
A Light Weight Stemmer for Bengali and Its Use in Spelling Checker

Md. Zahurul Islam, Md. Nizam Uddin and Mumit Khan

Center for Research on Bangla Language Processing, BRAC University, Dhaka, Bangladesh

zahurul@bracu.ac.bd, nizam02201001@gmail.com, mumit@bracu.ac.bd

Abstract

Stemming is an operation that splits a word into

the constituent root part and affix without doing

complete morphological analysis. It is used to improve

the performance of spelling checkers and information

retrieval applications, where morphological analysi

would be too computationally expensive. For spelling

checkers specifically, using stemming may drastically

reduce the dictionary size, often a bottleneck for

mobile and embedded devices. This paper presents a

computationally inexpensive stemming algorithm for

Bengali, which handles suffix removal in a domain

independent way. The evaluation of the proposed

algorithm in a Bengali spelling checker indicates that

it can be effectively used in information retrieval

applications in general.

1. Introduction

Stemming is a process by which a word is split

into its stem and affix [1]. Terms with common stems

tend to have similar meaning, which makes stemming

an attractive option to increase the performance of

spelling checkers and other information retrieval

applications. Another advantage of stemming is that it

can drastically reduce the dictionary sized used in

various NLP applications, especially for highly

inflected languages.

The design of stemmers is language specific, and

requires some to significant linguistic expertise in the

language, as well as the understanding of the needs for

a spelling checker for that language [2]. Consequently,

a stemmer’s performance and effectiveness in

applications such as spelling checker vary across

languages. A typical simple stemmer algorithm

involves removing suffixes using a list of frequent

suffixes, while a more complex one would use

morphological knowledge to derive a stem from the

words. The various stemming algorithms have been

evaluated in various applications from spelling checker

to information retrieval [1, 2], and the results show

that stemming appears to be more effective in such

applications for highly inflected languages [3, 4].

There has been no published effort to develop a

stemming algorithm for Bengali. In this paper, we

present a lightweight stemmer for Bengali that strips

the suffixes using a predefined suffix list, on a “longest

match” basis, using the algorithm similar to that for

Hindi [19]. The proposed stemmer, as is the case with

[19], is both computationally inexpensive and domain

independent. We review the existing work in this area

in Section 2; then we present the proposed stemming

algorithm in Section 3, followed by its application and

performance in a spelling checker in Sections 4-5 and

evaluation in section 6. Finally, we conclude with a

look at future research directions.

2. Related work

Martin Porter developed the “Porter Stemmer”,

which is a conflation stemmer, in 1980 at the

University of Cambridge [5]. The Porter Stemmer uses

the fact that English language suffixes are mostly a

combination of smaller and simpler suffixes. Porter

designed a rule-based stemmer with five steps, each of

which applies a set of rules [6]. There are a number of

other stemming algorithms for English such as

Paice/Husk [7], Lovins Stemming [8], Dawson [9],

and Krovetz [10]. Among these, the Porter Stemmer is

the most prevalent one, it and has been applied to

languages other than English. Stemming algorithms for

spelling checkers and other information retrieval

applications have been developed for a wide range of

languages including Malay [11], Latin [12],

Indonesian [13], Swedish [14], Dutch [15], German

[16], French [17], Slovene [4], and Turkish [18]. The

stemming work for Hindi, a sibling of Bengali,

includes an evaluation of its performance by

computing the under-stemming and the over-stemming

statistics for corpus of documents [19]. To the best of

the authors’ knowledge, this work represents the first

published effort to develop a stemmer for Bengali.

There are a few spelling checkers that are

available for Bengali language. Puspa speller [20, 21,

and 22] is a phonetic spelling checker, whereas

Bspeller [23] is based on aspell [24], and bundled with

Bengali Linux distribution. Additionally, there are a

few more Bengali spelling checkers available that do

not document the methodology and distributed as

closed source application.

3. Stemming algorithm for Bengali

Bengali is a highly inflected language with

relatively free or pragmatically free word order. All

Bengali verbs are inflected forms of verb roots; in

addition, a significant number of nouns and a few

adjectives can be inflected as well.

3.1. Noun inflection

Bengali nouns are inflected for case, including

nominative, objective, genitive (possessive), and

locative. The case marking pattern for each noun being

inflected depends on the noun's degree of animacy.

