

COMPARISON OF DIFFERENT POS TAGGING

TECHNIQUES FOR SOME SOUTH ASIAN LANGUAGES

A Thesis

Submitted to the Department of Computer Science and Engineering of

BRAC University

by

Fahim Muhammad Hasan

Student ID: 03101057

In Partial Fulfillment of the

Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

December 2006

BRAC University, Dhaka, Bangladesh

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BRAC University Institutional Repository

https://core.ac.uk/display/61799956?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Declaration

I hereby declare that this thesis is based on the results found by myself.
Materials of work found by other researcher are mentioned by reference.
This Thesis, neither in whole nor in part, has been previously submitted
for any degree.

Signature of
Supervisor

Signature of
Co-Supervisor

Signature of
Author

Dr. Mumit Khan

Naushad UzZaman

Fahim Muhammad Hasan

 iii

Acknowledgments

I would like to thank my thesis supervisor, Dr. Mumit Khan and co-

supervisor, Naushad UzZaman, for their guidance and ever helpful

comments on my work. I also thank my teachers at BRAC University, my

family and friends.

 iv

Abstract

There are different approaches to the problem of assigning a part of

speech (POS) tag to each word of a natural language sentence. We

present a comparison of the different approaches of POS tagging for the

Bangla language and two other South Asian languages, as well as the

baseline performances of different POS tagging techniques for the

English language. The most widely used methods for English are the

statistical methods i.e. n-gram based tagging or Hidden Markov Model

(HMM) based tagging, the rule based or transformation based methods

i.e. Brill’s tagger. Subsequent researches add various modifications to

these basic approaches to improve the performance of the taggers for

English. Here, we present an elaborate review of previous work in the

area with the focus on South Asian Languages such as Hindi and

Bangla. We experiment with Brill’s transformation based tagger and the

supervised HMM based tagger without modifications for added

improvement in accuracy, on English using training corpora of different

sizes from the Brown corpus. We also compare the performances of

these taggers on three South Asian languages with the focus on Bangla

using two different tagsets and corpora of different sizes, which reveals

that Brill's transformation based tagger performs considerably well for

South Asian languages. We also check the baseline performances of the

taggers for English and try to conclude how these approaches might

perform if we use a considerable amount of annotated training corpus.

 v

Table Of Content

DECLARATION ..II

ACKNOWLEDGMENTS..III

ABSTRACT... IV

TABLE OF CONTENT... V

LIST OF TABLES.. VII

LIST OF FIGURES ... VIII

BACKGROUND... 1

1.1 INTRODUCTION... 1

1.2 PARTS OF SPEECH TAGGING .. 1

1.3 CLASSIFICATION... 3

1.3.1. Supervised POS Tagging .. 3

1.3.2. Unsupervised POS Tagging .. 4

1.3.3. Rule Based / Transformation Based...................................... 4

1.3.4. Stochastic... 5

1.3.5. Conditional Random Fields.. 6

1.3.6. Hidden Markov Model .. 7

1.3.7. Maximum Entropy Model ... 9

1.3.8. Memory Based Learning.. 9

CHAPTER I: PREVIOUS WORK .. 11

2.1 RULE BASED AND TRANSFORMATION BASED APPROACHES 11

2.2 STOCHASTIC APPROACHES... 11

2.3 OTHER APPROACHES ... 13

2.4 HINDI AND OTHER SOUTH-ASIAN LANGUAGES 15

2.4.1. Stochastic Approaches .. 15

2.4.2. Hybrid Approaches .. 16

2.5 BANGLA... 18

2.5.1. Rule Based and Transformation Based Approaches 18

 vi

2.5.2. Stochastic Approaches .. 19

2.5.3. Hybrid Approaches .. 20

CHAPTER II: METHODOLOGY ... 22

3.1 CORPORA.. 22

3.2 TAGSETS ... 23

3.3 TAGGERS .. 25

3.3.1 Unigram and Bigram Taggers.. 25

3.3.2 HMM... 26

3.3.3 Brill’s Tagger .. 28

3.4 TAGGING EXAMPLE .. 30

3.6.1. Untagged Text ... 30

3.6.2. Tagged output.. 31

CHAPTER III: RESULTS ... 33

4.1 BANGLA - PROTHOM ALO CORPUS AND LEVEL 1 TAGSET 33

4.2 BANGLA - PROTHOM ALO CORPUS AND LEVEL 2 TAGSET 34

4.3 ENGLISH - BROWN CORPUS AND TAGSET 35

4.4 HINDI - SPSAL CORPUS AND TAGSET... 37

4.5 TELEGU - SPSAL CORPUS AND TAGSET 38

4.6 BANGLA - SPSAL CORPUS AND TAGSET 39

4.7 BANGLA - SPSAL CORPUS AND TAGSET (MERGED) 40

CHAPTER IV: ANALYSIS OF RESULTS.. 42

CHAPTER V: FUTURE WORK... 43

REFERENCES... 47

APPENDIX .. 53

BANGLA POS TAGSET USED IN OUR EXPERIMENTS 53

LEVEL 1 – HIGH LEVEL TAGS ... 53

LEVEL 2 – DETAILED TAGS .. 54

 vii

List of Tables

TABLE 1: PERFORMANCE OF POS TAGGERS FOR BANGLA [TEST DATA: 85

SENTENCES, 1000 TOKENS FROM THE (PROTHOM-ALO) CORPUS; TAGSET:

LEVEL 1 TAGSET (14 TAGS)] .. 33

TABLE 2: PERFORMANCE OF POS TAGGERS FOR BANGLA [TEST DATA: 85

SENTENCES, 1000 TOKENS FROM THE (PROTHOM-ALO) CORPUS; TAGSET:

LEVEL 2 TAGSET (41 TAGS)] .. 34

TABLE 3: PERFORMANCE OF POS TAGGERS FOR ENGLISH [TEST DATA: 22

SENTENCES, 1008 TOKENS FROM THE BROWN CORPUS; TAGSET: BROWN

TAGSET] ... 36

TABLE 4: PERFORMANCE OF POS TAGGERS FOR HINDI [TEST DATA AND

TAGSET SOURCE: [41]] .. 37

TABLE 5: PERFORMANCE OF POS TAGGERS FOR TELEGU [TEST DATA AND

TAGSET SOURCE: [41]] .. 39

TABLE 6: PERFORMANCE OF POS TAGGERS FOR BANGLA [TEST DATA AND

TAGSET SOURCE: [41]] .. 40

TABLE 7: PERFORMANCE OF POS TAGGERS FOR BANGLA ON MERGED

TRAINING AND TESTING DATA [TEST DATA AND TAGSET SOURCE: [41]] .. 40

 viii

List of Figures

FIGURE 1: CLASSIFICATION OF POS TAGGING MODELS 3

FIGURE 2: A SAMPLE DECISION TREE (PARTIALLY DRAWN) [28] 14

FIGURE 3: BLOCK DIAGRAM OF SUFFIX STRIPPER [33] 17

FIGURE 4: DIAGRAM OF IMPROVED BRILL TAGGER [17] 30

FIGURE 5: PERFORMANCE OF POS TAGGERS FOR BANGLA [TEST DATA: 85

SENTENCES, 1000 TOKENS FROM THE (PROTHOM-ALO) CORPUS; TAGSET:

LEVEL 1 TAGSET (14 TAGS)] .. 34

FIGURE 6: PERFORMANCE OF POS TAGGERS FOR BANGLA [TEST DATA: 85

SENTENCES, 1000 TOKENS FROM THE (PROTHOM-ALO) CORPUS; TAGSET:

LEVEL 2 TAGSET (41 TAGS)] .. 35

FIGURE 7: PERFORMANCE OF POS TAGGERS FOR ENGLISH [TEST DATA: 22

SENTENCES, 1008 TOKENS FROM THE BROWN CORPUS; TAGSET: BROWN

TAGSET] ... 36

FIGURE 8: PERFORMANCE OF POS TAGGERS FOR HINDI [TEST DATA AND

TAGSET SOURCE: [41]] .. 38

FIGURE 9: PERFORMANCE OF POS TAGGERS FOR TELEGU [TEST DATA AND

TAGSET SOURCE: [41]] .. 39

FIGURE 10: PERFORMANCE OF POS TAGGERS FOR BANGLA [TEST DATA AND

TAGSET SOURCE: [41]] .. 40

 1

Background

1.1 Introduction

 Parts of speech (POS) tagging is one of the most well studied

problems in the field of Natural Language Processing (NLP). Different

approaches have already been tried to automate the task for English

and other western languages. Though Bangla (or Bengali) is one of the

top ten most spoken languages in the world [1] and is spoken by more

than 200 million people, it still lacks significant research efforts in the

area of NLP.

This thesis discusses the different techniques for POS tagging for

western languages as well as the South Asian languages. It displays the

analyses of performance of well known tagging methods for the western

languages using corpora of varying sizes. It compares the performance

of some South Asian languages using the same techniques with that of

the western languages and attempts to suggest which technique might

be better for the South Asian languages. It concludes with a discussion

on some improvement techniques that could be added to a baseline

tagger to improve its performance.

1.2 Parts of Speech Tagging

 Parts of speech (POS) tagging means assigning grammatical

classes i.e. appropriate parts of speech tags to each word in a natural

language sentence. Assigning a POS tag to each word of an un-

annotated text by hand is very time consuming, which results in the

existence of various approaches to automate the job. So automated

POS tagging is a technique to automate the annotation process of

lexical categories. The process takes a word or a sentence as input,

 2

assigns a POS tag to the word or to each word in the sentence, and

produces the tagged text as output.

POS tags are also known as word classes, morphological classes, or

lexical tags. The significance of these is the large amount of information

they give about a word and its neighbors. POS tagging can be used in

Text to Speech (TTS) applications, information retrieval, parsing,

information extraction, linguistic research for corpora, [2, 3] and also can

be used as an intermediate step for higher level NLP tasks such as

parsing, semantics analysis, translation, and many more [4], which

makes POS tagging a necessary function for advanced NLP applications

in Bangla or any other language.

