 Finite-Difference Time-Domain Method (FDTD)  

 

 

It is Plane Wave Expansion which is used for eigen-states calculations for an infinite 

periodic structure in addition to calculations of field distributions which correspond to those 

states but it is not suitable when the need is to find field distribution in complicated structures 

or examine dynamic characteristics.  

 

In this method there is one of the most advanced numerical analysis technique today 

for computation of the field distribution inside Photonic crystal devices. In this thesis the 

software Rsoft Photonic CAD is used for the simulation.  

 

This method consists of discretization of space. The derivatives in Maxwell‟s 

equations are replaced by finite differences that results in a system of algebraic equations 

which are linear on coordinates. The system is solved starting from initial and boundary 

conditions. (Sukhoivanov, et al. 2009). 

 

This method helps us to find the field distribution by solving the system of Maxwell‟s 

equations on the discrete cell. The solution is based on the permittivity distribution function 

which determines radiation propagation conditions, initial conditions which contains 

radiation parameters such as the wavelength or the radiation spectrum for non-

monochromatic wave, the amplitude and the initial phase, and boundary conditions which 

determine the radiation behavior at the boundary of the computation region (Sukhoivanov, et 

al. 2009). When these conditions are set, the field distribution is computed one by one.  

Here are the symbols of common terms with meaning: 

 

 B: Magnetic flux density or magnetic field density or magnetic induction measured in 

tesla (T)  

 D: Electric displacement field or electric flux density measured in coulomb per square 

meter (C/m2)  

 E: Electric field measured in newton per coulomb (N/C)  

 H: Magnetic field strength or magnetic field measured in ampere per meter (A/m)  

 c: Speed of light in vacuum measured in meters per second (m/s)  

 𝜇: Permeability measured in ampere square meter (Am2)  

 𝜀: Permittivity measured in farad per meter (F/m)  
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Maxwell‟s Equations are taken to derive in terms of finite differences. The equations for 

the medium are considered neglecting dispersion, absorption or light generation: 

 

 

 

The curl operators are evaluated and the equations are written separately by their 

vector components. All equations are in single direction. 

 

FDTD is mainly based on discretization of space. Thus all partial derivatives are 

interchanged with differences: 

 

The derivative is represented by its approximate value which is the function variation 

divided by the argument variations taken at different cell nodes as shown in figure 3.3.1. 
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Figure 3.3.1 Yee Cell used for FDTD method computation 

 

In the figure 3.3.1, a single cell is shown with all corresponding components of the 

field vectors. By solving the system of Maxwell‟s equations by the FDTD method, values of 

the field intensity in each cell node is obtained.  

 

Replacing the derivatives, the recurrent expression is obtained which gives the value 

of the field component in a node of the cell using known values of the field components in 

adjacent nodes. The recurrent equations are: 

 

From the above equations it shows the step-by-step recurrent computation of the 

electric field and the magnetic field starting from one side of the computation cell and 

moving to the other side. The values of the electric and magnetic field components are taken 

at the nodes (i+1/2, j+1/2, k+1/2) and (i−1/2, j−1/2, k−1/2) in order to take central differences 
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approximation. Computation is carried out over and over again for different times till 

required computation time is achieved. 

FDTD is not a process of having any approximation or theoretical restrictions but it has a 

complex solution of Maxwell‟s equation. With this process we get a wide range of 

frequencies converted in a simple and single simulation. It calculates the electric field and 

magnetic field all over the computational process. It also helps to provide displays of the 

electromagnetic field movement. This display helps to understand what is happening in the 

whole model and whether the model is correct or not. 
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4. Photonic crystal 

cavity array design and 

defect interactions 
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4.1 Designing a photonic crystal 

 

 

So far we have learned much about photonic crystals, its behaviors, applications and 

ways to perform simulation. We shall now design a photonic crystal cavity whose loss 

characteristics are to be analyzed. We do so by first starting with a basic array layout and then 

using it to simulate and plot the band gap map of the structure, which will allow us to fashion 

the crystal to our desire. Figure 4.1.1 shows the basic array layout of a photonic crystal made 

by punching air holes in a Gallium Arsenite (GaAs) slab. The thickness of the slab is set to be 

0.6 x lattice constant for maximum confinement 
[14] [15]

.  As seen from the figure, we have 

used a hexagonal array of air columns that are punched in the GaAs photonic crystal slab 

(PCS). We did however have a choice of a cubic array of holes. However, we chose the 

hexagonal array the reasons for which will be elucidated later in the following section.  

