
Research Report on Bangla OCR Training and Testing Methods

Md. Abul Hasnat

BRAC University, Dhaka, Bangladesh.

hasnat@bracu.ac.bd

Abstract

In this paper we present the training and

recognition mechanism of a Hidden Markov Model

(HMM) based multi-font Optical Character

Recognition (OCR) system for Bengali character. In

our approach, the central idea is to separate the

HMM model for each segmented character or word.

The system uses HTK toolkit for data preparation,

model training and recognition. The Features of each

trained character are calculated by applying the

Discrete Cosine Transform (DCT) to each pixel value

of the character image where the image is divided into

several frames according to its size. The extracted

features of each frame are used as discrete probability

distributions which will be given as input parameters

to each HMM model. In the case of recognition, a

model for each separated character or word is built

up using the same approach. This model is given to

the HTK toolkit to perform the recognition using the

Viterbi Decoding method. The experimental results

show significant performance over models using

neural network based training and recognition

systems.

1. Introduction

Hidden Markov Models (HMM) have been used

in a wide range of NLP applications, ranging from

continuous speech recognition to handwriting

recognition [1,2]. We use the similar idea of applying

HMM for speech recognition into our training and

recognition approach of OCR. The core idea in our

approach is to create model for each individual

segmented character or word. We use HTK Toolkit for

implementing our application which has been used

after completing the preprocessing and feature

extraction steps. After performing image processing

task we will specify the number of states and the

features. Taking this as input parameter HTK Toolkit

will estimate the allowable transitions and probability

distribution among the states and create the

appropriate model for the given character or word.

Preprocessing includes binary image conversion,

noise removing from image, skew correction,

segmentation which includes line separation, word

separation and character separation. In case of

complexity in character separation segmentation is

performed at word level. The segmented portion is

then converted into image array which contains binary

values for each pixel. Note that in our approach the

segmented character is obtained by considering the

image boundary not the connected component

approach.

The next step is to divide the image array into

certain number of frames which will be calculated

according to the width of the image array. These frame

will be consider as the number of states for the HMM

model of the segmented image.

Feature extraction is performed after

preprocessing steps and framing are done successfully.

This methodology includes Discrete Cosine Transform

(DCT) calculation on each individual pixel of each

frame and modifies the pixel value in each frame

accordingly. These newly calculated pixels value will

be considered as discrete probability distributions

which will be given as input parameter to each HMM

model.

The procedure of creating a particular model is

done by HTK Toolkit from the number of samples that

is provided as training input and then save this model

description into appropriate files. Based on the number

of samples the model parameters (means and variance)

will be estimated by internal command of HTK

Toolkit.

But for recognition a temporary HMM model is

build from the word or character image using the same

procedure described above. Then the recognition is

performed using Viterbi decoding by HTK Toolkit.

The post processing includes taking the

appropriate Unicode characters from the model

database against each model name which is determined

by the recognition tools of HTK.

Then these characters are stored and written into

file sequentially.

The flow chart for training and recognition is shown in

Figure 1 that clearly visualizes the actual procedure of

training and recognition.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BRAC University Institutional Repository

https://core.ac.uk/display/61800858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 142

Figure 1: Flow chart of training and recognition

procedure

2. Overview

The entire procedure of recognition and training

can be break down into two parts based on HTK

Toolkit point of view. The first part (section 2.1)

consists of preprocessing up to Feature calculation

which is almost similar for both the operation of

training and recognition. The second part (section 2.2)

consists of HTK Toolkit operation which is different

for training and recognition process. In other word the

first part can be renamed as the “Image data input for

HTK Toolkit”. Here I will discuss the first part starting

from segmented image to feature calculation and the

second part separately for both training and

recognition.

2.1. Segmented image to feature calculation

Here I assume that I have already got the

segmented image that can be either a character or a

word and the image is already converted to binary

image. Let take a segmented character and a

segmented word which is shown in Figure 2.

