
 IMPLEMENTING E-GOVERNANCE IN BANGLADESH

USING CLOUD COMPUTING TECHNOLOGY

Mahafuz Aziz Aveek
Student ID: 10241005

Md. Sakibur Rahman
Student ID: 05101024

Department of Computer Science and Engineering
August 2011

BRAC University, Dhaka, Bangladesh

IMPLEMENTING E-GOVERNANCE IN BANGLADESH USING CLOUD

COMPUTING TECHNOLOGY

A Thesis

Submitted to the Department of Computer Science and Engineering

of

BRAC University

By

Mahafuz Aziz Aveek

Student ID: 10241005

Md. Sakibur Rahman

Student ID: 05101024

In Partial Fulfillment of the

Requirements for the Degree

of

Bachelor of Science in Computer Science

August 2011

DECLARATION

We, Mahafuz Aziz Aveek and Md. Sakibur Rahman, student of Computer
Science and Engineering department, BRAC University represent my thesis
work on “Implementing e-Governance in Bangladesh using Cloud Computing
Technology” as requirement of completion of bachelor degree. This thesis
research was performed under supervision of Farazul Haque Bhuiyan,
Lecturer, BRAC University, and Dhaka, Bangladesh and co-supervised by
Razib Imran, Software Architect, UNDP (access to information program), and
Dhaka, Bangladesh.

This is to declare that the thesis work was done by me and it has not been
submitted before. Help that was taken from internet and books was mentioned
at references.

Signature of Supervisor Signature of Authors

____________________ ___________________
 Farazul Haque Bhuiyan Mahafuz Aziz Aveek

 Md. Sakibur Rahman

ACKNOWLEDGMENTS

We are grateful to my Almighty Lord for blessing me with the patience and
knowledge and the opportunity to learn something new.

We are heartily thankful to my thesis supervisor Farazul Haque Bhuiyan for
his belief in me and pushing me to do better.

I, Mahafuz Aziz am thankful to my Cousin, Sk. Muttabiur Raihan for his
encouragement, guidance and support from the initial to the final level to
enable me to develop my understanding and complete my thesis. He inspired
me and gave solutions to problems I could not solve by myself.

We are thankful to all my teachers, especially to Abdur Rahman Adnan for
giving me suggestions and advices.

We would also like to thank “jhoroTEK” for helping me by providing resources
that I needed. And last but not the least I thank my family and all my friends
(Specially Mohibuzzaman Zico, Imran Hossain Shaon) for supporting me in
times of need.

ABSTRACT

The evolution of cloud computing technology has brought a significant impact
in our life. Having different constrains such as high volume query processing
request, managing a central data center, data security, uncertainty of electric
power, lack of domain knowledge expertise, we personally believe e-
Governance implementation with the cloud computing technology can resolve
the constrains as par discussed.

Our thesis will present a novel cloud computing model for implementing e-
Governance system in Bangladesh and also the implementations of e-
Governance applications in a cloud platform such as Google apps engine.
This platform is based on distributed system, it has non-relational database
such as BigTable. It can scale up to zeta bytes records and query and it has
the power of fault tolerance and high availability, which are the basic
requirement for the implementations of Cloud based e- Governance system.

TABLE OF CONTENTS

Title i

Declaration ii

Acknowledgement iii

Abstract iv

Table of Contents v

Chapter 1: Introduction
 1.1: Cloud Computing
 1.2: e-Governance
 1.3: Thesis Objective

1
1
1
2

Chapter 2: e-Governance in Details
 2.1: Importance of e-governance
 2.2: Interactive relations between organizations
 2.3: Challenges and Cloud benefits

3
3
4
6

Chapter 3: Our Approach to the Problem
 3.1: Analysis of the existing platform
 3.1.1 OpenNebula
 3.1.2 OpenStack
 3.1.1 Google Apps Engine
 3.1.1 Comparison between other platform
 3.2: Designing the solution using the chosen platform
 3.2.1 Problem analysis
 3.2.2 Problem optimization

9
9
9
10
10
11
12
12
13

Chapter 4: Implementation on Google Apps Engine
 4.1: An Overview
 4.2: System Requirement
 4.3: System Design
 4.4: Model Application implementation
 4.4.1 Configure Eclipse
 4.4.2 Developing Our Application

14
14
15
15
16
16
16

 4.4.3 Few things to note first
 4.4.4 PMF.java
 4.4.5 EGovernmentCommissionCenter.java
 4.4.6 EGovernmentCloudApplicationServlet.java
 4.4.7 Using Database api
 4.4.8 Database
 4.4.9 View form cloud
 4.4.10 Application Deploy
 4.4.11 System Monitoring Tools

16
17
18
19
21
23
25
26
27

Chapter 5: Problems with setting up a private cloud using
OpenNebula
 5..1: OpenNebula
 5.1.1: Network configuration error

29

29
30

Chapter 6: Power of Google Apps Engine (GAE) and our
Recommendation
 6.1: Resource Sharing
 6.2: Openness
 6.3: Concurrency
 6.4: Scalability
 6.5: Fault Tolerance
 6.6: Transparency

31

31
31
31
31
32
32

Chapter 7: Future Work 33

Chapter 8: Conclusion 34

List of References
 Publications
 Internet
 Disclaimer

35
35
36
36

LIST OF FIGURES

Figure 2.2.2: Interactive relations between organizations in e-
governance
Figure 3.1.4: A comparison between different cloud platforms
Figure 3.2.1: Traditional approach to solve the problem
Figure 3.2.2: Optimized Cloud based solution of the problem
Figure 4.3: Our designed class architecture
Figure 4.4.6: EGovernmentCloudApplicationServlet.Java running
Figure 4.4.8a: Database view form localhost
Figure 4.4.8b: Database view form localhost
Figure 4.4.8c: Database view form Google cloud
Figure 4.4.9: Service view from the local cloud
Figure 4.4.10: Service application view form cloud
Figure 4.4.11a: My application List to control apps
Figure 4.4.11b: Database entry management tools
Figure 4.4.11c: Application developer permission
Figure 5.1.1: OpneNebula host error