 

 

Figure 4.1.1 Basic crystal layout 

Now that the basic layout is created, we need to determine whether a band gap exists 

within this structure.  It must be noted that since we intend to create a cavity using this 

structure, we must make sure that a band gap exists for light confinement to occur. To do this 

we use the BandSOLVE simulation tool of the RSOFT CAD suit. Before starting the 

simulation we need to check two things. First we need to check whether the first brillouin 

zone is set up as expected and second we need to check whether the domain of the structure 

itself is set up properly. We also need to set a kind of filter known as light lines at this point. 

The light line of a PCS defines a distinguishing feature of a PCS band diagram: the light 

cone. Modes which lie within the light cone are radiation modes, and extend infinitely within 

the cladding. Modes which lie below the light cone are guided in the plane of the slab 
[16]

.     

GaAs Slab 

Air holes (lens) 
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Figure 4.1.2 and figure 4.1.3 shows the first brillouin zone and the domain 

respectively. Figure 4.1.4 shows the band structure within this PCS. It is to be noted the band 

structure shows only odd- parity because we are only concerned with the TE modes.  

 

Figure 4.1.2 First Brillouin Zone                                                                                        Figure 4.1.3 Domain of the PCS 

 

 

Figure 4.1.4 Realization of band gap in the structure 

From the figures we can see that the structure is set up as per our requirement. With 

all the parameters set accordingly, we can generate the band gap map of this crystal which 

will allow us to calculate the lattice constant and radius for our desired structure. Here we use 

the plot graphs utility to plot a graph of Radius vs Frequency for this structure. It must be 

noted that the x-axis is indeed a ratio of the radius and lattice constant (r/a) for this structure. 

Figure 4.1.5 shows the generated band gap map.  
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Figure 4.1.5 Band Gap Map 

From the figure we see the largest gap is found when the ratio r/a is 0.44 and thus this 

value is a very suitable choice for us. From there we measure the corresponding higher 

frequency WH and lower frequency WL to be 0.465 and 0.389 respectively. Thus we find the 

mid-gap frequency WM to be 0.427. We can see that y-axis really is a ratio of the lattice 

constant and the wavelength. We chose the wavelength in this case to be that used in 

communications (1.5µm). Thus we can easily calculate the lattice constant from the ratio 

a=λWM, yielding a= 0.64. Now using this value of a, we can calculate the value of the radius 

from the ratio r=0.44a, which yields r= 0.282.  

Using these values, we edit the parameters of the PCS and create our desired 

structure. Figure 4.1.6 shows the modified PCS ready to be tailored according to our desire to 

create cavities. 

 

Figure 4.6 Modified PCS 
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4.2 Designing an cavity array with similar defects 

 

 

  As we have seen earlier, two-dimensional photonic crystals of finite depth can exhibit 

a photonic band gap for electromagnetic waves propagating in the plane of the crystal. 

However, by lattice defects, one can permit localized modes that have frequencies within the 

photonic band gap. Such modes decay exponentially away from the defect. In other words, 

the defect behaves as an optical cavity, and the surrounding photonic crystal represents 

mirrors surrounding the cavity. Therefore, the defects introduce peaks into the density of 

optical states inside the photonic band gap. Moreover, the defects break the discrete 

translational symmetry of the photonic crystal 
[16]

.  

The simplest way of forming a microcavity starting from the unperturbed hexagonal 

photonic crystal lattice of air holes is by removing a hole, changing the radius of a single 

hole, or by changing its refractive index (Jelena Vuckovic 2002). However, we deviate from 

this conventional method and create an array of defects surrounding a central defect and try 

to study the interactions between the defect modes.  

 

4.2.1 Cavity array with holes removed 

 

 

In order to create the defects, we completely remove the air columns instead of 

changing the radius or the refractive index. Figure 4.2.1.1 shows the cavity array formed by 

removing the holes in the same 2D PCS that we designed earlier. 

 

Figure 4.2.1.1 Cavity array with similar defects. For simplicity of understanding, the defects are numbered as shown. 

1 2 

4 3 

5 

6 7 
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Now that the cavity is set up, we can start our FDTD simulation using the FullWAVE 

simulation tool in the Rsoft CAD Suit. Since we are interested in the interaction between the 

defect modes, all we need to do is excite the central defect (defect 1) with an impulse. Doing 

so will not only show us which mode is most confined in the central defect but also show 

which wavelengths have been lost and also which “losses” are captured by the surrounding 

defects. In order to find the wavelengths, we place a time monitor in the central defect which 

gives us the intensity vs wavelength for the simulation. Similarly the time monitor is placed 

in each defect to yield the intensity vs wavelength graphs. Figure 4.2.1.2 shows the placement 

of the time monitor and figure 4.2.1.3 shows the intensity vs wavelength graph found for 

defect 1.  