POS tagging has its importance in subsequent processing of text such

as parsing, as it makes the processing easier by attaching a class to a

word [5], and it is also widely used for linguistic text analysis. POS

tagging is used as an early stage of text analysis in many applications

such as subcategory acquisition, text to speech synthesis and alignment

of parallel corpora [6]. It is essential for being a component of many

applications in natural language processing and related domains [3], and

it is also used to build the knowledge base of a Natural Language

Analyzer [7].

POS tagging is useful for syntactic parsing as taggers reduce ambiguity

from the parser's input sentence, which makes parsing faster by making

the computational problem smaller, and the result less ambiguous. It

also resolves some ambiguities that are not addressed by the syntactic

parser’s language model. With the rule-based taggers, the parser's

output becomes less ambiguous without a considerable penalty to

recognition rate and at the same time, parsing speed increases to some

extent [8].

In the following sections, we start by giving a overview of some of the

widely used POS tagging models. Then we discuss about some of the

 3

work already completed in this field, focusing on the South-Asian

languages such as Bangla and Hindi. We continue by describing the

annotated training corpora, the tagsets and the methodologies we used

for our experiments and analyze the results of the experiments that we

did for English, Bangla and two other South-Asian languages. We also

try to compare the performances of the taggers on English and Bangla

using tagsets and corpora of similar sizes. We conclude by describing

some additional works and modifications that we wish to do in future on

the POS tagging models for Bangla, to improve the performance of the

tagging models to a significant extent.

1.3 Classification

 There are different approaches for POS tagging. The following

figure demonstrates different POS tagging models.

Figure 1: Classification of POS tagging models

1.3.1. Supervised POS Tagging

 The supervised POS tagging models require a pre-tagged

corpora which is used for training to learn information about the tagset,

 4

word-tag frequencies, rule sets etc [10]. The performance of the models

generally increase with the increase in size of this corpora.

1.3.2. Unsupervised POS Tagging

 Unlike the supervised models, the unsupervised POS tagging

models do not require a pre-tagged corpora. Instead, they use advanced

computational methods like the Baum-Welch algorithm to automatically

induce tagsets, transformation rules etc. Based on the information, they

either calculate the probabilistic information needed by the stochastic

taggers or induce the contextual rules needed by rule-based systems or

transformation based systems [9, 10].

Both the supervised and unsupervised POS tagging models can be of

the following types.

1.3.3. Rule Based / Transformation Based

 The rule based POS tagging models apply a set of hand written

rules and use contextual information to assign POS tags to words.

These rules are often known as context frame rules. For example, a

context frame rule might say something like: “If an ambiguous/unknown

word X is preceded by a Determiner and followed by a Noun, tag it as an

Adjective.” On the other hand, the transformation based approaches use

a pre-defined set of handcrafted rules as well as automatically induced

rules that are generated during training.

Morphology is a linguistic term which means how words are built up from

smaller units of meaning known as morphemes [3]. In addition to

contextual information, morphological information is also used by some

models to aid in the disambiguation process. One such rule might be: “If

 5

an ambiguous/unknown word ends in a suffix -ing and is preceded by a

Verb, label it a Verb”.

Some models also use information about capitalization and punctuation,

the usefulness of which are largely dependent on the language being

tagged.

In general, the rule based tagging models usually require supervised

training i.e. pre-annotated corpora. But recently, good amount of work

has been done to automatically induce the transformation rules. One

approach to automatic rule induction is to run an untagged text through a

tagging model and get the initial output. A human then goes through the

output of this first phase and corrects any erroneously tagged words by

hand. This tagged text is then submitted to the tagger, which learns

correction rules by comparing the two sets of data. Several iterations of

this process are sometimes necessary before the tagging model can

achieve considerable performance. [9]

The transformation based approach is similar to the rule based approach

in the sense that it depends on a set of rules for tagging. It initially

assigns tags to words based on a stochastic method e.g. the tag with

highest frequency for a particular word is assigned to that word. Then it

applies the set of rules on the initially tagged data to generate final

output. It also learns new rules while applying the already learnt rule,

and can save the new rules if they seem effective i.e. improve the

performance of the model.

1.3.4. Stochastic

 A stochastic approach includes frequency, probability or statistics.

The simplest stochastic approach finds out the most frequently used tag

for a specific word in the annotated training data and uses this

information to tag that word in the unannotated text. The problem with

 6

this approach is that it can come up with sequences of tags for

sentences that are not acceptable according to the grammar rules of a

language.

An alternative to the word frequency approach is known as the n-gram

approach that calculates the probability of a given sequence of tags. It

determines the best tag for a word by calculating the probability that it

occurs with the n previous tags, where the value of n is set to 1,2 or 3 for

practical purposes. These are known as the Unigram, Bigram and

Trigram models. The most common algorithm for implementing an n-

gram approach for tagging new text is known as the Viterbi Algorithm

[11], which is a search algorithm that avoids the polynomial expansion of

a breadth first search by trimming the search tree at each level using the

best m Maximum Likelihood Estimates (MLE) where m represents the

number of tags of the following word [4].

There are different models that can be used for stochastic POS tagging,

some of which are described below.

1.3.5. Conditional Random Fields

 A Conditional Random Field (CRF) is a framework of probabilistic

model to segment and label a sequence of data. A conditional model

specifies the probabilities of possible label sequences given an

observation sequence. The conditional probability of the label sequence

can depend on arbitrary, non-independent features of the observation

sequence. The probability of a transition between labels may depend not

only on the current observation, but also on past and future observations

[10]. The CRF model calculates the probability based on some features,

which might include the suffix of the current word, the tags of previous

and next words, the actual previous and next words etc. [9]

 7

1.3.6. Hidden Markov Model

A Hidden Markov Model (HMM) consists of:

N: The number of states

M: Total number of distinct observation symbols

T: Length of observation sequence

it: The state at time t

V = {v1,v2….vM): The discrete set of possible observation symbols

π = { πi } The probability of being in state i at the beginning of the

experiment

A = {aij} where aij = P(it+1=j | it = i)is the probability of being in state

j at time t+1 given that we were in state i at time t.

B = {bj(k)} where bj(k) = P(vk at t | it = j) is the probability of

observing the symbol vk given that we are in state j.

Ot: The observation symbol at time t.

λ = (A, B, π) is the notation to denote an HMM [11, 12]

There are three basic problems that the HMM must solve to be used for

any practical purpose. They are as follows:

1. Given the observation sequence O = O1O2…OT , and a model λ = (A,

B, π), how do we efficiently compute P(O| λ), the probability of the

observation sequences, given the model?

2. Given the observation sequence O = O1O2…OT , and the model λ,

how do we choose a corresponding state sequence V = v1,v2….vM,
which is optimal in some meaningful sense (i.e., best “explains” the

observations)?

3. How do we adjust the model parameters λ = (A, B, π) to maximize

P(O| λ)?

 8

For supervised POS tagging, we solve problem 2, in which we attempt to

uncover the hidden part of the model, i.e. to find the “correct” state

sequence [13].

For POS tagging, HMM is used to model the joint probability distribution

P(word, tag). The generation process uses a probabilistic Finite State

Machine (FSM).

The states of HMM correspond to the tags, it has an alphabet which

consists of the set of words, the transition probabilities P(Tagi|Tagi-1) and

the emission probabilities P(Wordi|Tagi)

In HMM, for a given (word, tag) pair we have the probability:

P(w, t) = Π P(Tagi|Tagi-1) * P(Wordi|Tagi)
 i

HMM is called Hidden as for a word sequence, we cannot determine the

exact sequence of tags that generated this word sequence. It is called

Markov as it is based on the Markovian assumption that the current tag

depends only on the previous n tags. (n=1 or 2 defines the first or

second order)

The HMM model trains on annotated corpora to find out the transition

and emission probabilities. For a sequence of words w, HMM

determines the sequence of tags t using the formula: t = argmax P(w, t)

The computation of this formula is very expensive as all possible tag

sequences are required to be checked in order to find the sequence that

maximizes the probability. So a dynamic programming approach known

as the Viterbi Algorithm is used to find the optimal tag sequence [14].
We describe the operation of HMM for POS tagging in more details in

the subsequent sections.

 9

1.3.7. Maximum Entropy Model

 The Maximum Entropy Model (MEM) is based on the principle of

Maximum Entropy, which states that when choosing between a number

of different probabilistic models for a set of data, the most valid model is

the one which makes fewest arbitrary assumptions about the nature of

the data [3].

The probability model for MEM is defined over (H, X, T), where H is the

set of possible word and tag contexts or “histories”, and T is the set of

allowable tags. The model's probability of a history h together with a tag t

is defined as:

where π is a normalization constant, {a1, ..., ak} are the positive model

parameters, {f 1 , . . , fk} are known as “features”, where fj(h, t) is in {0, 1}

and each parameter aj corresponds to a feature fj.

Given a sequence of words {wl , . . . , wn} and tags {tl,..., tn} as training

data, hi is defined as the history available when predicting ti. The

parameters {a1, …, ak} are then chosen to maximize the likelihood of the

training data p [10], using the following formula:

1.3.8. Memory Based Learning

 The Memory Based Learning (MBL) Model takes tagged data as

input, and produces a lexicon and memory based POS tags as output.

MBL consists of two components, one is a memory based learning

 10

component, and the other is a similarity based performance component.

The learning component is called memory based as it memorizes

examples while training. The performance component matches the

similarity of the input with the output of the learning component to

produce the actual output of the system [10].