5-6

11
12
13
15
19
23
23
24
25
26
27
27
28
30

LIST OF TABLE AND CHARTS

Table 4.4.4: PMF.java class
Table 4.4.5: EGovernmentCommisionCenter.java class
Table 4.4.6: EGovernmentCloudApplicationServlet.java code
Table 4.4.7.a: saveRecord() function code
Table 4.4.7.b: query string code
Table 4.4.9: doget() code to show the output
Table 5.1.a: table of network configuration
Table 5.1.b: table of network configuration

17
19
20
22
23
25
29
29

CHAPTER I

INTRODUCTION

1.1 Cloud Computing

 Cloud computing can be defined from a general point of view as an

abstracted pool of highly scalable and managed compute infrastructure

capable of hosting end-user applications and are billed by consumption. It‘s

architecture somewhat abolishes the concerns about the physical location,

internal composition or ownership of its component parts.

 Due to rapid development of internet and web based services over the

last 10 years, the cost of storage and power consumed by hardware are

increasing. At the same time, large enterprises have to study data source fully

to support its business. As a result the data centers are sometimes failing to

meet our needs and the traditional approaches cannot provide a solution to

this problem. To cope up with this challenge a new solution had to be thought

off, to allow maximum efficiency and utilization of resources and the same

time to be economically viable. Cloud computing can be the answer to this.

1.2 e-Governance

Electronic Governance, known as e-governance in short, utilizes the

facilities provided by Information and Communication Technologies to perform
government processes e.g. digitizing government records, automating tax
collection, getting feedback from community, information dissemination,
data/information gathering, elections, administration etc. It automates the
major state functions and capacities – Legislative, executive, judiciary, thus
allowing optimal functioning and better interaction between the governments,
its institutions and people interaction of institutions. E-governance brings
effectiveness and transparency in operation. It also provides a framework for
dialogue between the principal actors of development of the state,

Page | 1

Page | 2

private/business sectors, NGOs, civil society, political parties and local
communities.

1.3 Thesis Objective

 In existing system in government organizations it is very difficult to
exchange information between the different sub organizations. For instance
data from election commission cannot be easily shared with the Police and
Defense sections. When a situation arises, it has to go through levels of
bureaucracy and authorization and a lot paperwork has to be done to finally
get the required information which wastes huge amount of resources and
time. The objective of the thesis is to provide an e-governance model that will
allow this information sharing very easily, reliably and with appropriate
security attached to it without any such hassle. For instance if a traffic police
wants to know personal information of a driver, he will just provide registration
number of the driver and his personal information will be forwarded from the
BRTA and election commission to the police officer. Here, we have
implementing and solving a specific model problem to implement effective e-
governance. The objective is to achieve this with cloud computing
methodology.

CHAPTER II

E-GOVERNANCE IN DETAILS

2.1 Importance of e-governance

E-Governance provides the following services:

Service Management System

 A service management system provides the visibility, control and
automation needed for delivery in both public and private implementations.

Easy access of Information:

 In this process all kind of people will be able to access the information
easily. The General people can access the information. Provides improved
informational services to citizens. E.g. A2I project (access to information)

Simplified user interaction with IT:

 Its user friendly self service interface accelerates time to value. The
service catalog enables standards which drive consistent service delivery and
provides enhanced transparency and accountability.

Increase system administrator productivity:

 The productivity increase is attributed from its move from management
silos to a service management system

Reduce Maintenance costs of Government project:

Since most of the government systems operate manually with some

extent of localized computer applications with no or a little utilization of
internet facilities. This requires a lot of money and is highly inefficient. This
cost can reduced by consolidating hardware and increasing server utilization
Server utilization can go up from 5-15% up to 80% based on workloads.
Measurement of performance and availability of critical virtual resources,
correlations of events can be achieved by e-governance with the cloud based
solution.

Helps to achieve the goal of digital Bangladesh:

If an e-governance model is used to improve the existing systems it will
be a major leap towards the government’s goal of digitizing Bangladesh.

Reduce Corruption:

E-Governance model provides a transparent way of operation which

allows monitoring of work processes in all the layers hence corruption can be
minimized.

Social Security:

 This model can increase social security. The automated provisioning
and de-provisioning speeds service delivery. The provisioning of policies
allows release and reuse of assets. Its centralized identity and access control
policies provides fast and affordable adherence to security compliance.

E- Governance Application Promotes Growth in E- Business:

Government introduction of e-Services will stimulate expansion of e-
Business, The private sector benefits from lower costs of doing business with
the government, such as online licensing and tax payments, e-Procurement
makes government buying more transparent, reduces business transaction
costs and lowers risks for corruption, and Government transactions online at
all levels will promote greater use of IT across national economies.

Mobile E-Based E-Government Services Advance Development:

 There is a strong case for applying mobile communications to
dramatically improve access to public services, including e-Government.
Mobile services are quickly emerging as the new frontier in transforming
government, making it even more accessible and citizen-centric, by extending
the benefits of remote delivery of government services to those unable to
access public services countries where mobile (M-Government) is expected to
be the key method for reaching citizens.

2.2 Interactive relations between organizations

 E-Governance is a process of reform in the way and delivers services
to external and internal clients for the benefit of both government and the
clients that they serve. Governments have innumerable applications that can
be automated. Government spending on IT world increases the productivity of
the government and would help in decision making and policy enforcement
etc. Applications in the government fall into the following broad categories:

Government to Government (G2G):

Various functions of the government interact to fulfill the work. Majority
of these applications are both vertical and horizontal. Vertical applications
target a specific application of the government and horizontal make it. These
applications have a high degree of message passing across departments.