Figure 2: (a) Segmented character ‘soreo’; (b)

Segmented word ‘tumi’

2.1.1. Frame calculation. Now from these images

number of frame will be calculated. In our approach

we choose the frame width to be 8 and the frame

height to be 90. The frame width and height is chosen

according to our statistical analysis. Based on the

frame width and height we divide the segmented image

into several frames. The size of mean and variance

vector is also determined from the frame width and

height. For example the number of frame of the

segmented character soreo is 3 and segmented word

tumi has 6 frames. Number of frame is most important

because it determines the number of states of the

HMM model. So we can say that the number of states

for hmm model soreo is 3 and tumi has 6 states. The

above discussion is illustrated in Figure 3 and Figure

4.

Figure 3: segmented character “soreo” with 3

frames

Figure 4: segmented word “tumi” with 3 frames

2.1.2. Feature calculation. In this phase each frame is

taken separately and then the feature calculation is

performed on each individual pixels of the frame by

applying Discrete Cosine Transform (DCT).

2.1.3. Discrete Cosine Transform (DCT). The

Discrete Cosine Transform (DCT) converts a

continuous signal into its elementary frequency

(a) (b)

 143

components, and as such, closely related to the

Discrete Fourier Transform (DFT). The DCT of an

image can represent it as a sum of sinusoids of varying

magnitude and frequencies. Because the DCT of an

image captures the most visually significant

information in just a few coefficients, it is widely used

in image algorithms such as compression. DCT of an

image is given by the following:

where A and B are the input and output images of M

rows and N columns respectively. The DCT is a

linearly separable transformation, so computing a two-

dimensional DCT can be done with one-dimensional

DCTs along each dimension. Figure 5 shows the

computation steps of a two-dimensional DCT.

Figure 5: Two-dimensional DCT transform

After applying DCT on the pixels values of each

frame the updated information is stored into a file

which will be given as hmm model input for the

particular character or word that is considered to be

trained.

Up to this stage the image processing

methodology is exactly same for both the operation of

training and recognition. The only difference is that,

training mechanism uses a certain number of samples

for modeling a particular character or word that is used

for estimating model parameters in HTK Toolkit but

recognition mechanism create model only for the

particular image character or word to be recognized.

So at this stage we can create HMM model for the

character “soreo” and word “tumi” which is shown in

Figure 6 and Figure 7.

These models clearly prove the description of the

framing and feature extraction methodology described

above. We can see from these models that the

segmented character “soreo” has 3 states without the

start and end state that is common to each model.

Similarly the segmented word has 6 states without the

start and end states. Now the HMM model components

(number of states and calculated feature values) for the

segmented character and word constructed in this stage

is ready to be given as HTK Toolkit input for

initializing the HMM model or performing the

recognition task.

Figure 6: HMM model for character “soreo”

Figure 7: HMM model for word “tumi”

2.2. HTK toolkit operations for training and

recognition

2.2.1. The HTK toolkit. The Hidden Markov Model

Toolkit (HTK) was initially designed for continuous

speech recognition technology development; in recent

years, it has been used for everything from speech

 144

synthesis and character recognition to DNA

sequencing. See [13] for more details on HTK.

Parts of HMM modeling using HTK Toolkit are

divided into four phases:

1. Data Preparation

2. Model Training

3. Pattern Recognition

4. Model Analysis

2.2.2 Data preparation. In the Data Preparation stage

first we will define a word network of word-to-word

transition using HTK’s Standard Lattice Format (SLF).

HTK also provides a grammar definition format, and

an associated HParse tool, that can be used to build

this word network automatically. We write the

grammar definition in a file called gram.txt.

For our application the grammar is as follows:

$WORD = h0900|h0901|h0902;([$WORD])

Here in the grammar the model name of the word

or character that will be trained is specified as h####.

This is the convention for writing model name in our

application and the same convention is used

everywhere in this application.

We now create a sorted list of the character or

sequence of characters to be trained, and save that in a

file called dict.txt. The dictionary file syntax is given

below:

h0900 [h0900] h0900

h0901 [h0901] h0901

h0902 [h0902] h0902

For each line, the initial string specifies the model,

the second string in brackets specifies the string to

output, and the final string specifies the output

transcription against the model name. Now we will use

the tool HSGen to generate the prompts for test

sentences. Note that the data preparation stage is

required only for recognition purpose. It has absolutely

no usage for the training purpose.