The different models described above have their own advantages and

disadvantages, however, they all face one difficulty, which is to assign a

tag to an unknown word which the tagger has not seen previously i.e.

the word was not present in the training corpora. Different tagging

models use different methods to get around this problem. The rule

based taggers use certain rules to specially handle unknown or

ambiguous words. But the stochastic taggers have no way to calculate

the probabilities of an unknown word beforehand. So to solve the

problem, the taggers of this category calculate the probability that a

suffix of an unknown word occurs with a particular tag. If HMM is used,

the probability that a word containing that suffix occurs with a particular

tag in the given sequence is calculated. An alternate approach is to

assign a set of default tags to unknown words. The default tags typically

consist of the open classes, that are word classes, which freely admit

new words and are readily modified by morphological processes [3],

examples are Noun, Verb, Adjective, Adverb etc. The tagger then

disambiguates using the probabilities that those tags occur at the end of

the n-gram in question. A third approach is to calculate the probability

that each tag in the tagset occurs at the end of the n-gram, and to select

the path with the highest probability. This, however, is not the optimal

solution if the size of the tag set is large [9].

 11

Chapter I: Previous Work

Considerable amount of work has already been done in the field of POS

tagging for English. Different approaches like the rule based approach,

the stochastic approach and the transformation based learning approach

along with modifications have been tried and implemented. However, if

we look at the same scenario for South-Asian languages such as Bangla

and Hindi, we find out that not much work has been done. The main

reason for this is the unavailability of a considerable amount of

annotated corpora of sound quality, on which the tagging models could

train to generate rules for the rule based and transformation based

models and probability distributions for the stochastic models [15].

In the following sections, we describe some POS tagging models that

have been implemented for English along with their performances. Then

we have a look at the models implemented for Hindi, Bangla and some

other South-Asian Languages.

2.1 Rule Based and Transformation Based Approaches

 The most widely used rule based or transformation based

approach for POS tagging is the linguistically motivated model by Brill

[16, 17], that initially assigns POS tags to words based on the most likely

tags and later changes the tags using rules that could be predefined or

learnt while the tagger is processing the annotated training corpora. We

explore the Brill tagger in depth in the subsequent sections.

2.2 Stochastic Approaches

 Most of the stochastic approaches are based on first or second

order HMM and generally achieve good performance in POS tagging.

 12

The supervised approaches use a training corpus on which they apply

statistical models to find the most likely tag for a word [18, 19, 20, 21].
Some of the taggers based on stochastic approaches are as follows:

Trigrams N Tags (TNT) is a stochastic HMM tagger based on trigram

analysis which uses a suffix analysis technique based on properties of

words like suffices in the training corpora, to estimate lexical probabilities

for unknown words that have the same suffices.

A bootstrapping method for training is described in [22], which use a

small annotated corpora to train the initial model. This initial model is

then used to tag more text, which are corrected manually before re-

training the model using the corrected text. This is the method that we

used to enlarge the size of the Prothom-Alo corpus [23].

Most of the supervised approaches require a large pre-annotated

corpora which might not be available for new languages. This is where

the unsupervised models come in. There have been several works that

have utilized unsupervised learning for training a HMM for POS tagging.

The most widely known is the Baum-Welch algorithm [24], that can be

used to train a HMM from unannotated data.

A HMM based POS tagger is described in [20]. This model uses a

lexicon and an unannotated corpus. The whole system consists of three

modules, that are the tokenizer, the trainer and the tagger. The task of

the tokenizer is to identify a set of tags, also known as an ambiguity

class, for each word. The training module uses the Baum-Welch

algorithm on a sequence of ambiguity classes on a large corpus to train

an HMM. The tagging module buffers sequence of ambiguity classes

between sentence boundaries. These sequences are disambiguated by

computing the maximal path through the HMM using the Viterbi

algorithm.

 13

An approach to improve the estimation for unsupervised tagging is

described in [25]. It states that a simple HMM model can display very

good performance for unsupervised tagging by improving aspects of

standard Baum-Welch estimation. According to them, one such

improvement is to use word similarities to smooth the lexical tag to word

probability estimates, which avoids over-fitting the lexical model. Another

improvement is to limit the model to preserve a specified marginal

distribution over the hidden tags, which avoids over-fitting the tag to tag

transition model.

2.3 Other Approaches

 An language independent approach is reported in [26], that

achieves 77% accuracy on the Brown corpus. This approach does not

require a pre-annotated corpus, lexicon or language specific information

for determining tags. Instead, it uses six language features along with

information on language universals to tag syntactic clusters with

corresponding POS tags. These six features are called the openness,

affixation, numeracy, optionality, binding, and word order of the

language and are extracted from the language clusters. According to the

authors, a preliminary evaluation of this process on the Brown corpus

shows that the system can accurately tag most of the major categories

of POS. for English

A recurrent neural network based POS tagging approach is reported in

[27], which trains a discrete time recurrent neural network to predict the

ambiguity class of the next word. In this approach, the information about

POS tagging is stored in the states of this neural network.

To test the tagger, a 14276 entry lexicon was built from the first 20

sections of the 24 data sets of the Penn Treebank corpora,

corresponding to the Wall Street Journal. 95% coverage was found by

 14

discarding all words appearing less than 4 times. No guessers were

used in the experiment. The experiments performed to compute error

rates on this text displayed performance similar to a HMM based

unsupervised model that uses the Baum Welch estimation algorithm for

training.

Another different approach [28] is used in a POS tagger for the German

language. This tagger is known as the tree tagger. To correctly tag text,

the tagger builds a decision tree where the nodes are tags of previous

words. These nodes are used to determine the current node i.e. the tag

of the current word. Along with this, the tagger also uses a suffix tree to

improve its performance. Figure shows a small part of a sample decision

tree built by the tree tagger.

Figure 2: A Sample decision tree (Partially drawn) [28]

 15

2.4 Hindi and Other South-Asian Languages

2.4.1. Stochastic Approaches

 We have found that most of the research on POS tagging on the

South-Asian languages has been done using stochastic tagging models

like HMM, MEM etc. A POS tagging approach based on Maximum

Entropy Markov Model using supervised training is reported in [29]. This

model trains using a pre-tagged corpora and uses a feature set to

predict the tag for a word. The feature set consists of POS tagging

features, context based features, word features, dictionary features and

corpus based features. The tagger reports an accuracy of 89.34% on the

development data of the NLPAI Machine Learning Competition 2006. To

attain such performance, the tagger uses a pre-annotated training

corpus consisting of around 35,000 words annotated with a tagset

consisting of 29 different POS tags.

As described in [30], a HMM based POS tagger was developed which

demonstrated 85.42% accuracy. The tagger was also trained on a pre-

annotated corpus consisting of 40956 tokens. The tagger was tested on

a annotated corpus having 5967 tokens. The tagger demonstrated

79.12% accuracy when tested on an un-annotated test set consisting of

5129 tokens.

Yet another HMM based tagger is described in [31], reporting a

performance of 76.49% accuracy on training and test data having about

25000 and 6000 words, respectively. This tagger uses HMM in

combination with probability models of certain contextual features for

POS tagging.

Finally, as reported in [5], a stochastic model based on Conditional

Random Fields (CRF) is developed which demonstrates a performance

of 77.48% accuracy. This is the baseline performance of the tagger

 16

when trained on 21,000 words. When the tagger is trained on the same

amount of data with the best feature set, the accuracy improves to

82.67%. But the size and type of the testing data is not mentioned in this

paper, which can improve or deteriorate the performance of the tagger

to a great extent.

2.4.2. Hybrid Approaches

 In [32], the authors report a hybrid tagger for Hindi that runs on

two phases to POS tag input text. In the first phase, the HMM based TnT

tagger is run on the untagged text to perform the initial tagging. During

this phase, a set of transformation rules is induced which are used later.

In the second phase, the set of transformation rules learnt earlier is used

on the initially tagged text to correct error created in the first phase.

However, the performance of this tagger is not as good as the other

taggers reported for Hindi. It uses a corpus of 35,000 words annotated

with 26 tags, and the resulting accuracy is 79.66% using the TnT tagger.

The authors suggest that the low score could be the result of the

sparseness of the training data. The use of the set of transformation

rules in post processing improves the overall accuracy to 80.74%.

For the Telegu language, [10] reports the performances of various

approaches of POS tagging. Here the pre-annotated training corpora are

the training data released for the NLPAI Machine Learning Competition

2006, consisting of 27336 words. The size of the testing data used is

around 5662 tokens. Using the above data, the HMM based approach

demonstrates an accuracy of 82.47% whereas the MEM based

approach displays 82.27% which are very similar. The Memory Based

Learning approach has 75.75% accuracy, and finally, the Conditional

Random Fields based approach exhibits 75.11% accuracy.

 17

For the Tamil language, a tagger is reported in [33], that uses a suffix

stripper before performing the actual tagging to improve the accuracy.

The suffix stripper uses a list of suffices, pronouns, adjectives and

adverbs to remove the suffices from words. A simple block diagram of

the suffix stripper is included below.

Figure 3: Block diagram of suffix stripper [33]

The input format for the tagger is one sentence per line in which each

word is separated by a white space. On the input text, the tagger runs

the following algorithm to remove suffices and then to complete the

tagging.

1. Split the sentence in to words.

2. For each word,

2.1. find the longest suffix at the end

2.2. find the table number of the suffix and eliminate the suffix from

the word

2.3. Go to 2.1 until the word length is 2.

 18

3. Using the combination of suffixes and the rules, apply the lexical rules

and assign the category.

4. For each sentence,

4.1. Apply the context sensitive rules on the unknown words.

4.2. Apply the context sensitive rules on the wrongly tagged words.

4.3. If no context rule applies for any unknown words, tag it as

noun.

2.5 Bangla

2.5.1. Rule Based and Transformation Based Approaches

 A rule based POS tagger for Bangla is reported in [34], but only

the rules for Noun and Adjective are showed. No review or comparison

with established work on POS tagging is done, neither is the presence of

any performance analysis report in the paper, which makes uncertain

whether the approach is worthwhile or not.

Furthermore, the work described here can be thought as more of a

morphological analyzer than a POS tagger. A morphological analyzer

indeed provides some POS tag information, but we need more fine-

grained tags from a POS tagger.

The tagset here consists of only 9 tags which is very small compared to

renowned tagsets. A POS tagger works as an intermediate tool or

component for many advanced NLP applications as described earlier,

but with a tagset consisting of only 9 tags, the output of the POS tagger

can only be used in restricted applications. For English, most widely

used tagsets include the Brown tagset [35] consisting of 87 distinct tags,

and Penn Treebank’s tagset [36], consisting of (36 + 12 = 48) tags.