Page | 4

Government to Enterprise (G2E):

Enterprises like Water Board, Electricity are controlled by the
governments and should react quickly to government policies. Policy
enforcements, security and auditing (for accountability) are the biggest
challenges.

Government to Business (G2B):

Government interacts with various business in terms of policy
enforcement, collection of taxes, contract management etc. The biggest area
that falls under government is Contract Management.

Government to Consumer (G2C):
 Government provides numerous services to their citizens. Different
departments offer various services that could scale from a simple request
resolution to a starting workflow related scenarios.

Government to NGO’S (G2N):

Government provides numerous services to the NGOs who have been
working for the rural development. The services are Monitoring, security
services and so on. Beside this, The NGOs provide foreign funding, loan and
disaster management policies.

Government

to

Government

(G2G)

•Administration
•Inter-government enterprise
•Control, monitor and
distribution

•Policy Enforcement
•Standards
•Accountability

Government

to

Enterprise

(G2E)

Page | 5

Government

to

Business

(G2B)

•Tenders (e-tenders)
•Contract Management
•Tax

Government

to

Consumer

(G2C)

•Registration/Land/Revenue
Services
•Hospital Services
•Agricultural services etc..

Government

to

NGO

 (G2N)

•Disaster Management
•Development
•Monitoring
•Foreign funding

Fig 2.2.2: Interactive relations between organizations in e-governance

2.3 Challenges and Cloud benefits

Data Scaling

The databases should be scalable, to deal with large data over the

years for E-Governance applications. Where relational databases ensure the
integrity of data at the lowest level, cloud databases could be scaled and can
be used for such type of applications. Cloud databases available for
deployment offer unprecedented level of scaling without compromising on the
performance. Cloud databases must be considered if the foremost concern is
on-demand, high-end scalability – that is, large scale, distributed scalability,
the kind that can’t be achieved simply by scaling up.

Auditing and logging

Traceability to any changes to information content in E-Governance

services is required. Corruption in government organizations can be controlled

Page | 6

by using Information Technology services, by keeping the providers of the
services accountable. Process audits, security audits must be done
periodically to ensure the security of the system. Cloud can help in analyzing
huge volumes of data and detecting any fraud. It can help in building and
placing defense mechanisms to enhance the security, thereby making the
applications reliable and available.

Rolling out new Instances, Replication and Migration

Traditionally, applications in E-Governance work for department states

and municipalities and hence take more time, effort, resources and budget.
This happens for all the instances of these applications. Capabilities must
exist to replicate these to include another municipality or e-court as part of E-
Governance. Cloud architectures offer excellent features to create an instance
of application for rolling out a new municipality. Cloud can reduce the time to
deploy new application instances.

Disaster Recovery

Natural disasters like floods, earthquakes, wars and internal

disturbances could cause the E-Governance applications not only loose data,
but also make services unavailable. Multiple installations in geographically
separated locations with complete backup and recovery solutions must exist.
This could create huge problems. Disaster recovery procedures must be in
place and practiced from time to time. Applications and data must be
redundant and should be available on a short notice to switch from one data
center to center. Cloud virtualization technologies allow backups and
restoring. It offers application migration seamlessly compared to traditional
data center. Cloud helps to increase the number of resources dynamically to
maintain quality of service intact even at the times of high load, which
generally happens in E-Governance.

Performance and Scalability

The architecture and technology adopted for the E-Governance

initiatives should be scalable and common across delivery channels .It is
required to meet growing numbers and demands of citizens. If implemented,
the E-Governance portals could become the biggest users and beneficiaries
of Information Technology. With cloud architectures, scalability is inbuilt.
Typically, E-Governance applications can be scaled vertically by moving to a
more powerful machine that can offer more memory, CPU, storage. A simpler
solution is to cluster the applications and scale horizontally by adding
resources.

Reporting and Intelligence (Better governance)

Data center usage (CPU, storage, network etc), peak loads,

consumption levels, power usage along with time are some of the factors that
needs to be monitored and reported for better utilization of resources. It

Page | 7

minimizes costs and plan well. Profiling data enables better visibility into
various services provided by the government. Cloud offers better Business
Intelligence infrastructure compared to traditional ones because of its sheer
size and capabilities. Cloud computing offers seamless integration with
frameworks like Map Reduce that fit well in cloud architectures. Applications
can mine huge volumes of real time and historic data to make better decisions
to offer better services.

Policy management

E-Governance applications have to adhere and implement policies of

the governments in terms of dealing with citizens. Along with the infrastructure
and data center policies has to be enforced for day to day operations. Cloud
architectures help a great deal in implementing policies in data center.
Policies with respect to security, application deployment etc can be formalized
and enforced in the data center.

Systems Integration and Legacy Software

Not only the applications that are already deployed and providing

services are to be moved to the cloud, but also integrate with applications
deployed in the cloud. The power of Information Technology comes in co-
relating the data across applications and pass messages across different
systems to provide faster services to the end users. Cloud is built on SOA
principles and can offer excellent solutions for integration of various
applications. Also, applications can be seamlessly easily moved into cloud.

Obsolete Technologies and Migration to New Technologies

Technology migration is the biggest challenge. Moving to different

versions of software, applying application and security patches is the key to
maintaining a secure data center for E Governance. With cloud, E-
Governance applications can manage the policies well by providing security
and adoptability. Various E-Governance applications can be integrated easily.
Cloud architecture efficiently enables different versions and releases of the
software at the same time. Once these applications are tested, they can be
migrated into production with ease.