 

Figure 4.2.1.2 Time monitor placement 

 

 

 

Figure  4.2.1.3 Intensity vs Wavelength graph for defect 1 
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From the graph we see that even though we are not concerned confinement yet there 

is a very high peak present indicating a significant quality factor, Q, at a wavelength of 

0.37µm. However, we are not concerned about the quality factor so details about it are not 

going to be discussed.  

We shall now take a look at how the modes interact with each other. To do so, we 

place the time monitors in each defect and extract the intensity vs wavelength graphs. Figure 

4.2.1.4 shows the graphs in the same order as the cavities.  

 

Figure 4.2.1.4 Intensity vs Wavelength graphs for defect modes 1 to 7 in the same order as in the crystal 

 

From the first glace one very interesting phenomenon is immediately noticed. We find 

that the losses in the horizontal axis are virtually identical on both sides. In other words 

defects 2 and 5 interact with the same wavelengths. We also find that diagonal interaction 

(between defects 3, 4, 6, 7) is rather weak for the all the wavelengths seen in the graphs and 

in fact is much noisy compared to the horizontal graphs. It can also be noted here that these 

two kinds of losses are also distinct from each other. 

From the above results, we can conclude that for an cavity array with similar defects, 

created by removing the holes, the horizontal losses are almost identical on both sides and the 

diagonal losses are identical in the four corners.  
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4.2.2 Cavity array with radius of holes changed 

 

 

Let us now study the interaction between modes in a cavity array formed by defects 

consisting of holes whose radius has been reduced. In this case the radius of the defect holes 

were reduced by an arbitrary factor of 2. Figure 4.2.2.1 shows the layout of the structure. 

 

Figure 4.2.2.1 Layout of cavity array with the defect radius reduced 

We use the same simulation techniques used before to yield the intensity vs 

wavelength for the individual defects and compile them as shown in figure 4.2.2.2.  

 

Figure 4.2.2.2 Intensity vs Wavelength graphs for defect modes 1 to 7 in the same order as in the crystal 

7 

2 

6 

1 

3 5 

4 
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From the graph it is again obvious, as before that, the horizontal interaction is similar 

in both sides and the diagonal interaction are similar in the corners. However, it must be 

noted that the peak wavelengths has changed due to the overall changes in the structure. In 

fact due to reduction of the holes, a donor defect state is excited and pulled into the band gap 

from the air band which causes the changes in peak wavelengths. 

  

4.2.3 Cavity array with refractive index of holes changed 

 

 

In order to create the defects by changing the refractive index, we start with the 

original PCS structure, and then instead of changing the radius or removing the holes, we 

simply change the refractive index of the holes. For convenience, we take the value of the 

refractive index to be an arbitrary value of 1.5. Figure 4.2.3.1 shows the layout of the 

structure. The yellow holes represent defects with their refractive index changed. 

 

 

Figure 4.2.3.1 Cavity array with defects formed by changing the refractive index 

For this structure, the intensity vs wavelength graphs are plotted following the same 

techniques as before. The results are shown in figure 4.2.3.2. 

1 2 

7 6 

3 

5 

4 
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Figure 4.2.3.2 Intensity vs Wavelength for the defect modes in the same order as in the crystal 

From the figure, we again find that the horizontal defects interact with each other in 

the same manner on both sides and the diagonal defects interact with each other in the same 

manner at the corners. Also it can be noted here that there is significant changes in the peak 

wavelengths as well. This is again for the same reason as before. By tuning its refractive 

index between 1 and the refractive index of the slab (GaAs refractive index 3.46), a donor 

defect state is excited and pulled into the band gap from the air band.  

From the above results, it can be concluded that for cavity arrays formed by same 

defects, irrespective of how the defects are formed, the interaction between the horizontal 

defects will be the similar and the diagonal defects will also be similar. However, these two 

interactions are distinct from each other as the graphs show, the diagonal interactions are 

weaker and in all cases noisy. Therefore, by experimenting and optimizing, the interactions 

can be tuned to requirement. Doing so will not only enable us to use the cavity as a resonator, 

but also allow us to control the manner in which light, or information, is lost from the cavity 

which truly will open new prospects for the uses of photonic crystal cavities. 