 19

These show the necessity of a large tagset to use the POS tagging

information in other applications.

2.5.2. Stochastic Approaches

 Notable work on POS tagging has been reported in [37] for Indian

Bangla. Here, a HMM based approach is used for tagging Bangla which

is a combination of both supervised and unsupervised learning for

training a Bigram based HMM. It also uses a morphological analyzer

before tagging that takes a word as input and gives all possible POS

tags for the word. This restricts the set of possible tags for a given word

to possibly increase the performance of the tagger.

To test this tagger, a tagset of 27 tags and a training corpus consisting

of 3085 sentences, approximately 41,000 words have been used. The

tagger can train in two ways, unsupervised and supervised. For

unsupervised learning, the tagger uses the HMM trained from

supervised learning as the initial model. The Baum-Welch estimation

algorithm is then used to re-estimate the parameters of the model. For

this, a fixed set of 11,000 unlabeled sentences with approximately

100,000 words taken from CIIL corpus is used. As reported in the paper,

the baseline model demonstrates performance of 69.11% accuracy,

which improves to 89.65% using morphological analyzer and semi-

supervised learning.

Another paper in [38] uses a suffix based tree tagger, influenced by [28],

but this is also more of morphological analyzer than POS tagger. Here

the authors also mention about the n-gram based tagging, but do not

describe how to combine both. This paper also lacks any review or

comparison with established work on POS tagging, instead it only

proposes a rule-based technique. The paper also does not show any

 20

performance analysis of the proposed work, and it also uses a small

tagset with 9 tags.

2.5.3. Hybrid Approaches

 A hybrid POS tagger for Bangla based on HMM is described in [6]

that tags using three methods. The first method uses only supervised

learning, the second one uses a partially supervised learning and

decodes the best tag sequence without using morphological analyzer to

restrict the possible tags. The third method also uses partially

supervised learning and decodes the best tag sequence with using

morphological analyzer to restrict the possible tags.

To test the performance of this tagger, the authors used a tagset of 40

different tags, along with an annotated corpus consisting of 500 tagged

sentences for supervised learning. For unsupervised learning, un-

annotated data of 50,000 words was used for re-estimating parameter.

As reported, the tagger demonstrates impressive performance of

96.28% accuracy when run on the third method. The performance on

method 1 is 64.31% and that one method 2 is 67.6%

The tagger was also tested on random sentences of 1003 words from

the CIIL corpus, which were more complex than the training data and

these were tagged manually. This resulted in some reduction in

accuracy. The performance of method 3 in this case was 84.37% while

that of method 1 and 2 were 59.93% and 61.79%, respectively.

In [39], the authors describe a tagset of 84 tags and a tagging program

for Bangla using Oracle 8i, Visual Basic 6.0 and GistSDK ActiveX

Controls Version 2.7. In this paper, the user interface of the tagger is

given much importance and is described in detail. However, nothing is

 21

mentioned about the training or testing corpora as well as tagging

performance of the tagger.

 22

Chapter II: Methodology

In this chapter, we describe the theories behind the working of n-gram

and HMM based taggers as well as the Brill tagger. We also discuss the

experiments that we did for several languages. We describe the results

of the experiments in the next chapter.

As discussed in the previous chapter, notable work has already been

done for English as well as Indian Bangla. The results of the works on

Indian Bangla might suggest how the different techniques for POS

tagging should perform on Bangladesh Bangla. But we cannot say

anything decisively as, at present, we do not have training corpora of

considerable amount developed using Bangladesh Bangla. So we

focused mainly on Bangladeshi Bangla and the baseline taggers without

using advanced techniques to see how they perform for similar cases in

comparison to other languages. Here we describe the resources that we

used for the experiments.

3.1 Corpora

 For correctly POS tagging, training the tagger well is very

important, which requires the use of well annotated corpora. Annotation

of corpora can be done at various levels which include POS, phrase or

clause level, dependency level etc. For English we used some of the

genres of the Brown corpus from NLTK [40], while for Bangla we used

two different corpora. The first one was the annotated Prothom-Alo

corpus, currently under development at the Center for Research on

Bangla Language Processing (CRBLP), BRAC University, Dhaka,

Bangladesh, consisting of around 6000 words from a Bangladeshi

Newspaper Prothom-Alo [23]. The other was the combination of the

training and development corpora provided for [41]. For all the

 23

experiments that we did, our test sets had been disjoint from the training

corpora.

As not much work on Bangladeshi Bangla has been done, we had to

start with the unannotated Prothom-Alo corpus. We took a small part of it

and manually tagged it. We used the Python language which, at present

has some issues representing the two Bangla characters ‘ঠ’ and ‘a’. We

had to take care of it by replacing each occurrence of these with the flag

characters ‘t’ and ‘o’, respectively. After fixing the problem, we structured

the corpus in the Brown corpus format. This became our initial corpus.

We used a bootstrapping method to enlarge its size. We ran some

unannotated data through the n-gram, HMM, and Brill taggers and took

the output of the tagger that performed best. Then we manually

corrected the generated output and added it to our annotated training

corpus. In the next iteration, the taggers were trained using this corpus.

We repeated this process several times to get a corpus of around 6000

tagged tokens. Later we also used the training and development data

provided for the SPSAL contests 2006 [41]. We experimented with the

corpora for all the three languages Hindi, Bangla and Telegu provided by

the authority, but before that, we again had to fix the aforementioned

problem. Then we converted the data from the given SSF format [42] to

the format used by the Brown corpus in NLTK [40].

3.2 Tagsets

 Apart from a corpora, a well chosen tagset is also important.

According to [15], for deciding upon a tagset, we should consider the

following properties:

1. Fineness Vs coarseness

When choosing the tagset for a POS tagger, we have to decide

whether the tags will allow for precise distinction of the various

 24

features of POS of the language i.e. whether features like

plurality, gender and other information should also be available or

whether the tagger would only provide the different lexical

categories.

2. Syntactic function Vs lexical category

The lexical category of a word can be different than the POS of

the word in a sentence, and the tagset should be able to

represent both.

e.g. uttara (North) - noun (lexical category)

uttara bhArata me bhArI varRA HuI. - adjective (syntactic

category)

("north" "India" "in" "lots" "rain" "happened")

3. New tags Vs tags from a standard tagger

It has to be decided whether an existing tagset should be used, or

a new tagset should be applied according to the specifics of the

language on which the tagger will work.

For English, we used the Brown tagset [35], while for Bangla we used

our bangla tagset [43], which is a two level tagset. The first level is the

high-level tagset for Bangla, which consists of only (12+2 = 14) tags

(Noun, Adjective, Cardinal, Ordinal, Fractional, Pronoun, Indeclinable,

Verb, Post Positions, Quantifiers, Adverb, Punctuation, Abbreviation and

Others). The second level is more fine-grained with 41 tags. Most of our

experiments are based on the level 2 tagset (41 tags). However, we also

experimented several cases with the level 1 tagset (14 tags). We also

used the 26 tags tagset in [15], for experimenting with Bangla, Hindi and

Telegu.

Apart from the corpora and the tagsets, we used the Natural Language

Toolkit (NLTK) [40], which is a set of computational linguistics and NLP

program modules, annotated corpora and tutorials supporting research

 25

and teaching for the Python language. NLTK allows various NLP tasks

by providing implementation of various algorithms such as the Brill

tagger, HMM based POS tagger, n-gram based taggers etc. For our

experiments, we used the parts of the Unigram, Bigram, Brill and the

HMM tagging modules of NLTK.

3.3 Taggers

3.3.1 Unigram and Bigram Taggers

 The Unigram tagger (n-gram, n = 1) is a simple statistical tagging

algorithm. For each token, it assigns the tag that is most likely for that

token. For example, it will assign the tag ‘adj’ to any occurrence of the

word ‘frequent’, since ‘frequent’ is used as an adjective (e.g. a frequent

word) more often than it is used as a verb (e.g. I frequent this cafe).

Before a Unigram Tagger can be used to tag data, it must be trained on

a training corpus. It uses the corpus to determine which tags are most

common for each word. We used the default tagger that assigns ‘NP’ to

all words that it encounters, as the back-off tagger for the Unigram

Tagger, meaning the Unigram Tagger will pass any word not

encountered in the training data, to the back-off tagger to tag as ‘NP’.

We assigned the default tag to be ‘NP’ as most of the unknown words

are members of open word classes and commonly are Proper Nouns

(NP).

The Bigram tagger works in exactly the same way as the Unigram

Tagger, the only difference is that it considers the context when

assigning a tag to the current word. When training, it creates a frequency

distribution describing the frequencies with which, each word is tagged

in different contexts. The context consists of the word to be tagged and

 26

the tag of the previous word. When tagging, the tagger uses the

frequency distribution to tag words by assigning each word, the tag with

the maximum frequency given the context. For our case, when a context

is encountered for which no data has been learnt, the tagger backs off to

the Unigram tagger.

We compared the Unigram and Bigram taggers to the more advanced

taggers like HMM and Brill. We also used the Unigram tagger as the pre-

tagger of the Brill tagger. We used the unigram and n-gram (specifying

n=2 for creating a Bigram model) tagging modules of NLTK [40] to

create Unigram and Bigram taggers and do the tagging. We found that

for a small corpus of Bangla, both the taggers tag with similar results.

They are also extremely fast compared to the other taggers.