When a definite article such as -�� (singular) or -

���� (plural) is added, as in the Tables (1 and 2)

below, nouns are also inflected for number. [30]

Table 1: Singular noun inflections

 Animate Inanimate

Nominative ������� ������

Objective ��������

�

������

 Animate Inanimate

Genitive �������� �������

Locative ��������

Table 2: Plural noun inflections

 Animate Inanimate

Nominative ������� �������

�
Objective ��������

(��)

�������

�

Genitive �������� �������
��

Locative �������

���

3.2. Verb inflection

Bengali verbs are either finite or non-finite. Non-

finite verbs are not inflected for tense or person; finite

verbs are fully inflected for person (first, second,

third), tense (present, past. future) tense, aspect

(simple, perfect, progressive), and honor

Table 3: Verb inflections

 Present Past Future

Verb

Root

Simple Continu

ous

perfect Subju

nctive

Simple Habitual Continu

ous

Perfect Simple Subju

nctive

�� (1st

person)

��� ���� ����
�

 ���

��
����

�
����

���
����

����
���

��
(2nd

Person)

�� ��� ���� ��� ���
�

���� ����
��

����

���
���� ���

����

� (3rd

person)

���

���
����

����

�

����

���
���

���
���

���
����

��
����

����

��

����

����
����

���
���

���

(intimate, familiar, and formal), but not for number.

Each inflection is indicated by a suffix. Additionally,

the suffixes indicating tense and aspect can be

replaced by conditional, imperative, and other special

inflections [30]. The number of inflections on many

verb roots can total more than 450. A few examples

of Bengali verb inflexion are given below in Table 3.

3.3. Adjective inflection

In Bengali, adjectives are rarely inflected for the

gender, number or person of the nouns or pronouns

they qualify. A few adjectives can be inflected to

denote the female gender (e.g., ������ ->

�������, ��������� ->

���������) but these can be considered

sanskritisms rater than general phenomena.

3.4. Algorithm

A word may contain suffixes or prefixes. We

should note that our stemming algorithm only strips

suffixes from words. In the algorithm, a suffix is not

necessarily the shortest possible one as one would

expect, but may contain other suffixes as well. For

example, the word “����������” consists of

four suffixes: �+��+��+��� . In this paper,

however, we consider �������� as one suffix

as done in the Hindi stemmer [19]; though

grammatically not a suffix, it is computationally

easier for stripping from the stems. We have found

72 suffixes for verbs, 22 for nouns, and just 8 for

adjectives for Bengali language. We also order the

suffixes according to the length so that the longest

suffix will be at the top of the list. We are always

finding which suffix from suffix list matches with

given word from right. If matches found then remove

the given word to stem and root. We have tried to

strip the larger suffix first then smaller and so on.

There are few cases we can't get actual root after

stemming. For an example Bengali verb

��������� the actual root is �� but we will

get ����, this type can be solved after we get the

stem. Table 4 shows a few results of the Bengali

stemmer. The first four entries are Bengali nouns, the

fifth entry is an adjective and the last five entries are

verbs.

Table 4: Result of our stemming algorithm

Word Stem Suffix

����� ��� ��

������� ���� ���

����� ��� ��

�������� ������ ��

������� ������ �

������� �� �����

���������

�
���� ������

����� ���� �

��������� ����� ����

�������� ����� ���

4. Spell check using stemming

A Bengali spelling checker is an essential

component of many of the common desktop

applications such as word processors as well as the

more exotic applications, such as a machine language

translator. One particular challenge facing the

development of a usable spelling checker for Bengali

is most Bengali words are inflected, and follow

complex orthographic rules, in part a result of the

large gap between the spelling and pronunciation of a

word [2]. Though there are many spelling checkers

available for Bengali but biggest trade of these

spelling checkers is they can’t handle inflection

related word.

In the following sections we will describe the

steps in the process of checking the spelling of a

word on our spelling checker using stemming:

 (a) Detect whether it is misspelled or not,

 (b) Generate suggestions if it is misspelled, and

Lastly, we show the performance and evaluation

of our stemmer in spelling checking.

4.1. Error types and detection

To give suggestions for a misspelled word, the

first step for a spelling checker is to detect the

misspelled word. But before detecting a misspelled

word, we need to know what a misspelled word is.