2.2.3. Model training. The first task is to define a

prototype for the HMM model to be trained, which

includes the model topology, and transition and output

distribution parameters. This task will of course

depend on the number of states and the extracted

feature of each character or word. In our application,

the observation state is finite for each frame (8 x 90 =

720 states), so we use discrete distributions. The

prototype HMM definition of the model “soreo” is

given in Figure 8.

Figure 8: HMM prototype definition for model

“soreo”

From the model definition above, we see that the

number of states is specified as 5 and each individual

state has mean and variance vectors. The mean vectors

are initialized with value 0.0 and the variance vector is

initialized with value 1.0. At the end of the definition

we see the transition probability matrix where the

dimension of the matrix is 5 by 5.

The HMM model parameters contain the

probability distribution or estimation of each model,

which we now have to initialize. By far the most

prevalent probability density function is the Gaussian

probability function that consists of means and

variances and this density function are used to define

the model parameters in HTK. We use HTK’s HInit

tool to provide the initial estimates using a set of

observation sequences, producing a complete HMM

model definition with estimated parameters. The entire

process of initialization is visualized in Figure 9.

 145

Figure 9: Initialization process of an HMM model

After the initialization process is completed the

HMM model is written into .mmf file that contains all

the trained models and is used in recognition.

2.2.4. Pattern recognition. Comparative to the

training, recognition is much simpler. To complete this

task we have to create a HMM model of the character

or word image that will build up from the first part

(section 2.1) of our system. Then this model will

match with all the HMM models and the most likely

model will be given as output.

To perform this task using HTK we have to

invoke the recognition tool HVite, which is a general

purpose Viterbi word rcognizer. HVite uses the word

network describing the allowable word sequence built

from the task grammar, the dictionary that defines each

character or word, the entire list of HMMs and the

.mmf file where the description of each HMM model

is written. HVite recognizes an HMM model by

matching it against a network of models, and then

writes out the transcription for the recognized model

into a Master Label File with .mlf extension. The

entire process of recognition is visualized in Figure 10.

After the recognition process is completed the

model name is read from the Master Label File (.mmf)

and the associated Unicode character for the

recognized model is written to the output file. An

example of Master Labeled File is given below:

!MLF!#

"C:/htk/data/train/user/1.rec"

0 3000 h0900 2976.731201

Figure 10: Recognition process of a HMM model

3. Required HTK commands

3.1. HParse

The HParse program takes a grammar definition

file (based on extended Backus-Naur Form or EBNF)

of the word network, and generates the word level

lattice files in HTK’s SLF format. HVite then uses the

lattice file for pattern recognition.

HParse is invoked as following:

HParse [options] syntaxFile latFile

For example: HParse -A -D -T 1 gram.txt net.slf

3.2. HSGen

The HSGen randomly generates sentences from

the regular language L(G), where the regular grammar

G is implicitly defined in the word network. HSGen

reads the lattice file, and writes out the sentences, one

per line, to the standard output.

HSGen is invoked as following:

HSGen [options] wdnet dictfile

For example: HSGen -A -D -n 10 -s net.slf dict.txt

3.3. HInit

The HInit tool used to train the HMM model, by

providing the initial estimates for the model

parameters using a set of observation sequences. It

does so by repeatedly applying Viterbi alignment to to

segment the training observations and then

recomputing the parameters, and produces a complete

HMM model definition with estimated parameters

HInit is invoked as following:

HInit [options] hmm trainFiles ...

For example: HInit -A -D –T 1 -S trainlist.txt -M

model/hmm0 \ -H model/proto/hmmfile -l label -L

label_dir nameofhmm

3.4. HVite

HVite is used for the pattern recognition. It

recognizes a model by matching it against a network of

 146

models, and writes out the transcription of the

recognized model into a master label file.

HVite is invoked as following:

HVite [options] dictFile hmmList testFiles ...