3.3.2 HMM

 As all other stochastic taggers, the task of HMM based taggers

are very simple, i.e. to find the most likely tag for a word or a sequence

of words. Unlike other taggers, HMM usually tags one sentence at a

time. Given the sentence, it chooses the tag sequence that maximizes

the following formula:

P (word | tag) * P (tag | previous n tags)

The HMM approach is different than the other POS tagging approaches

in the sense that it considers the best combination of tags for a

sequence of words, whereas the other tagging methods greedily tag one

word at a time, without regard to the optimal combination. [10]

In the HMM based tagging approach, we have the following entities:

{w1, w2, …, ww} is a set of words

{t1, t2, …, tT} is a set of POS tags

 27

W1,n = W1 W2 … Wn is a sentence of n words

T1,n = T1T2 … Tn is a sequence of n POS tags

As each of the words Wi can take any of the words in {w1, w2, …, ww} as

its value, we denote the value of Wi by wi and a particular sequence of

values for Wi,j (i<= j) by wi,j. Similarly, we denote the value of Ti by ti and a

particular sequence of values for Ti,j (i<=j) by ti,j. Then the probability

Pr(t1,n, wl,n) using the following formula can be used to find the most

likely sequence of POS tags for a given sequence of’ words.

In HMM, the probability of the current tag ti depends on only the previous

k tags ti-k,i-1 and the probability of’ the current word wi depends on only

the current tag ti. [9, 10]

Bangla, unlike English and some other European languages, is a free

word order language meaning that the words in a sentence can change

their order but still keep the sentence meaningful. [6] gives an example

of this which is as follows:

Consider the simple English sentence I/PRP eat/VB rice/NN

The possible Bengali equivalents of this sentence could be one of the

following:

Ami/NN bhAta NN khAi/VB (I rice eat)

Ami/NN khAi/VB bhAta/NN (I eat rice)

bhAta NN Ami/NN khAi/VB (Rice I eat)

bhAta NN khAi/VB Ami/NN (Rice eat I)

khAi/VB Ami/NN bhAta NN (Eat I rice)

khAi/VB bhAta NN Ami/NN (Eat rice I)

 28

Using linguistic rules for a free word order language is more troublesome

than a language that is not so. For languages like this, [6] suggests that

the HMM based approach is more appropriate than other approaches for

POS tagging.

We used the HMM tagger of NLTK [40] on parts of the Brown corpus as

well as the Bangla corpora to test its performance. We started from a

small size and increased the size of the corpus to find out how the

performance improves with the increase in size of training tokens. We’ve

noticed that for Bangla HMM performs with similar results even when the

size of the tagset changes. This can be observed in the results given in

the next chapter. We’ve also experimented with merging or disjointing

the training and testing data sets to find out how the performance of

HMM changes with data that have been seen previously.

3.3.3 Brill’s Tagger

 The stochastic taggers have high accuracy and are very fast to

tag after having been trained. But a common drawback for all stochastic

taggers is the size. A stochastic nth order tagger using back-off may

store huge tables containing n-gram entries and large sparse arrays

having millions of entries. So these taggers are not a very good choice if

they have to be deployed on mobile computing devices which have

relatively small storage space and computation power. This is where the

rule or transformation based taggers are useful.

The Brill tagger is a transformation based tagger that performs very well

but uses only a tiny fraction of the space required by the nth-order

stochastic taggers [16, 17]. The general idea of the tagger is very

simple. It uses a set of rules to tag data. Then it checks the tagged data

for potential errors and corrects those. In the same time it may learn

some new rules. Then it uses these new rules to again tag the corrected

 29

data. This process continues until a threshold in improvement in each

pass has been reached.

The process of Brill tagging is usually explained by analogy with

painting. Suppose we were painting a tree, with all its details of boughs,

branches, twigs and leaves, against a uniform sky-blue background.

Instead of painting the tree first then trying to paint blue in the gaps, it is

simpler to paint the whole canvas blue, then "correct" the tree section by

over-painting the blue background.

In the same fashion we might paint the trunk a uniform brown before

going back to over-paint further details with a fine brush. Brill tagging

uses the same idea: get the bulk of the painting right with broad brush

strokes, then fix up the details. As time goes on, successively finer

brushes are used, and the scale of the changes becomes arbitrarily

small. The decision of when to stop is somewhat arbitrary [2].

The Brill tagging model works in two phases. In the first phase, the

tagger tags the input tokens with their most likely tag. This is usually

done using a Unigram tagging model. Then in the second phase, a set

of transformation rules are applied to the tagged data [16]. An

improvement to this technique is described in [17], where unannotated

text is passed through the initial state annotator at first. The initial state

annotator can range in complexity from assigning random structure to

assigning the output of a sophisticated manually created annotator. After

getting the output from the initial state annotator, it is compared to the

truth as specified in a manually annotated corpus. In this stage,

transformation rules are applied to the output of the initial state annotator

so that it resembles the truth better. After that, a greedy learning

algorithm is applied. At each iteration of learning, the transformation is

found whose application results in the highest score and the

transformation is then added to the ordered transformation list and the

training corpus is updated by applying the learned transformation.

 30

After completing the learning stage, unannotated text is tagged by

applying the initial state annotator to it and applying each of the learned

transformations, in order. A diagram of the whole system is included

below [16, 17].

Figure 4: Diagram of improved Brill tagger [17]

3.4 Tagging Example

 Here we include the outputs of the taggers on two sample

Bangla sentences. The training corpus was the Prothom-Alo corpus

using 4484 tokens

3.6.1. Untagged Text

 31

1. িdতীয় িব˞যেুd িমt বািহনীর েনতা িbিটশ pধানমntী uinটন চাির্চলেক গত সpােহর শরুেুত টপেক েবয়ার e

তািলকায় sান লাভ কেরন ।

2. তেব িতিন যিদ আবার িনরব্াচন কেরন eবং জয়ী হন তাহেল হয়েতা e েরকর্ডo ভাঙেত পারেবন ।

3.6.2. Tagged output

Using level 2 tagset (Full tagset: 41 tags)

Brill:

1. িdতীয়/NC িব˞যেুd/NC িমt/NC বািহনীর/NC েনতা/NC িbিটশ/ADJ pধানমntী/NC

uinটন/NP চাির্চলেক/NP গত/ADJ সpােহর/NC শরুেুত/ADVT টপেক/NP েবয়ার/NP

e/DP তািলকায়/NC sান/NC লাভ/NC কেরন/VF । /PUNSF

2. তেব/INDO িতিন/PP যিদ/INDO আবার/ADVM িনরব্াচন/NC কেরন/VF

eবং/CONJC জয়ী/NC হন/VE তাহেল/INDO হয়েতা/OTHER e/DP েরকর্ডo/NC

ভাঙেত/NC পারেবন/VF । /PUNSF

Unigram:
1. িdতীয়/NP িব˞যেুd/NP িমt/NP বািহনীর/NC েনতা/NC িbিটশ/ADJ pধানমntী/NC

uinটন/NP চাির্চলেক/NP গত/ADJ সpােহর/NC শরুেুত/ADVT টপেক/NP েবয়ার/NP

e/DP তািলকায়/NC sান/NC লাভ/NP কেরন/VF । /PUNSF

2. তেব/INDO িতিন/PP যিদ/INDO আবার/ADVM িনরব্াচন/NC কেরন/VF

eবং/CONJC জয়ী/NP হন/VE তাহেল/INDO হয়েতা/OTHER e/DP েরকর্ডo/NP

ভাঙেত/NP পারেবন/NP । /PUNSF

HMM:

1. িdতীয়/DP িব˞যেুd/NC িমt/NC বািহনীর/NC েনতা/NC িbিটশ/ADJ pধানমntী/NC

uinটন/NP চাির্চলেক/NP গত/ADJ সpােহর/NC শরুেুত/ADVT টপেক/ADVT েবয়ার/NP

e/NP তািলকায়/NC sান/NC লাভ/NC কেরন/VF । /PUNSF

 32

2. তেব/INDO িতিন/PP যিদ/INDO আবার/ADVM িনরব্াচন/NC কেরন/VF

eবং/CONJC জয়ী/NC হন/VF তাহেল/PUNSF হয়েতা/OTHER e/DP েরকর্ডo/NC

ভাঙেত/VNF পারেবন/VF । /PUNSF

Using Level 1 Tagset (Reduced tagset: 14 tags)

Brill:
1. িdতীয়/NN িব˞যেুd/NN িমt/NN বািহনীর/NN েনতা/NN িbিটশ/ADJ pধানমntী/NN

uinটন/NN চাির্চলেক/NN গত/ADJ সpােহর/NN শরুেুত/ADV টপেক/NN েবয়ার/NN

e/PN তািলকায়/NN sান/NN লাভ/NN কেরন/VB । /PUNC

2. তেব/IND িতিন/PN যিদ/IND আবার/ADV িনরব্াচন/NN কেরন/VB eবং/IND জয়ী/NN

হন/VB তাহেল/IND হয়েতা/OTHER e/PN েরকর্ডo/NN ভাঙেত/VB পারেবন/VB

। /PUNC

Unigram:
1. িdতীয়/NN িব˞যেুd/NN িমt/NN বািহনীর/NN েনতা/NN িbিটশ/ADJ pধানমntী/NN

uinটন/NN চাির্চলেক/NN গত/ADJ সpােহর/NN শরুেুত/ADV টপেক/NN েবয়ার/NN

e/PN তািলকায়/NN sান/NN লাভ/NN কেরন/VB । /PUNC

2. তেব/IND িতিন/PN যিদ/IND আবার/ADV িনরব্াচন/NN কেরন/VB eবং/IND জয়ী/NN

হন/VB তাহেল/IND হয়েতা/OTHER e/PN েরকর্ডo/NN ভাঙেত/VB পারেবন/NN

। /PUNC

HMM:
1. িdতীয়/PN িব˞যেুd/NN িমt/NN বািহনীর/NN েনতা/NN িbিটশ/ADJ pধানমntী/NN

uinটন/NN চাির্চলেক/NN গত/ADJ সpােহর/NN শরুেুত/ADV টপেক/ADV েবয়ার/NN

e/NN তািলকায়/NN sান/NN লাভ/NN কেরন/VB । /PUNC

2. তেব/IND িতিন/PN যিদ/IND আবার/ADV িনরব্াচন/NN কেরন/VB eবং/IND জয়ী/NN

হন/VB তাহেল/IND হয়েতা/OTHER e/PN েরকর্ডo/NN ভাঙেত/VB পারেবন/VB

। /PUNC

 33

Chapter III: Results

Different types of POS tagging models have been implemented for

English and other western languages, which perform well over the 90%

mark. On the contrary, only a small amount of work has been done for

Bangla and some other South Asian languages. From the results of the

SPSAL machine learning contest 2006 [41], we find out the performance

of various taggers to be 60%-78% for Bangla, 62%-79% for Hindi and

53%-78% for Telegu. As shown later in the chapter, our baseline tagging

models perform well in these intervals for the development data

provided, using no special tools like Morphological Analyzers and others.