Misspelled words or errors can be of many types,

such as typographical error (e.g., misspelling ‘spell’

as ‘speel’), cognitive error (e.g., misspelling

‘separate’ as ‘seperate’), etc. Damerau [14] finds that

80% [25, 26] of all misspelled words (non-word

errors) in a sample of human keypunched text were

caused by single error misspellings, i.e., any of the

following errors for Bengali words:

a) Deletion. For example: mistyping

������� as ������

b) Insertion. For example: mistyping

�������� as ���������

c) Substitution. For example: mistyping ���
as ���

d) Transposition. For example: mistyping

	�� as 	��

To detect an error first look up at root words

dictionary. If not found then tries to find out the stem

if not this is erroneous string.

4.2. Suggestion generation

We already discussed different types of error

that may occur in Bengali word. But, in a spelling

checker using stemming these errors may occur in

stem and suffix portion. Here are some explanations

with some examples of the operations:

4.2.1. Suggestion Generation of Deletion Errors.

User may forget to type one character in a word.

Suppose user made mistake and the given word is

“������” which is miss spelled. The spelling checker

will make it “�������” by inserting character “�”. For

the word “������” it will insert all the Bengali letters

one by one in all possible position in the suffix and

finds the best match and finally if it makes a valid

word, it just added to the suggestion. In that case the

correct word will be top of the suggestion list. We

used edit-distance algorithm to find the best match.

User may also make mistake in stem portion. We will

get suffix and stem (misspelled) after stemming and

then we can find the correct stem form stem

dictionary and combine with suffix and add to

suggestion list. In this case the suggestion is

“�������”. It just added to the suggestion.

4.2.2. Suggestion Generation of Insertion Errors.

User may type a word contains an extra character in

any position. In case of error in stem portion (e.g.:

���������) we will get ���� as stem which

is not available in stem dictionary. The spelling

checker deletes one character in different position at

a time and finds the stem in dictionary. Suppose error

in suffix portion (e.g.: ���������). Then there

will be no suffix after stemming. The spelling

checker deletes the "
 ”and give "��������"

which is a valid word.

4.2.3. Suggestion Generation of Substitution

Errors. User may type wrong character in any

position of a word. Suppose there is a word “���”

which is miss spelled. But there are two valid word

“���” and “���”. Here the spelling checker

delete “� ” and find those word by replacing “� ” by

“� ” and “� ”. To do this, the spelling checker deletes

a character at a time, replace it by all the character in

Bengali and try to match a valid word from the

lexicon. If the word matches any valid word it just

adds to the suggestion.

4.2.4 Suggestion Generation of Transposition

Errors. The Interchange character takes place when

the characters are right but not in it's own position.

Suppose there is a word “��	” which is miss spelled.

The spelling checker makes it “�	�” by swapping

“�” and “	”. It is done by swapping all possible pair

of characters from their position.

5. The spelling checker algorithm using

stemmer

First the spelling checker checks the given word

with a lexicon containing only the root words. If the

word is found, then it is a valid word, terminating the

checking process. For example, if the given word is

“
��”, the algorithm finds it in the lexicon, and thus

terminates.

If the word is not found in the lexicon, we apply

the stemming algorithm. There are two possible

scenarios: the stemming algorithm finds and returns a

stem, or it cannot find a possible suffix. Let us

suppose that we find the stem. Now we check the

stem from the lexicon. Process ends if stem found

suppose the given word is “
����	”. We get the stem

“
��" from the stemmer. Now after checking it from

the lexicon we find that it is a valid stem. So “
����	 ”
is a valid word. If, on the other hand, the stem is not

valid, then we try to produce a list of suggestions

using the suggestion generation process. If we get

some suggestion then output them with their suffix.

Suppose the word is “�����	”. The stemmer removes

“��	 ”and gives the stem “���”. “���” is not a valid

word and not found in the lexicon. So the spelling

checker tries to generate some suggestion. The

suggestions will be
��, ��
, ���, ���. So the outputs

will be
����	, ��
��	, �����	, �����	.
Now if we do not have any stem from the

stemming method then we do not know if the given

word contains error in the suffix portion or the stem

portion. First we assume that it is a miss spelled root.

So we try to get some suggestion from the suggestion

generation process. If we get any suggestion then the

given word is misspelled and we give it to output.

Now if we do not have any suggestion then we try to

get probable stem list with their suffixes from

modified stemming method. Modified stemming

process end if, no suffix found. Here the word is a

miss spelled word and the spelling checker cannot

provide any suggestion. Now if the modified

stemming method can provide some suggestion (stem

and suffix list). We check each stem from the

lexicon. If valid then give output. Suppose the word

is “
�����”. The modified stemmer returns two pair

of stem and suffix. (Stem:
���� Suffix: �) and (stem:

�� Suffix: ��). We the first pair we cannot find any

thing. We output second pair because “
��” is a valid

root.