For Example: HVite -A -D -T 1 -H hmmsdef.mmf -i

reco.mlf -w net.slf \dict.txt hmmlist.txt input.mfcc

4. Conclusion
We present the training and recognition

mechanism of the Hidden Markov Model (HMM)

based Optical Character Recognizer (OCR) for

Bengali character. The system is mainly divided into

two parts; the first one is the preprocessing step,

leading up to the the feature extraction and the other

part consists of the HTK Toolkit operations that are

used to initialize the HMM model from a certain

number of samples and to recognize a particular

model. The current system has been trained on a single

font using a single 25-point font size. We are now

beginning to create the training set for the multi-font

and multi-fontsize training and recognition. Since the

number of trained models has has strong impact on the

performance of the models, we are focusing on

creating a larger training set.

5. References
[1] Z. Lu, I. Bazzi, A. Kornai, J. Makhoul, P.

Natarajan and R. Schwartz, “A Robust, Language-

Independent OCR System”, Proc. SPIE Vol. 3584,

27th AIPR Workshop: Advances in Computer-

Assisted Recognition, 1999, pp. 96-104.

[2] W. Wang, A. Brakensiek, A. Kosmala and G.

Rigoll, “HMM Based High accuracy off-line

cursive handwriting recognition by a baseline

detection error tolerant feature extraction

approach”, 7th Int. Workshop on Frontiers in

Handwriting Recognition (IWFHR), 2000.

[3] U. Pal, B.B. Chaudhuri, “OCR in Bangla: an

Indo-Bangladeshi Language”, Pattern

Recognition, Vol. 2 - Conference B: Computer

Vision & Image Processing, Proceedings of the

12th IAPR International, 1994.

[4] B.B. Chaudhuri, U. Pal, “An OCR System to

Read Two Indian Language Scripts: Bangla and

Devnagari (Hindi)”, IEEE Computer Society,

1997.

[5] A. Bishnu, B.B. Chaudhuari, “Segmentation of

Bangla Handwritten Text into Characters by

Recursive Contour Following”, IEEE Computer

Society, 1999.

[6] U. Garain, B.B. Chaudhuri, “Segmentation of

touching characters in Printed Devnagari and

Bangla Scripts using Fuzzy Multifactorial

Analysis”, IEEE Computer Society, 2001.

[7] J.U. Mahmud, M.F. Raihan and C.M. Rahman,

“A Complete OCR System for Continuous Bangla

Characters”, IEEE TE?CO?-2003: Proceedings of

the Conference on Convergent Technologies for

the Asia Pacific, 2003.

[8] A.A. Chowdhury, E. Ahmed, S. Ahmed, S.

Hossain and C.M. Rahman, “Optical Character

Recognition of Bangla Characters using neural

network: A better approach”, 2nd International

Conference on Electrical Engineering (ICEE),

Khulna, Bangladesh, 2002.

[9] A. Kundu, P. Bahl and Y. Yang, “Recognition

of Handwritten Word: First and Second Order

Hidden Markov Model Based Approach”, Journal

of the Pattern Recognition Society, Pergamon

Press, Vol. 22, No. 3, 1989, pp. 283-297

[9] W. Wang, A. Brakensiek, A. Kosmala, and G.

Rigoll. “HMM based high accuracy off-line

cursive handwriting recognition by a baseline

detection error tolerant feature extraction

approach”, In Proc. Int. Workshop on Frontiers in

Handwriting Recognition, Amsterdam, 2000, pp.

209-218.

[10] J. Doménech, A.H. Toselli, A. Juan, E. Vidal,

and F. Casacuberta, “An off-line HTK-based OCR

system for isolated handwritten lowercase letters”,

In Proc. of the IX Spanish Symposium on Pattern

Recognition and Image Analysis, volume II,

Benicàssim, Spain, May 2001, pp. 49-54.

[11] S.A. Al-Qahtani and M.S. Khorsheed, “A

HTK-Based System to Recognise Arabic Script”,

in Proc. 4th IASTED International Conference on

Visualization, Imaging, and Image Processing,

Marbella, Spain, ACTA Press, 2004.

[12] S.A. Al-Qahtani and M.S. Khorsheed, “An

Omni-font HTK-Based Arabic Recognition

System”, in Proc. 8th IASTED International

 147

Conference on Artificial Intelligence and Soft

Computing, Marbella Spain, ACTA Press, 2004.

[13] The HTK Book (for HTK Version 3.3)

available at

http://htk.eng.cam.ac.uk/docs/docs.shtml