The results of our experiments are shown below in the forms of tables

and graphs.

4.1 Bangla - Prothom Alo Corpus and Level 1 Tagset

 HMM Unigram Brill
Tokens Accuracy Accuracy Accuracy

0 0 0 0
60 15.4 51.2 50.4

104 18 51.1 44.6
503 34.2 60.7 56.3

1011 42.3 64.2 62.6
2023 45.8 69.1 67.8
3016 49.4 70.1 70.9
4484 45.6 71.2 71.3

Table 1: Performance of POS Taggers for Bangla [Test data: 85
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 1
Tagset (14 Tags)]

 34

0

10

20

30

40

50

60

70

80

90

100

0 60 104 503 1011 2023 3016 4484

Tokens

A
cc

ur
ac

y
HMM
Unigram
Brill
Log. (HMM)
Log. (Brill)
Log. (Unigram)

Figure 5: Performance of POS Taggers for Bangla [Test data: 85
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 1

Tagset (14 Tags)]

4.2 Bangla - Prothom Alo Corpus and Level 2 Tagset

 HMM Unigram Brill
Tokens Accuracy Accuracy Accuracy

0 0 0 0
60 19.7 17.2 38.7

104 18.1 17.4 26.2
503 28.8 26.1 46.1

1011 32.8 30 51.1
2023 40.1 36.7 49.4
3016 44.5 39.1 51.9
4484 46.9 42.2 54.9

Table 2: Performance of POS Taggers for Bangla [Test data: 85
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 2
Tagset (41 Tags)]

 35

0

10

20

30

40

50

60

70

80

90

100

0 60 104 503 1011 2023 3016 4484

Tokens

A
cc

ur
ac

y
HMM
Unigram
Brill
Log. (HMM)
Log. (Brill)
Log. (Unigram)

Figure 6: Performance of POS Taggers for Bangla [Test data: 85
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 2

Tagset (41 Tags)]

4.3 English - Brown Corpus and Tagset

 HMM Unigram Brill
Tokens Accuracy Accuracy Accuracy

0 0 0 0
65 36.9 28.7 33.6

134 44.2 34 42.9
523 53.4 41.6 53.7

1006 62 47.7 58.3
2007 66.8 52.4 62.9
3003 68.2 55.1 66.1
4042 70 57.2 67.5
5032 71.5 59.2 70.2
6008 71.9 60.8 71.4
7032 74.5 61.5 71.8
8010 74.8 62.1 72.4
9029 76.8 63.5 74.5

10006 77.5 65.2 75.2
20011 80.9 69.5 79.8
30017 83.1 71.7 78.8
40044 84.7 73.3 79.8
50001 84.6 74.4 80.4
60022 85.3 75.2 80.8

 36

70026 86.3 75.8 81
80036 87.1 77.1 81.6
90000 87.8 78.1 82.4

100057 87.5 78.9 83.4
200043 91.7 83 86.8
300359 89.5 84.2 87.3
400017 89.7 84.8 88.5
500049 90.3 85.6
600070 90 85.9
700119 90.3 86.1
800031 90.2 86.2
900073 90.3 86.6

1000107 90.3 86.5

Table 3: Performance of POS Taggers for English [Test data: 22
sentences, 1008 tokens from the Brown corpus; Tagset: Brown Tagset]

0

10

20

30

40

50

60

70

80

90

100

0
134

1006
3003

5032
7032

9029
2001

1
4004

4
6002

2
8003

6

1000
57

3003
59

5000
49

7001
19

9000
73

Tokens

A
cc

ur
ac

y

HMM
Unigram
Brill
Log. (HMM)
Log. (Brill)
Log. (Unigram)

Figure 7: Performance of POS Taggers for English [Test data: 22
sentences, 1008 tokens from the Brown corpus; Tagset: Brown Tagset]

Apart from these experiments, where we incremented the size of the

corpora in small increments to plot the performance, we also

experimented with taggers on Bangla, Hindi and Telegu where we

 37

trained the taggers using the training data as well as the development

data provided for [41] and tested the performance using the testing data

for the same.

4.4 Hindi - SPSAL Corpus and Tagset

Test data: 209 sentences, 4924 tokens from the SPSAL test
corpus
 HMM Unigram Bigram Brill
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

0 0 0 0 0 0
4 60 36 18 Insufficient data 37.6
7 113 32.2 23.8 Insufficient data 43.6

12 201 30.6 27.6 Insufficient data 46.7
21 415 39.8 35.8 35.8 53.8
30 607 43.6 37.6 37.7 56.2
38 826 50.5 40.3 40.5 60.3
43 1039 53.3 41.9 42.1 59.7
85 2017 57.8 46 46.4 61.8

182 4031 61.9 49.2 49.3 64.9
259 6017 62.8 50.9 51 68.8
362 8009 64.4 52 52.3 69.4
450 10001 64.4 52.7 53.1 69.1
535 12003 65.7 54.1 54.5 69.6
619 14011 66.3 54.5 54.9 69.7
698 16020 67.3 55.5 55.5 70.6
784 18019 67.3 55.8 56.2 70.6
865 20004 68 56.9 57.1 70.7
934 22010 67.5 57 57.3 70.8

1007 24030 68.6 57.7 55.7 71.1
1125 26005 68.5 58.4 57.5 71.3
1135 26148 68.5 58.5 57.5 71.5

Table 4: Performance of POS Taggers for Hindi [Test data and Tagset

source: [41]]

 38

0

10

20

30

40

50

60

70

80

90

0 60 11
3

20
1

41
5

60
7

82
6

10
39

20
17

40
31

60
17

80
09

10
00

1
12

00
3

14
01

1
16

02
0

18
01

9
20

00
4

22
01

0
24

03
0

26
00

5
26

14
8
Tokens

A
cc

ur
ac

y

HMM
Unigram
Brill
Bigram
Log. (HMM)
Log. (Brill)
Log. (Unigram)
Log. (Bigram)

Figure 8: Performance of POS Taggers for Hindi [Test data and Tagset
source: [41]]

4.5 Telegu - SPSAL Corpus and Tagset

Test data: 415 sentences, 5193 tokens from the SPSAL test
corpus
 HMM Unigram Bigram Brill
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

0 0 0 0 0 0
5 50 28.4 15.6 Insufficient data 45.7
9 102 28.1 16.4 Insufficient data 47.7

23 202 32.1 16.9 Insufficient data 48
54 401 30.8 18 Insufficient data 49.2
87 612 29.6 18.3 18.3 49.1

107 811 30.9 18.8 18.8 49.6
131 1004 31.7 19.1 19.1 38.2
248 2010 32.8 23.4 23.4 53.5
421 4001 42.6 28.1 28.2 57.9
605 6007 48 31.7 31.7 60.4
783 8002 51.1 34.9 34.5 62.6
994 10018 53 37.4 37.2 63.9

1192 12000 53.6 38.8 38.3 64.6
1409 14010 53.3 38.8 38.7 64.4
1626 16005 53.9 39.6 39.2 65
1842 18004 53.7 40.1 39.7 65.1
2048 20012 54.9 40.4 40.2 65.1
2184 22013 54.8 41.5 41 65.8
2335 24002 55.6 41.6 41 65.8

 39

2485 26025 55.9 41.9 41.3 66
2655 27511 56.6 42.8 42.2 66.9

Table 5: Performance of POS Taggers for Telegu [Test data and Tagset
source: [41]]

0

10

20

30

40

50

60

70

80

0 50 10
2

20
2

40
1

61
2

81
1

10
04

20
10

40
01

60
07

80
02

10
01

8
12

00
0

14
01

0
16

00
5

18
00

4
20

01
2

22
01

3
24

00
2

26
02

5
27

51
1
Tokens

A
cc

ur
ac

y

HMM
Unigram
Brill
Bigram
Log. (HMM)
Log. (Brill)
Log. (Unigram)
Log. (Bigram)

Figure 9: Performance of POS Taggers for Telegu [Test data and Tagset

source: [41]]

4.6 Bangla - SPSAL Corpus and Tagset

Test data: 400 sentences, 5225 tokens from the SPSAL test
corpus
 HMM Unigram Bigram Brill
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

0 0 0 0 0 0
8 51 14.3 14 Insufficient data 35.6

13 108 20.7 17.9 Insufficient data 39.6
21 206 26.5 19.3 19.3 40.9
37 405 30.7 21.8 21.8 42.7
53 605 32.7 24.1 24.1 45.4
69 807 36.4 27.7 27.7 48.6
87 1002 39.3 28.6 28.6 50.2

173 2004 44.3 36 36 55.8
304 4003 49.7 42.4 41.9 61.3
398 6036 49.8 45.6 45.3 63.8
532 8026 53.6 48.1 47.9 64.7
677 10001 54.3 49.8 49.5 65.6

 40

846 12006 56.7 51.7 51.1 66.4
960 14027 57.5 52.9 51.7 67.2

1130 16000 58.6 53.9 52.6 68.2
1301 18006 60.5 54.5 53 68.7
1427 20001 61.9 55.8 54.4 69.1
1535 22014 62.4 56.2 54.7 68.3
1656 24001 63.3 56.7 55.2 68.4
1786 25426 63.6 56.9 55.5 69.6

Table 6: Performance of POS Taggers for Bangla [Test data and Tagset

source: [41]]

0

10

20

30

40

50

60

70

80

0 51 10
8

20
6

40
5

60
5

80
7

10
02

20
04

40
03

60
36

80
26

10
00

1
12

00
6

14
02

7
16

00
0

18
00

6
20

00
1

22
01

4
24

00
1

25
42

6
Tokens

A
cc

ur
ac

y

HMM
Unigram
Brill
Bigram
Log. (HMM)
Log. (Brill)
Log. (Unigram)
Log. (Bigram)

Figure 10: Performance of POS Taggers for Bangla [Test data and
Tagset source: [41]]

We also experimented merging the development data with the training

data and using this for training.