Fig 1: Flow chart of Spelling Check Algorithm

Otherwise we try to get suggestion from the

suggestion generation process. If any suggestion is

found then give it output with the corresponding

stem.

The flow charts of Spelling checker are given on

Figure 1.

6. Evaluation

We noted certain parameters that should be

considered during the evaluation of spelling checkers

for isolated-word error correction [28]. These are:

• lexicon size,

• test set size,

• correction accuracy for single error

misspellings,

• correction accuracy for multi-error

misspellings, and

• type of errors handled (phonetic,

typographical, OCR generated etc.);

Another paper on Bengali spelling checker [29]

also considers these parameters for evaluation of

spelling checkers. We are also considering these

parameters to evaluate our spelling checker.

Lexicon size: Our lexicon contains 600 root word

and 100 suffixes.

Test set size: We tested our spelling checker with

13,000 words that list the most common single and

multiple word mistakes in Bengali [19].

Correction accuracy for single error misspellings:

90.8%.

Correction accuracy for multi-error misspellings:

Not good as single error correction, it’s close to

67%. But it does over generate few suggestions.

Type of errors handled (phonetic, typographical,

OCR generated etc.): we are not considering these.

7. Conclusion

We present a light weight stemmer for Bengali,

and show its application and evaluation in a spelling

checker. A modified stemmer customized for a

spelling checker application showed significant

improvement in the spelling checker’s performance.

This leads us to believe this stemming algorithm will

prove to be beneficial for other information retrieval

applications for Bengali. We should note that the

proposed stemming algorithm is primarily for

handling inflections – it does not handle derivational

suffixes, for which one would need a proper

morphological analyzer. Reducing derivationally

related terms to the same stem would lead to over-

conflation in some cases, potentially affecting the

precision of information retrieval applications, other

than spelling checkers.

8. Direction for Future Work

The proposed algorithm has been evaluated only

using a spelling checker, but not with other

information retrieval applications search as a search

engine. More extensive evaluations will provide the

statistical information needed to manage the suffix

list, which in turn will determine the tradeoff between

under-stemming and over-stemming. An obvious

enhancement is to handle prefixes as well. Bengali

has a small number of prefixes, which also happen to

be frequently used. It is quite reasonable to extend

the algorithm to support these prefixes. It would also

be instructive to apply this algorithm to Bengali’s

sister languages such as Assamese and Oriya.

9. Acknowledgement

This work has been supported in part by the

PAN Localization Project (www.panl10n.net), grant

from the International Development Research Center,

Ottawa, Canada, administrated through Center for

Research in Urdu Language Processing, National

University of Computer and Emerging Sciences,

Pakistan. We would also like to thank Arnab Zaheen,

Kamrul Hayder, Naira Khan and other members of

our research group.

10. References
[1] W. Frakes and R. Baeza-Yates, eds,

“Information Retrieval: Data Structures and

Algorithms”, Prentice-Hall, 1992.

[2] W. Kraaij and R. Pohlman, “Viewing

Stemming as Recall Enhancement”, In the

Proceedings of the 19th Annual International

ACM SIGIR Conference on Research and

Development in Information Retrieval, 1996, pp.

40–48.

[3] A.Pirkola, “A. Morphological typology of

languages for IR”, Journal of Documentation, 57

(3), 2001, pp. 330-348.

[4] M. Popovic and P.Willett, “The effectiveness

of stemming for natural-language access to

Slovene textual data”, JASIS, 43 (5), 1992, pp.

384-390.

[5] M.F. Porter, “An algorithm for suffix

stripping”, Program, 14(3) 1980, pp. 130−137.

[6] C.J. van Rijsbergen, S.E. Robertson and M.F.

Porter, “New models in probabilistic information

retrieval”, British Library Research and

Development Report, no. 5587, 1980.

[7] C.D. Paice, “An evaluation method for

stemming algorithms”, In the Proceedings of the

17th annual international ACM SIGIR

conference on Research and development in

information retrieval, 1990, pp. 42 – 50.

[8] J.B.Lovins, “Development of a stemming

algorithm”, Mechanical Translation and

Computational Linguistics 11, 1968, pp. 22-31.

[9] J. Dawson, “Suffix removal and word

conflation”, ALLCbulletin, 2(3), 1974, pp. 33–

46.