Going green

More emphasis is laid out today in terms of data centers can create.

The power usage, air electronic waste could create bio-hazard. This could be
one of the reasons for moving to governance. Instead of duplicating these
facilities, with cloud, one can offer centralized

Page | 8

CHAPTER III

OUR APPROACH TO THE PROBLEM

3.1 Analysis of the existing platform

 3.1.1 OpenNebula

Key Features and Benefits for Integration to implement our system

Feature Function

Infrastructure
Abstraction

Seamless operation with any platform for
authentication/authorization, virtualization, networking and
storage, with a modular architecture to fit into any datacenter

Adaptability and
Customization

Enable the deployment of any cloud architecture: private,
public, hybrid and federated; customizable plug-ins to
access virtualization, storage, information,
authentication/authorization and remote cloud services; new
plug-ins can be easily written in any language; configuration
and tuning parameters to adjust behavior of the cloud
management instance to the requirements of the
environment and use cases; and hook mechanism to trigger
administration scripts upon VM state change

Interoperability
and Standards

Open standard-based architecture to avoid vendor lock-in
and to enable interoperability; and implementation of
standards

Openness
Open-source technology distributed under Apache license
that is matured through an active and engaged community;
and open internal and external interfaces

Programming
Interfaces

Native cloud API in Ruby and JAVA and XMLRPC API to
create new cloud interfaces and to access the core
functionality

Page | 9

3.1.2 Open Stack

 Key features of Open Stack to choose for our project later on

Feature Function

Control and
Flexibility

Open source platform means you’re never locked to a
proprietary vendor, and modular design can integrate with
legacy or third-party technologies to meet your business
needs. Hypervisor support for Microsoft Hyper-V, Citrix
XenServer, Xen, KVM, VMWware ESX, LXC, QEMU, and UML

Industry
Standard

More than 60 leading companies from over a dozen countries
are participating in OpenStack, including Cisco, Citrix, Dell,
Intel and Microsoft, and new OpenStack clouds are coming
online across the globe.

Proven
Software

Running the OpenStack cloud operating system means
running the same software that today powers some of the
largest public and private clouds in the world.

Compatible
and
Connected

Compatibility with public OpenStack clouds means enterprises
are prepared for the future—making it easy to migrate data and
applications to public clouds when conditions are right—based
on security policies, economics, and other key business
criteria.

3.1.3 Google apps Engine

 Key features of Google apps Engine to choose finally for our project

Feature Function

Easy to get
Started

App Engine is a complete development stack, familiar
technologies to build and host web applications. After
writing application code, test it on local machine and upload
it to Google. Once your application is uploaded we don’t
need to worry about system administration, bringing up new
instances of your application, shearing your database or
buying machines.

Free and Risk-
free
Development

Not only is creating an App Engine application easy, it's
free! Application that people can use right away at no
charge, and with no obligation. For more resources, we can
enable billing and allocate your budget according to our
needs.

Page | 10

Automatic
Scalability

For the first time your applications can take advantage of
the same scalable technologies that Google applications
are built on, things like BigTable and GFS. Automatic
scaling is built in with App Engine, all you have to do is write
your application code and we'll do the rest. No matter how
many users you have or how much data your application
stores, App Engine can scale to meet your needs.

The reliability,
performance and
security

Google has a reputation for highly reliable, high
performance infrastructure. With App Engine you can take
advantage of the 10 years of knowledge Google has in
running massively scalable, performance driven systems.
The same security, privacy and data protection policies we
have for Google's applications apply to all App Engine
applications. We take security very seriously and have
measures in place to protect your code and application
data.

3.1.4 Comparison Between Other Platform

 A simple comparison between different cloud platforms we have
studied so far to choose the best optimized platform to approach our
cloud based solution bellow -

 Fig 3.1.4: A comparison between different cloud platforms

Page | 11

3.2 Designing the solution using the chosen platform

In this part, we carefully analyze the entire cloud platform to deploy our
application. In this section, we discuses about the problem and its
optimized solution with cloud computing technology.

Suppose A Traffic police wants to verify a licensee number including all
other information along with car registration information and of a taxi
driver. He sends a request to the police control center asking this
information. The police control center will send a request to the BRTA.
From the BRTA he can know about the licenses number and car
registration number. From the Election commission database he is going
to get other information about the taxi driver instantly.

 3.2.1 Problem analysis

 Fig: 3.2.1: Traditional approach to solve the problem

Page | 12

To solve this problem with traditionally web service methodology we
have to design a service where we have to send three individual
requests to three organizations. Every time we need to access to the
Database to serve a service. Also we need individual server machine to
deploy application and internet connectivity, bandwidth, maintenance
and a system admin to manage the system. Which are a redundancy
and a waste of our limited resource.

3.2.2 Problem optimization

Fig: 3.2.2: Optimized Cloud based solution of the problem

Here, in this solution we don’t need to be worried about all the
management and other problems. Because inside of the cloud it
maintains a central data center (in case of Google apps cloud is
maintain a key value mapping database name BigTable). Where it
store data centrally in a data center and update the data from the
remote or local servers by maintaining scheduler. We don’t even need
a local server machine to deploy a database and service application.

Page | 13

CHAPTER IV

IMPLEMENTATION ON GOOGLE APPS ENGINE

4.1 An Overview

We are using standard Java technologies and run them on Google's
scalable web application infrastructure. The Java environment provides a
Java 6 JVM, a Java Servlets interface, and support for standard interfaces
to the App Engine scalable data store and services, such as JDO, JPA,
JavaMail, and JCache.

 App Engine runs Java applications using the Java 6 virtual machine
(JVM). The App Engine SDK supports Java 5 and later, and the Java 6
JVM can use classes compiled with any version of the Java compiler up to
Java 6.