4.7 Bangla - SPSAL Corpus and Tagset (Merged)

Test data: 340 sentences, 5029 tokens
 HMM Unigram Bigram Brill
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

1785 25426 92.9 74.4 73.2 83

Table 7: Performance of POS Taggers for Bangla on merged training
and testing data [Test data and Tagset source: [41]]

 41

The resulting high accuracy gain of the HMM model (62.7 to 92.9) once

more reveals that stochastic models are far superior to any other when

the knowledge about unknown words is available.

 42

Chapter IV: Analysis Of Results

We have experimented with basic tagging models which report

performance in the 96%+ range for English, but for our cases they

performed in the 50%-70% range for South Asian Languages and

around 90% for English using the Brown tagset [35] and genres from the

Brown Corpus taken from NLTK [40]. The reason behind this is in the

cases where performance was reported in the 95% range, very large

corpora were employed for training the model.

For Bangla, we did not have any annotated corpus available, and the

reason of very low performance of Bangla on our cases is mostly due to

the small corpus size and sparseness of training data, which makes it

very difficult for stochastic taggers to create probability distribution to

hold transitions between different states [44].

We have compared the performance of English and Bangla as well as

two other South Asian languages, using same corpus size and showed

that the performance is similar in some cases. So if we can extend the

corpus size of South Asian languages then we will probably be able to

get similar performance for these languages as English.

Within this limited corpus, our experiments suggested that for the three

South Asian languages Bangla, Hindi and Telegu, with limited tagged

corpus, Brill’s tagger performs better than HMM based tagger and n-

gram based Unigram and Bigram taggers. Researchers, who want to

implement a tagger for a language with limited language resources, i.e.

annotated corpora of large size, can try Brill’s tagger or any other rule

based tagger for their languages too.

 43

Chapter V: Future Work

We compared different POS tagging models like n-gram, HMM and

Brill’s transformation based techniques for three South Asian languages

(Bangla, Hindi and Telegu). At present with the training corpus with a

size of around 20000 words of a single domain we get a performance of

over 90% when the test set is extracted from the training corpus, and we

get a performance of over 70% if the test set is taken randomly from any

other source. If we can increase the training corpus size covering most

of the domains then we might get a recognizable performance of 95%+

for Bangla too.

From [20], we find that a tagger should have the following qualities to be

of any practical purpose.

Robust: Text corpora may contain ungrammatical constructions, isolated

phrases (titles), nonlinguistic data (tables) as well as unknown words.

The tagger should be able to deal with these.

Efficient: The tagger should be efficient in the sense that it should be

able to train fast on newly available corpora and text genres. It should be

able to train in a relatively short time on large corpora, and it should also

perform in time linear complexity on the number of words to tag.

Accurate: The tagger should assign the best possible POS tag for every

word in the text to tag.

Tunable: The tagger should be able to avoid erroneous tagging by

accepting a priori hints.

To improve the performances of tagging models, these features could be

implemented.

 44

In [15], we find information about a method that augments a probabilistic

tagger with a handcrafted procedure to pre-tag problematic idioms. As

stated there, the procedure improves the accuracy of the tagger by 3%,

resulting in a total of 95%-96% accuracy.

[45] reports that Finite State Transducers (FST) can be used to

represent the transformation rules used by the Brill tagger, which

improves the running time of the tagger Also, to decrease the training

time on corpora of large sizes, Directed Acyclic Graphs (DAG) could be

used to represent the corpora.

[46] describes a new approach that suggests the use of Dynamic

Bayesian Network instead of HMM that performs with similar accuracy.

A suffix stripper as described in the earlier chapters could be

implemented that might prove useful for Bangla and experiments could

be done with the tagset as it can improve the performance of the tagger

[3], to some extent.

More experiments could be performed on the South Asian languages to

find out whether some specific POS tagging model or modification to a

specific model performs better than others for a specific language. The

unsupervised approaches are left out of the present discussion, mainly

because of their high requirements of computational power and slow

speed to train. But for languages, in which resources are limited,

unsupervised POS tagging models [47, 48, 49] are very good options.

These models could also be experimented with for Bangla or other

South Asian languages.

The Baum Welch re-estimation algorithm is widely used for

unsupervised training of POS taggers. [50] describes three patterns of

behavior in Baum Welch re-estimation. These are:

 45

Classical: A general trend of rising accuracy on each iteration, with any

falls in accuracy being local. It indicates that the model is converging

towards an optimum which is better than its starting point.

Initial maximum: Highest accuracy on the first iteration, and falling

thereafter. In this case the initial model is of better quality than BW can

achieve. That is, while BW will converge on an optimum, the notion of

optimality is with respect to the HMM rather than to the linguistic

judgements about correct tagging.

Early maximum: Rising accuracy for a small number of iterations (2-4),

and then falling as in initial maximum.

Using these patterns, the paper describes some guidelines for

unsupervised training of HMM models. These are:

1. If a hand-tagged training corpus is available, use it . If the test and

training corpora are near identical, do not use BW re-estimation;

otherwise use for a small number of iterations.

2. If no such training corpus is available, but a lexicon with at least

relative frequency data is available, use BW re-estimation for a

small number of iterations.

3. If neither training corpus nor lexicon are available, use BW re-

estimation with standard convergence tests such as perplexity.

Without a lexicon, some initial biasing of the transitions is needed

if good results are to be obtained.

The next step could be to find out whether these patterns are present in

South Asian Languages and also, whether the above mentioned

guidelines are applicable for these languages as well. There are some

other state of the art POS tagging techniques, which could also be tried

out for Bangla.

 46

In another study we have seen that in case of n-gram based POS

tagging, backward n-gram (considers next words), performs better than

usual forward n-gram (considers previous words), Based upon this

observation, further experiments can be carried out to determine

whether the feature is worthwhile to implement in a tagging model.

Finally, a hybrid solution for POS tagging in Bangla can be proposed

that can be used in other advanced NLP applications, which might use a

combination of the techniques mentioned earlier to achieve a significant

gain in performance and performs with very good accuracy as English or

other western languages in all domains.

 47

References

[1] The Summer Institute for Linguistics (SIL) Ethnologue Survey

(1999).

[2] Daniel Jurafsky and James H. Martin, “Chapter 8: Word Classes

and Part-Of-Speech Tagging, Speech and Language Processing”,

Prentice Hall, 2000.

[3] Andrew MacKinlay, “The Effects of Part-of-Speech Tagsets on

Tagger Performance”, Undergraduate Thesis, University of Melbourne,

2005.

[4] Yair Halevi, “Part of Speech Tagging”, Seminar in Natural

Language Processing and Computational Linguistics (Prof. Nachum

Dershowitz), School of Computer Science, Tel Aviv University, Israel,

April 2006.

[5] Himanshu Agrawal and Anirudh Mani, “Part of Speech Tagging

and Chunking with Conditional Random Fields”, In Proceedings of the

NLPAI Machine Learning 2006 Competition.

[6] Sandipan Dandapat, Sudeshna Sarkar and Anupam Basu, “A

Hybrid Model for Part-of-Speech Tagging and its Application to Bengali”,

International Journal Of Information Technology Volume 1 Number 4

2004.

[7] Atro Voutilainen, “A Syntax Base POS Analyzer”, University of

Helsinki, Finland.

[8] Atro Voutilainen, “Does tagging help parsing? A Case Study On

Finite State Parsing”, University of Helsinki, Finland.

 48

[9] Linda Van Guilder, “Automated Part of Speech Tagging: A Brief

Overview”, Handout for LING361, Fall 1995, Georgetown University.

[10] Karthik Kumar G, Sudheer K, Avinesh Pvs, “Comparative Study

of Various Machine Learning Methods For Telugu Part of Speech

Tagging”, In Proceedings of the NLPAI Machine Learning 2006

Competition.

[11] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, Chapter 8,

“Spoken Language Processing: A Guide to Theory, Algorithm and

System Development”. Prentice Hall, 2001.

[12] Rakesh Dugad, U.B.Desai, “A Tutorial on Hidden Markov

Models”, IIT Bombay.

[13] Lawrence R. Rabiner, “A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition”, Proceedings of the IEEE,

Vol. 77, No. 2, February 1989.

[14] Manoj Kumar C, “Stochastic Models for POS Tagging”, IIT

Bombay.

[15] “A Part of Speech Tagger for Indian Languages (POS tagger)”, In

Guidelines of the Workshop on Shallow Parsing in South Asian

Languages (SPSAL) 2007.

[16] Eric Brill, “A simple Rule-Based Part-of-Speech Tagger”, In

Proceedings Of The Third Conference On Applied Natural Language

Processing, Trento, Italy, Pages: 152 - 155, 1992.

[17] Eric Brill, “Some Advances in Transformation Based Part of

Speech Tagging”, In Proceedings Of The Twelfth National Conference

On Artificial Intelligence (vol. 1), Seattle, Washington, United States,

Pages: 722 – 727, 1994.

 49

[18] L. Bahl and R. L. Mercer, “Part-Of-Speech Assignment By A

Statistical Decision Algorithm”, IEEE International Symposium on

Information Theory, pages: 88 - 89, 1976.

[19] K. W. Church, “A Stochastic Parts Program And Noun Phrase

Parser For Unrestricted Test”, Proceeding of the Second Conference on

Applied Natural Language Processing, pages: 136 - 143, 1988.

[20] D. Cutting, J. Kupiec, J. Pederson and P. Sibun, “A Practical Part-

Of-Speech Tagger”, Proceedings of the Third Conference on Applied

Natural Language Processing, pages: 133 - 140, ACL, Trento, Italy,

1992.