[10] R. Krovetz, “Viewing morphology as an

inference process”, In Proceedings of the 16

Annual International ACM SIGIR Conference on

Research and Development in Information

Retrieval, 1993, pp. 191-202.

[11] S.Y. Tai, C.S. Ong, and N.A. Abdullah, “On

designing an automated Malaysian stemmer for

the Malay language”, (Poster) In the Proceedings

of the fifth international workshop on

information retrieval with Asian languages,

Hong Kong, 2000, pp. 207-208.

[12] M. Greengrass, A.M. Robertson, S. Robyn,

and Willett, “Processing morphological variants

in searches of Latin text”, Information research

news, 6 (4), 1996, pp. 2-5.

[13] V. Berlian, S.N. Vega, and S. Bressan,

“Indexing the Indonesian web: Language

identification and miscellaneous issues”, In the

Tenth International World Wide Web

Conference, Hong Kong. 2001.

[14] J. Carlberger, H. Dalianis, M. Hassel, and O.

Knutsson, “Improving precision in information

retrieval for Swedish using stemming”, In the

Proceedings of NODALIDA ‘01 - 13th Nordic

conference on computational linguistics,

Uppsala, Sweden, 2001.

[15] W. Kraaij and R. Pohlmann, “Viewing

stemming as recall enhancement”, In the

Proceedings of ACM SIGIR96, 1996, pp. 40-48.

[16] C. Monz and M.de Rijke, “Shallow

morphological analysis in monolingual

information retrieval for German and Italian in

Cross-language information retrieval and

evaluation”, In the Proceedings of the CLEF

2001 workshop, C. Peters, Ed., Springer Verlag,

2001.

[17] I. Moulinier, A. McCulloh and E. Lund,

“Non-English monolingual retrieval in Cross-

language information retrieval and evaluation”,

In the Proceedings of the CLEF 2000 workshop,

C. Peters, Ed.: Springer Verlag, 2001, pp. 176-

187.

[18] F.C. Ekmekcioglu, M.F. Lynch and

P.Willett, “Stemming and n-gram matching for

term conflation in Turkish texts”, Information

Research News, 7 (1), 1996, pp. 2-6.

[19] A. Ramanathan and D.D. Rao, “A

Lightweight Stemmer for Hindi”, In the

Proceedings of EACL, 2003.

[20] N. UzZaman and M. Khan, “A

Comprehensive Bengali Spelling Checker”, In

the Proceeding of the International Conference

on Computer Processing on Bengali (ICCPB),

Dhaka, Bengalidesh, 2006.

[21] N. UzZaman and M. Khan, “A Double

Metaphone Encoding for Bengali and its

Application in Spelling Checker”, In the

Proceeding of IEEE International Conference on

Natural Language Processing and Knowledge

Engineering, Wuhan, China, 2005.

[22] N. UzZaman and M. Khan, “A Bengali

Phonetic Encoding for Better Spelling

Suggestions”, In the Proceeding of the 7th

International Conference on Computer and

Information Technology (ICCIT), Dhaka,

Bengalidesh, 2004.

[23] Bspelling available at: www.

sourceforge.net/project/showfiles.php?group_id=

43331

[24] Aspell available at:

www.aspell.sourceforge.net

[25] P. Kundu and B.B. Chaudhuri, “Error

Pattern in Bengali Text”, International Journal

of Dravidian Linguistics, 28(2) 1999.

[26] B.B. Chaudhuri, “Reversed word dictionary

and phonetically similar word grouping based

spell-checker to Bengali text”, In the

Proceedings of LESAL Workshop, 2001.

[27] A.B.A. Abdullah and A. Rahman, “A

Different Approach in Spell Checking for South

Asian Languages”, In the Proceedings of 2nd

International Conference on Information

Technology for Applications (ICITA), China,

2004.

[28] K. Kukich, “Techniques for automatically

correcting words in text”, ACM Computing

Surveys, 24 (4), 1992. pp. 377 - 439.

[29] A. Bhatt, M. Choudhury, U. Sarkar and A.

Basu, “Exploring the Limits of Spellcheckers: A

comparative Study in Bengali and English”, In

the Proceedings of the Second Symposium on

Indian Morphology, Phonology and Language

Engineering (SIMPLE'05), Published by CIIL

Mysore, 2005, pp. 60 – 65.

[30] Wikipedia, www.wikipedia.org.