 App Engine uses the Java Servlet standard for web applications. App's
servlet classes, JavaServer Pages (JSPs), static files and data files, along
with the deployment descriptor (the web.xml file) and other configuration
files, in a standard WAR directory structure. The JVM runs in a secured
"sandbox" environment to isolate your application for service and security.
App Engine provides scalable services that apps can use to store
persistent data, access resources over the network, and perform other
tasks like manipulating image data.

 Apps can use the App Engine datastore for reliable, scalable persistent
storage of data. The datastore supports two standard Java interfaces: Java
Data Objects (JDO) 2.3 and Java Persistence API (JPA) 1.0. The App
Engine Memcache provides fast, transient distributed storage for caching
the results of datastore queries and calculations. The Java interface
implements JCache (JSR 107). The service can handle CPU-intensive
image processing tasks, leaving more resources available for the
application server to handle web requests.

The App Engine Java SDK includes tools for testing application, uploading
your application files, and downloading log data. The SDK also includes a
component for Apache Ant to simplify tasks common to App Engine
projects.
The development server runs your application on your local computer for
development and testing. The development server can also generate
configuration for datastore indexes based on the queries the app performs
during testing.

Page | 14

4.2 System Requirement

• A complete Java 6 runtime environment in a secure sandbox
environment.

• Based on common Java web technology standards, including servlets
and WARs, JDO and JPA, java.net, JavaMail and JCache.

• A plugin for the Eclipse IDE makes project creation, testing and
deployment a snap.

• Supports other languages that compile to the JVM or use JVM-based
interpreters, such as JRuby, JavaScript (Rhino), and Scala.

4.3 System Design

This section is very important for the application developer; here strong
OOP concept is a must to implement such a huge project like e-
governance.

 For our model e-governance project we are going to create a very simple
class design to show service development in Google cloud.

 We design our system with a very simple design to test how to run a simple
application in cloud and manage the service. The system architecture is
noted on bellow:

 Fig4.3: Our designed class architecture

Page | 15

4.4 Model Application implementation

4.4.1 Configure Eclipse

 Download Eclipse editor for windows 32 bit form here.

Help menu > Install New Software... > Work with:

http://dl.google.com/eclipse/plugin/3.6

That how we basicly add the plugin libraries for GAE (Google apps
Engine)

After Installation select all the Plugin and SDK’s check box.

A simple easy configuration on development bed is rady now!

4.4.2 Developing Our Application

The first thing to do is to create a New Google Web Application Project.
Follow these steps:

1. Either click on File –> New –> Other or press Ctrl-N to create a new

project. Select Google and then Web Application project. Alternately
you could also click on the New Web Application Project Toolbar
icon as part of the Google Eclipse plugin.

2. In the New Web Application Project dialog, deselect the Use Google
Web Toolkit and give a name to your project. I have named mine
“EGovernmentCloudApplication”.

3. Click on Finish.

This will generate the project and also create a sample Hello World
Servlet for you. But we will be writing our own Servlet.

4.4.3 Few things to note first

 Quite a few things are enabled for you by default as far as the
database support is concerned. They are as follows:

1. Several JAR files are added to the CLASSPATH by default. Take a

look and you will see several JARs *jpa*.jar, *datanucleus*.jar, etc.

2. In the src/META-INF folder, you will find a jdoconfig.xml file. There

is a default Persistence Manager Factory class.

Page | 16

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/helios/SR1/eclipse-java-helios-SR1-win32.zip
http://dl.google.com/eclipse/plugin/3.6

3. GAEJ uses the DataNucleus library to abstract the BigTable store.
The DataNucleaus library provides the JDO and JPA interfaces so
that we do not have to deal with the underlying low level API. We
will also find a logging.properties file present in war/WEB-INF folder.
We will find several log levels mentioned for the DataNucleus
classes. We can tweak them to lower levels like DEBUG/INFO to
see more debug level statements of what happens when we are
using these APIs. I have found it very helpful to set the debug levels
to DEBUG/INFO especially when facing a problem.

4.4.4 PMF.java

The first class that we shall write is a simple utility class that shall get
us the underlying Persistence Manager factory instance. This class is
important since all other methods like saving a record, querying
records, etc will work on the instance of the
PersistenceManagerFactory.

The code is shown below and wherever we need an instance of the
class, we shall simply invoke the get() method below:

import javax.jdo.JDOHelper;
import javax.jdo.PersistenceManagerFactory;

public final class PMF {

 private static final PersistenceManagerFactory
pmfInstance = JDOHelper
 .getPersistenceManagerFactory("transactions-
optional");

 private PMF(){

 }
 public static PersistenceManagerFactory get() {
 return pmfInstance;
 }
}

 Table4.4.4: PMF.java class

Page | 17

4.4.5 EGovernmentCommissionCenter.java

1. We need to have a constructor that contains all the fields except for
the Key field.

2. All fields that need to be persisted are annotated with the
@Persistent annotation.

3. The class is declared as being persistable via the
@PersistenceCapable annotation and we are leaving the identity to the
Application.