[21] S. J. DeRose, “Grammatical Category Disambiguation By

Statistical Optimization”, Computational Linguistics, 14 (1), 1988.

[22] A. M. Deroualt and B. Merialdo, “Natural Language Modeling For

Phoneme-To-Text Transposition”, IEEE transactions on Pattern Analysis

and Machine Intelligence, 1986.

[23] Bangla Newspaper, Prothom-Alo. Online version available online

at: http://www.prothom-alo.net

[24] L. E. Baum, “An Inequality And Associated Maximization

Technique In Statistical Estimation On Probabilistic Functions Of A

Markov Process”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Volume: 22, Issue: 4 Page: 371-377, April 2000.

[25] Qin Iris Wang Dale Schuurmans, “Improved Estimation for

Unsupervised Part-of-Speech Tagging”, University of Alberta, Canada.

 50

[26] Patrick Schone and Daniel Jurafsky, “Language-independent

Induction of Part of Speech Class Labels Using Only Language

Universals”, In Workshop at IJCAI-2001, Seattle, WA., August 2001.

[27] Juan Antonio P´erez-Ortiz and Mikel L. Forcada, “Part-of-Speech

Tagging with Recurrent Neural Networks”, Universitat d’Alacant, Spain.

[28] Helmut Schmid, “Improvements in POS Tagging with an

Application to German”, Technical Report, Universitat Stuttgart,

Germany.

[29] Aniket Dalal, Kumar Nagaraj, Uma Sawant and Sandeep Shelke,

“Hindi Part-of-Speech Tagging and Chunking : A Maximum Entropy

Approach”, In Proceeding of theNLPAI Machine Learning 2006

Competition.

[30] Sivaji Bandyopadhay, Asif Ekbal and Debasish Halder, “HMM

based POS Tagger and Rule-based Chunker for Bengali”, In Proceeding

of the NLPAI Machine Learning 2006 Competition.

[31] Sankaran Baskaran, “Hindi POS Tagging and Chunking”, In

Proceedings of the NLPAI Machine Learning 2006 Competition.

[32] Pranjal Awasthi, Delip Rao and Balaraman Ravindran, “Part Of

Speech Tagging and Chunking with HMM and CRF”, In Proceedings of

the NLPAI Machine Learning 2006 Competition.

[33] Arulmozhi. P, Sobha. L, Kumara Shanmugam. B., “Parts of

Speech Tagger for Tamil”, Symposium on Inidan Morphology,

Phonology and Language Engineering, March 19-21, 2004 IIT

Khadagpur, 55-57, India.

[34] International Conference on Computer and Information

Technology (ICCIT), Bangladesh, 2004.

 51

[35] The Brown Tagset, available online at:

http://www.scs.leeds.ac.uk/amalgam/tagsets/brown.html

[36] Mitchell P. Marcus, Beatrice Santorini and Mary Ann

Marcinkiewicz, “Building a Large Annotated Corpus of English: The

Penn Treebank”, Computational Linguistics Journal, Volume 19, Number

2, Pages: 313-330, 1994. Available online at:

http://www.ldc.upenn.edu/Catalog/docs/treebank2/cl93.html

[37] Sandipan Dandapat, Sudeshna Sarkar, “Part of Speech Tagging

for Bengali with Hidden Markov Model”, In Proceedings of the NLPAI

Machine Learning 2006 Competition.

[38] International Conference on Computer and Information

Technology (ICCIT), Bangladesh, 2003.

[39] Goutam Kumar Saha, Amiya Baran Saha and Sudipto Debnath,

“Computer Assisted Bangla Words POS Tagging”, Proceedings of the

International Symposium on Machine Translation NLP & TSS

(iSTRANS-2004), New Delhi 2004.

[40] NLTK, The Natural Language Toolkit, available online at:

http://nltk.sourceforge.net/index.html

[41] Workshop on Shallow Parsing on South Asian Languages

(SPSAL) 2007, Twentieth International Joint Conferences on Artificial

Intelligence, Hyderabad, India.

[42] Akshar Bharati, Rejeev Sangal and Dipti M Sharma, “Shakti

Analyser: SSF Representation”, IIT Hyderabad.

[43] Bangla POS Tagset used in our Bangla POS tagger, available

online at http://www.naushadzaman.com/bangla_tagset.pdf

 52

[44] Scott M. Thede and Mary P. Harpe, “A Second-Order Hidden

Markov Model for Part-of-Speech Tagging”, Purdue University.

[45] Emmanuel Roche and Yves Schabes, “Deterministic POS

Tagging with Finite State Transducers (FST)”, Computational Linguistics

Volume 21 , Issue 2 (June 1995), Pages: 227 – 253. 1995.

[46] Virginia Savova and Leonid Peshkin, “Part-of-Speech Tagging

with Minimal Lexicalization”, Johns Hopkins University, Massachusetts

Institute of Technology.

[47] Robbert Prins and Gertjan van Noord, “Unsupervised Pos-

Tagging Improves Parsing Accuracy And Parsing Efficiency”, In

Proceedings of the International Workshop on Parsing Technologies,

2001.

[48] Mihai Pop, “Unsupervised Part-of-speech Tagging”, Department

of Computer Science, Johns Hopkins University, 1996.

[49] Eric Brill, “Unsupervised Learning of Disambiguation Rules for

Part of Speech Tagging”, In Proceeding of The Natural Language

Processing Using Very Large Corpora, Boston, MA, 1997.

[50] David Elworthy, “Does Baum-Welch Re-estimation :Help

Taggers?”, In Proceedings of the fourth conference on Applied natural

language processing, Pages: 53 – 58. 1994.

 53

Appendix

Bangla POS Tagset used in our experiments

Level 1 – High Level Tags

No. Tag Name Short
Name

Example

1 Proper Noun NN মিতuর
 Common Noun পািন, গr
 Verbal Noun করােনা, পড়ােনা
2 Adjective ADJ লাল, গরম
3 Cardinal (Det) CAR eক, di
4 Ordinal (Det) ORD pথম, dাদশ
5 Fractional (Det) FRA তৃতীয়াংশ
6 Personal Pronoun PN আিম, তিুম
 Demonstrative Pronoun e, eরা, oরা
 Indefinite Pronoun েকu
 Relative Pronoun েয, িযিন, যা
 Reflexive Pronoun আপিন, িনজ
 Inclusive Pronoun সব, সকল, uভয়
 Reciprocal Pronoun আপনা–আপিন
7 Connective Conjunction IND o, eবং, আর
 Adversative Conjunction বা, aথবা
 Interjection বাহ!, oহ!
 Vocatives oেগা, oের
 Other Indeclinables যিদ, তেব, সুতরাং, বেট, িকnt
 Assertive Particle হয্া
 Negative Particle না, নাi
 Question Particle িক, েক, কীেনা
 Onomatopes টনটন, কনকন
8 Finite verb VB কির, েখিল
 Non-finite verb করেত, েখলেত
 Causative verb করাi, েখলাi
 Verb Imperatives কেরা, েখেলা
 Negative Verb যাiিন, কিরিন
 Existential Verb থােক, হয়, আেছ
9 PostPositions POSTP েথেক, িদেয়, সংেগ, সােথ
10 Quantifiers QUAN িকছু, eেতা, aেনক, খুব, আেরা
11 Temporal Adverb ADV আজ, কাল, সরব্দা, kমশ
 Spatial Adverb িনেচ, uপেড়
 Adverb of Manner আেs, drত

 54

12 Sentence-Final
Punctuation

PUNC |, ?, !

 Quote ", "
 Parenthesis () {} []
 Mid-sentence

Punctuation
 , ; :

 Other Punctuation %.
13 Abbreviation ABB েমাঃ, ডাঃ
14 Others OTHER

Level 2 – Detailed Tags

No. Tag Name Short
Name

Example

1 Proper Noun NP মিতuর
2 Common Noun NC পািন, গr
3 Verbal Noun NV করােনা, পড়ােনা
4 Adjective ADJ লাল, গরম
5 Cardinal (Det) CAR eক, di
6 Ordinal (Det) ORD pথম, dাদশ
7 Fractional (Det) FRA তৃতীয়াংশ
8 Personal Pronoun PP আিম, তিুম
9 Demonstrative Pronoun DP e, eরা, oরা
10 Indefinite Pronoun IP েকu
11 Relative Pronoun RP েয, িযিন, যা
12 Reflexive Pronoun REFP আপিন, িনজ
13 Inclusive Pronoun INCP সব, সকল, uভয়
14 Reciprocal Pronoun RECP আপনা–আপিন
15 Connective Conjunction CONJC o, eবং, আর
16 Adversative Conjunction CONJA বা, aথবা
17 Interjection INTJ বাহ!, oহ!
18 Vocatives VOC oেগা, oের
19 Other Indeclinables INDO যিদ, তেব, সুতরাং, বেট, িকnt
20 Assertive Particle PRTA হয্া
21 Negative Particle PRTN না, নাi
22 Question Particle PRTQ িক, েক, কীেনা
23 Onomatopes ONO টনটন, কনকন
24 Finite verb VF কির, েখিল
25 Non-finite verb VNF করেত, েখলেত
26 Causative verb VC করাi, েখলাi
27 Verb Imperatives IMP কেরা, েখেলা
28 Negative Verb VN যাiিন, কিরিন
29 Existential Verb VE থােক, হয়, আেছ

 55

30 PostPositions POSTP েথেক, িদেয়, সংেগ, সােথ
31 Quantifiers QUAN িকছু, eেতা, aেনক, খুব, আেরা
32 Temporal Adverb ADVT আজ, কাল, সরব্দা, kমশ
33 Spatial Adverb ADVS িনেচ, uপেড়
34 Adverb of Manner ADVM আেs, drত
35 Sentence-Final

Punctuation
PUNSF |, ?, !

36 Quote PUNQ ", "
37 Parenthesis PUNPAR () {} []
38 Mid-sentence

Punctuation
PUNMS , ; :

39 Other Punctuation PUNO %.
40 Abbreviation ABB েমাঃ, ডাঃ
41 Others OTHER