 

4.3 Designing cavity arrays with different defects 

 

 

In the previous we designed a cavity array where the defects were made by removing 

the air holes, as seen in figure 4.2.1, meaning that the defects were identical. Now we are 

interested to analyze the interaction between the defect modes of a cavity array which is 
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made of defects that are different from each other. In this case, we create the defects by 

reducing the radius of the air holes. The central air hole (defect 1) radius is reduced arbitrarily 

by a factor of 2. The surrounding defect radii are reduced by a factor of 2.25, 2.50, 2.75, 3, 

3.25 and 3.50 for the defects 2, 3, 4, 5, 6 and 7 respectively. Figure 4.3.1 shows the crystal 

layout after these modifications are made. 

 

Figure 4.3.1 Cavity array with different defects 

With the PCS set up correctly we now carry out the FDTD simulation again using the 

same procedures used as before, exciting the central defect, and yield the intensity vs 

wavelength graphs. Figure 4.3.2 shows the graph for the central hole (defect 1), which 

indicates that there is high confinement however at an even lower wavelength. Figure 4.3.2 

shows the graphs for all the defects in the same order as in the cavity and we shall now use it 

for analyzing the losses.  

 

Figure 4.3.2 Intensity vs Wavelength graph for defect 1 

Defect 1 

Defect 3 Defect 2 

Defect 7 

Defect 6 

Defect 5 

Defect 4 
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Figure 4.3.3 Intensity vs Wavelength graphs for defect modes 1 to 7 in the same order as in the crystal 

From the graphs we unfortunately could not find any conclusive evidence that 

indicates there is some form of interaction between the defect modes. Also from the graphs, it 

is evident that the horizontal losses are not same in both directions and there are no 

perceivable similarities in the diagonal losses either. In fact, no conclusive information was 

found by experimenting with different values of the radii. This failure goes on to buttress our 

findings in the previous section by indeed proving that our findings are only valid for similar 

defects.  One interesting observation is made however. It can be seen that for different radii, 

the modes in the surrounding defects are different. This phenomenon indicates that modes 

confined in each defect can be tuned to requirement by changing the property of the defects.  
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5.  Conclusion and 

future research 
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This thesis attempts to investigate the interaction between defect modes in a cavity 

array tailored in a PCS, created by using the band gap map. The band gap map was used to 

initially calculate the dimensions of the PhC in which the cavities were tailored and analyzed. 

It was successfully shown that a cavity array composed of similar defects in a hexagonal 

lattice will have virtually similar losses in the horizontal direction and also similar losses in 

the diagonal corners. However, these two losses are distinct from each other. The findings 

also allowed us to conclude that the PhC structured can be tailored according to our wish by 

using the band gap map to manipulate the interacting wavelengths. The theory is quite 

practical considering we have used photonic crystal slab of finite thickness instead of 

considering infinite columns. 

There is much room to further investigate this theory. Due to software limitations we 

were not able to simulate an active device which could generate its own lights. By studying 

an active device‟s intensity vs wavelength graphs, this theory may be further scrutinized as to 

whether it holds for all kinds of PhC cavities. Further investigation may also be carried out by 

introducing wafers on top and at the bottom of the PCS which will challenge the validity of 

the theory. This theory can be investigated using different kind of array cavities (honey comb 

lattice for example) as well given that the initial crystal layout consists of a hexagonal 

structure.   

Optimizing PhC cavities have seen extensive research in the last couple of decades. 

One of the prime objectives when designing a PhC cavity is to reduce the losses; in other 

words to increase the quality factor, Q. By using the knowledge found in this thesis, such 

losses in PhC cavities may be reduced especially when designing a hexagonal cavity. Also 

the cavity may be designed (by introduction of non linear materials within the crystal) to 

store light, or information, in different defects within itself, or it can also be designed to act as 

ademultiplexer which can filter at least six wavelengths by using the six surrounding defects.  

In the near future photonic crystal based components will see extensive deployment in 

the technological world due to its radically different characteristics. PhC cavities offer a very 

attractive use of the 2D PhC because of its ability to store information for significantly long 

periods of time given that quality factor is high. PhC cavities are already being used to 

experimentally fabricate high efficiency lasers, LEDs, and other optical devices for its high 

confinement abilities. This paper may lead to creating array cavities that are much more 

efficient than the ones presently researched upon leading to very effective information 

storage cells that can be used in optical RAMs or other optical memory devices.       
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