4. The Primary Key field i.e. Key is declared via the @PrimaryKey
annotation and we are using an available Generator for the ID instead
of rolling our own.

import javax.jdo.annotations.*;

@PersistenceCapable(identityType = IdentityType.APPLICATION)
public class EGovernmentCommissionCenter {

 //Instance variable
 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 public Long id ;
 @Persistent
 public String _name = null;
 @Persistent
 public String _nameOfMother = null;
 @Persistent
 public String _nameOfFather = null;
 stent @Persi
 public String _maritalStatus = null;
 @Persistent
 public String _dateOFbirth = null;
 @Persistent
 public String _address = null;
 @Persistent
 public String _perAddress = null;
 @Persistent
 public String _genderType = null;
 stent @Persi
 public String _nameOfSpous = null;
 @Persistent
 public String _passportNum = null;
 @Persistent
 public String _licenseNum = null;
 @Persistent
 public String _nID = null;

 public EGovernmentCommissionCenter(String name, String
nameOfMother,String nameOfFather,String maritalStatus,String
dateOFbirth ,
 String address,String perAddress ,String
genderType ,String nameOfSpous,String passportNum,
 String licenseNum ,String nID) {

Page | 18

 this.setName(name);
 this.setNameOfMother(nameOfMother);
 this.setNameOfFather(nameOfFather);
 this.setMaritalStatus(maritalStatus);
 this.setDateOFbirth(dateOFbirth);
 this.setAddress(address);
 this.setPerAddress(perAddress);
 this.setGenderType(genderType);
 this.setNameOfSpous(nameOfSpous);
 this.setPassportNum(passportNum);
 this.setLicenseNum(licenseNum);
 this.setNID(nID);

 }
}

 Table4.4.5: EGovernmentCommisionCenter.java class

4.4.6 EGovernmentCloudApplicationServlet.java

We shall now look at how to persist the above
EGovernmentCommissionCenter. Since we are not going to build a UI for it,
we shall simply invoke a servlet (HTTP GET) with the required parameters. It
would almost be like a FORM submitting these values to the Servlet. Before
we write this Servlet code, let us look at how we will invoke it. Given below is
a screenshot of the browser where I punch in the URL:
http://localhost:8888/egovernmentcloudapplication

Fig4.4.6: EGovernmentCloudApplicationServlet. Java running

As you can see, I am running the application on my local development server
and invoke the servlet (which we shall see in a while). These two parameters
are two key fields of the HealthReport class that we saw above. The other
fields like ReportDateTime and Status are determined automatically by the
application. Similarly the Key value of the record in the underlying datastore
will be generated by App Engine infrastructure itself.

Page | 19

http://localhost:8888/egovernmentcloudapplication

Let us now look at the PostHealthIncidentServlet.java code shown below:

package com.brac.egovernment;

import java.io.IOException;
import java.util.Iterator;
import java.util.List;

import javax.jdo.PersistenceManager;
import javax.jdo.Query;

import javax.servlet.http.*;

@Suppr ssWar
public class EGovernmentCloudApplicationServlet extends HttpServlet {

e nings("serial")

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/plain");

 resp.getWriter().println("###");
 resp.getWriter().println("# e-Governance model implementation
demonstration #");

 resp.getWriter().println("###");
resp.getWriter().println(person1.getName() + "<---form Httpservlet");

 resp.getWriter().println(EGovernmentCommissionCenter.class.getSimpleName()+"<--
class name test");

}
public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws IOException {
 resp.setContentType("text/plain");

 //post handler
 resp.sendRedirect("index.html");

 }
}

Table4.4.6: EGovernmentCloudApplicationServlet.java code

Page | 20

4.4.7 Using Database api

Key Points are :

1. The saveRecord() method first gets the instance of the
PersistenceManager through the PMF.java class that we wrote earlier.
2. It simply invoke the makePersistent() method on it. The
makePersistent() method will take as a parameter the object that you want
to persist. In our case it is the HealthReport.java class instance that we
have created in the servlet. This method will persist the record and in the
process also assign it a unique key.
3. Finally, we need to close the PersistenceManager instance by invoking
the close() method.

The entire code listing is shown below:

public String saveRecord(){

 EGovernmentCommissionCenter person1 = new
EGovernmentCommissionCenter("avk", "ma", "baba", "not yet", "04th
november", "Dhanmondi", "satkhira", "male", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");
 EGovernmentCommissionCenter person2 = new
EGovernmentCommissionCenter("amk", "ma", "baba", "not yet", "30th
December", "Dhanmondi", "satkhira", "male", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");
 EGovernmentCommissionCenter person3 = new
EGovernmentCommissionCenter("ank", "ma", "baba", "not yet", "29th
november", "satkhira", "satkhira", "male", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");
 EGovernmentCommissionCenter person4 = new
EGovernmentCommissionCenter("sagor", "ama", "ababa", "not yet",
"4th jan", "canada", "satkhira", "male", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");
 EGovernmentCommissionCenter person5 = new
EGovernmentCommissionCenter("faraz", "ama", "ababa", "not yet",
"4th feb", "belyroad", "b.baria", "male", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");
 EGovernmentCommissionCenter person6 = new
EGovernmentCommissionCenter("sakib", "ma", "baba", "not yet", "4th
march", "mohammadpur", "b.baria", "male", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");
 EGovernmentCommissionCenter person7 = new
EGovernmentCommissionCenter("shaon", "ama", "ababa", "not yet",
"4th april", "BRA", "khulna", "female", null, "B123456DHK",
"D12345CHT", "N12345DHNMONDI");

 PersistenceManager pm = null;
 pm = PMF.get().getPersistenceManager();

 pm.makePersistent(person1); // store
 pm.makePersistent(person2);
 pm.makePersistent(person3);

Page | 21

 pm.makePersistent(person4);
 pm.makePersistent(person5);
 pm.makePersistent(person6);
 pm.makePersistent(person7);

 Query query = null;
 query = pm.newQuery(EGovernmentCommissionCenter.class,
"_address != paramAddress && _genderType == paramGender");
 query.declareParameters("String paramAddress, String
paramGender");

 String return1 = null,return2 = null;

 @SuppressWarnings("unchecked")
 List<EGovernmentCommissionCenter> result =
(List<EGovernmentCommissionCenter>)
query.executeWithArray("Dhanmondi","male");

 Iterator<EGovernmentCommissionCenter> it =
result.iterator();
 while(it.hasNext()){
 EGovernmentCommissionCenter a = it.next();

 return1 = a.id + " #Name: " + a.getName()+"
#Father_Name: "+ a.getnameOfFather()+ " #Address:
"+a.getaddress()+" #lisence no: "+a.getlicenseNum() + "\n";

 }
 // Second genetation query

 query = pm.newQuery(EGovernmentCommissionCenter.class,
"_address == param");
 query.declareParameters("String param");

 @SuppressWarnings("unchecked")
 List<EGovernmentCommissionCenter> result1 =
(List<EGovernmentCommissionCenter>)
query.executeWithArray("Dhanmondi");

 Iterator<EGovernmentCommissionCenter> it1 =
result1.iterator();
 while(it1.hasNext()){
 EGovernmentCommissionCenter a = it1.next();

 return2 = a.id + " **name: " + a.getName()+"
**passport no. - "+ a.getpassportNum() + "\n";
 }

 pm.close(); //database close

 return return1+return2;

 }

 Table4.4.7.a: saveRecord() function code

Page | 22

The query we are using ther is:

SELECT * FROM EGovernmentCloudApplicationServlet WHERE _address !=
paramAddress && _genderType == paramGender

SELECT * FROM EGovernmentCloudApplicationServlet WHERE "_address
== param

 Table4.4.7.b: query string code

 4.4.8 Database

 The code above generate Database bellow though we are not creating
the database manually. The database image shown bellow:

 Fig4.4.8a: Database view form localhost

Fig4.4.8b: Database view form localhost

Page | 23

 Fig4.4.8.c: Database view form Google cloud

Page | 24

4.4.9 View form cloud

The “EGovernmentCloudApplicationServlet” class extended from
“HttpServlet“helps the view from the cloud using the function below:

public void doGet(HttpServletRequest req, HttpServletResponse
resp)
 throws IOException {
 resp.setContentType("text/plain");
 resp.getWriter().println();
}

 Table4.4.9: doget() code to show the output

The final images bellow:

 Fig4.4.9: service view from the local cloud

Page | 25

4.4.10 Application Deploy

It is very simple to deploy the application (In my case model e-
governance application) to Google cloud.

1. Upload app to appspot.com:

2. Click Google App Engine icon
Enter Email, Password, App Engine project settings... > Application ID:
 <name of app>

3. Click Deploy

4. Open URL in browser
http://<name of app>.appspot.com

In my case our application shows bellow:

http://egovmodel.appspot.com/egovernmentcloudapplication

Fig4.4.10: Service application view form cloud

Page | 26

http://egovmodel.appspot.com/egovernmentcloudapplication

4.4.11 System Monitoring Tools

We use some GAE monitoring tools to monitor our application and
mange the application through cloud. The best part is we have the full control
over GAE application. I can modify and change my VM as I want to.

Some of the tools are shown below:

 Fig4.4.11.a: My application List to control apps

 Fig 4.4.11.b: Database entry management tools

Page | 27

 Fig 4.4.11.c: application developer permission

Page | 28

CHAPTER V

PROBLEMS WITH SETTING UP A PRIVATE CLOUD USING
OpenNebula

5.1 OpenNebula

In our four month of study we understand and learn OpenNebula very
good. We follow http://blog.opennebula.org/?author=32 blog to set our
private cloud. But there are some constrains we couldn’t overcome within
this short term period of learning. The constrains are:

1. Virtual Private Network management
2. Virtual machine management
3. Image repository setup Including Central Data Storage
4. Structural mismatch in database because of new version

5.1.1 Network configuration error

We configure our cloud controller network configuration like:

/etc/hosts
172.16.0.250 cloud-cc.lan.local cloud-cc
172.16.0.251 cloud-cc01.lan.local
172.16.0.252 cloud-cc02.lan.local
172.17.0.1 cloud-01.san.local
172.17.0.2 cloud-02.san.local
172.17.0.3 cloud-03.san.local
172.17.0.250 cloud-cc.san.local
172.17.0.251 cloud-cc01.san.local cloud-cc01
172.17.0.252 cloud-cc02.san.local cloud-cc02

Table 5.1.a: table of network configuration

And configure LAN:

/etc/network/interfaces
auto bond0
iface bond0 inet static
bond_miimon 100
bond_mode balance-rr
address 172.17.0.251 # 172.17.0.251 on server 2
netmask 255.255.255.0
up /sbin/ifenslave bond0 eth0 eth1
down /sbin/ifenslave -d bond0 eth0 eth1
auto eth2
iface eth2 inet static
address 172.16.0.251 # 172.16.0.252 on server 2
netmask 255.255.255.0

Table5.1.b: table of network configuration

Page | 29

http://blog.opennebula.org/?author=32

Network configuration Error:

Screen shot of host drop in Opennebula cloud, Error occurred

because of network conflict. Our opennebula error listing:

 Fig5.1.1: OpneNebula host error

Page | 30

CHAPTER VI

POWER OF GOOGLE APPS ENGINE (GAE) AND OUR
RECOMMENDATION

We come up with a decision that we could use Google apps engine as our
platform to implement our e-governance services in Bangladesh.

The reason why we decided to pick Google cloud as our platform:

6.1 Resource Sharing

GAE has resource sharing capacity it has implemented BigTable/
MegaStore database. For our implementation we’ve used their
database to implement our own database. So one of the great
advantage is, we don’t need to design and implement database like
MySQL or Oracle database externally.

6.2 Openness

Election commission applications have been implemented based on
java programming language. GAE provides great service called
openness, means it has capacity to integrate any programming
environment into the Google cloud. This was one of the biggest
requirements to implement to e-governance in Bangladesh.

6.3 Concurrency

GAE can have multiple application form different vendor and they can
run at the same time. In our perspective if we want to run multiple
services form our implemented e-governance platform. We can easily
do that GAE virtualization.

6.4 Scalability

GAE has extensive power of scalability. To develop a service like e-
governance it is like a blessing. We can scale our service as we want
to and that is what we need. To integrate our service we just have to
use the class instant and implement/ extend the class in java. And this
GAE support the entire Device. So we can call it extensive sealable
cloud.

Page | 31

6.5 Fault Tolerance

Probably the best feature is fault tolerance and reliability. Google
provides the best data center in the world. GAE have several data
center thorough out the world.

For any reason like power disaster, a natural calamity etc if some of
our application server from multiple regions goes down. We could still
serve our client/ citizen form rest of the server.

It is almost an impossible case for our government to make such a
sustainable network like Google and also it’s very expensive too.

6.6 Transparency

GAE ensure Transparency to their customer. Both ways Google ensure
transparency like:

1. Software architectural point of view
2. Accountable to government

Distributed Transparency means Hide differences in data
representation and how a resource is accessed, Hide where a resource
is located, Hide Migration resource, Hide the failure and recovery of a
resource, Hide whether a (software) resource is in memory or on disk.

So the end user will never know what is going on inside and will not
feel any interruption.

You will have some idea how Google is accountable to governments
form the link bellow:
http://www.google.com/transparencyreport/governmentrequests/

Page | 32

http://www.google.com/transparencyreport/governmentrequests/

CHAPTER VII

FUTURE WORKS

Develop a complete Election commission

We would like to implement a fully distributed election commission’s
application that can be deployed is any cloud platform.

Build awareness about Distributed system and cloud programming

We will make developers interested to develop their application in cloud
platform. Aware the students and programmers in Bangladesh about
distributed application development.

Develop a cloud Infrastructure as a service

Develop a cloud Infrastructure like GAE or Amazon in Bangladesh with
the help of open source cloud platform like OpenStack in near future. Build an
Infrastructure without any electric power supply and in fully distributed design.

Page | 33

CHAPTER VIII

CONCLUSION

This is as far as I did in my thesis semester. Within a very short time I
managed to get these outputs which show a very good opportunity for this
system in future. If we can redesign and can continue our work on cloud
platform and aware programmers more and more to develop on cloud
platform, we will build our e-governance in near future. For a country like
Bangladesh e-governance can make a milestone to run government
efficiently and people would able to get digital info service form
government easily.

Getting assistance from a cloud engineer would be more helpful.

Page | 34

LIST OF REFERENCES

[Publication]

[1] Shuai Zhang,Shufen Zhang,Xuebin Chen,Xiuzhen Huo; “Cloud

Computing Research and Development Trend”. 2010 Second
International Conference on Future Networks.

[2] Janakiram MSV, Cloud Computing Strategist; “Demystifying the Cloud, An

introduction to Cloud Computing”, Version 1.1 – August 2010

[3] Junjie Peng,Xuejun Zhang,Zhou Lei,Bofeng Zhang,Wu Zhang,Qing Li ;

“Comparison of Several Cloud Computing Platforms”. Second
International Symposium on Information Science and Engineering.

[4] Wei-Tek Tsai*, Xin Sun, Janaka Balasooriya; “Service-Oriented Cloud

Computing Architecture”. 2010 Seventh International Conference on
Information Technology.

[5] Olav Vahtras, “Getting started on Swegrid”, June 4, 2009

[6] Grobauer, Walloschek,Stöcker: “Understanding Cloud Computing

Vulnerabilities”

[7] “The OpenNebula, Virtual Infrastructure Engine”; Distributed Systems

Architecture Research Group, Universidad Complutense de Madrid.

[8] “Benefits of Cloud Computing”, An Intalio White Paper; Ismael Chang

Ghalimi, CEO — May 2010

[9] Johnson D;Kiran Murari;Murthy Raju;Suseendran RB;Yogesh Girikumar;

“Eucalyptus Beginner's Guide - UEC Edition”, (Ubuntu Server 10.04 -
Lucid Lynx), v1.0, 25 May 2010

[10] Judith Hurwitz,Robin Bloor,Marcia Kaufman,Fern Halper, "Cloud

Computing Dummies", in part. 3 1st ed. John Wiley & Sons, IncNovember
16, 2009

[11] Vishanta Rayamajhi, International IT Expert, UNDP Bhutan, "Overall

Architecture - Low level e-paltform model", Locatization of E-Governance
Project, March 30, 2009

Page | 35

[Internet Resources]

[1] http://code.google.com/appengine/docs/java/overview.html

[2] https://sites.google.com/a/systemsplanet.com/google-app-engine-java-

links/

[3] http://www.rominirani.com/category/cloud-computing/

[4] http://opennebula.org/documentation:features

[5] http://opennebula.org/documentation:rel2.2:intro

[Disclaimer]

We like to acknowledge all of my mentors and resources (website,books,other
learning materials) I have used to complete my thesis. Due to some

constrains we are not enable to mention all those names.

Page | 36

http://code.google.com/appengine/docs/java/overview.html
https://sites.google.com/a/systemsplanet.com/google-app-engine-java-links/
https://sites.google.com/a/systemsplanet.com/google-app-engine-java-links/
http://www.rominirani.com/category/cloud-computing/
http://opennebula.org/documentation:features
http://opennebula.org/documentation:rel2.2:intro

	Department of Computer Science and Engineering
	August 2011
	BRAC University, Dhaka, Bangladesh
	THESIS2011_CloudCompForE-Gov.pdf
	Key Features and Benefits for Integration to implement our system
	Easy to get Started
	Free and Risk-free Development
	Automatic Scalability
	The reliability, performance and security

