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Abstract 
 
There are different approaches to the problem of assigning a part of 

speech (POS) tag to each word of a natural language sentence. We 

present a comparison of the different approaches of POS tagging for the 

Bangla language and two other South Asian languages, as well as the 

baseline performances of different POS tagging techniques for the 

English language.  The most widely used methods for English are the 

statistical methods i.e. n-gram based tagging or Hidden Markov Model 

(HMM) based tagging, the rule based or transformation based methods 

i.e. Brill’s tagger. Subsequent researches add various modifications to 

these basic approaches to improve the performance of the taggers for 

English. Here, we present an elaborate review of previous work in the 

area with the focus on South Asian Languages such as Hindi and 

Bangla. We experiment with Brill’s transformation based tagger and the 

supervised HMM based tagger without modifications for added 

improvement in accuracy, on English using training corpora of different 

sizes from the Brown corpus. We also compare the performances of 

these taggers on three South Asian languages with the focus on Bangla 

using two different tagsets and corpora of different sizes, which reveals 

that Brill's transformation based tagger performs considerably well for 

South Asian languages. We also check the baseline performances of the 

taggers for English and try to conclude how these approaches might 

perform if we use a considerable amount of annotated training corpus. 
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Background 
 

1.1 Introduction 

 Parts of speech (POS) tagging is one of the most well studied 

problems in the field of Natural Language Processing (NLP). Different 

approaches have already been tried to automate the task for English 

and other western languages. Though Bangla (or Bengali) is one of the 

top ten most spoken languages in the world [1] and is spoken by more 

than 200 million people, it still lacks significant research efforts in the 

area of NLP.  

 

This thesis discusses the different techniques for POS tagging for 

western languages as well as the South Asian languages. It displays the 

analyses of performance of well known tagging methods for the western 

languages using corpora of varying sizes. It compares the performance 

of some South Asian languages using the same techniques with that of 

the western languages and attempts to suggest which technique might 

be better for the South Asian languages. It concludes with a discussion 

on some improvement techniques that could be added to a baseline 

tagger to improve its performance. 

 

1.2 Parts of Speech Tagging 

 Parts of speech (POS) tagging means assigning grammatical 

classes i.e. appropriate parts of speech tags to each word in a natural 

language sentence. Assigning a POS tag to each word of an un-

annotated text by hand is very time consuming, which results in the 

existence of various approaches to automate the job. So automated 

POS tagging is a technique to automate the annotation process of 

lexical categories. The process takes a word or a sentence as input, 
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assigns a POS tag to the word or to each word in the sentence, and 

produces the tagged text as output. 

 

POS tags are also known as word classes, morphological classes, or 

lexical tags. The significance of these is the large amount of information 

they give about a word and its neighbors. POS tagging can be used in 

Text to Speech (TTS) applications, information retrieval, parsing, 

information extraction, linguistic research for corpora, [2, 3] and also can 

be used as an intermediate step for higher level NLP tasks such as 

parsing, semantics analysis, translation, and many more [4], which 

makes POS tagging a necessary function for advanced NLP applications 

in Bangla or any other language.   

 

POS tagging has its importance in subsequent processing of text such 

as parsing, as it makes the processing easier by attaching a class to a 

word [5], and it is also widely used for linguistic text analysis. POS 

tagging is used as an early stage of text analysis in many applications 

such as subcategory acquisition, text to speech synthesis and alignment 

of parallel corpora [6]. It is essential for being a component of many 

applications in natural language processing and related domains [3], and 

it is also used to build the knowledge base of a Natural Language 

Analyzer [7]. 
 

POS tagging is useful for syntactic parsing as taggers reduce ambiguity 

from the parser's input sentence, which makes parsing faster by making 

the computational problem smaller, and the result less ambiguous. It 

also resolves some ambiguities that are not addressed by the syntactic 

parser’s language model. With the rule-based taggers, the parser's 

output becomes less ambiguous without a considerable penalty to 

recognition rate and at the same time, parsing speed increases to some 

extent [8]. 

 

In the following sections, we start by giving a overview of some of the 

widely used POS tagging models. Then we discuss about some of the 
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work already completed in this field, focusing on the South-Asian 

languages such as Bangla and Hindi. We continue by describing the 

annotated training corpora, the tagsets and the methodologies we used 

for our experiments and analyze the results of the experiments that we 

did for English, Bangla and two other South-Asian languages. We also 

try to compare the performances of the taggers on English and Bangla 

using tagsets and corpora of similar sizes. We conclude by describing 

some additional works and modifications that we wish to do in future on 

the POS tagging models for Bangla, to improve the performance of the 

tagging models to a significant extent. 

 

 

1.3 Classification 

 There are different approaches for POS tagging. The following 

figure demonstrates different POS tagging models. 

 

 

 
 

Figure 1: Classification of POS tagging models 
 

 

1.3.1. Supervised POS Tagging 
 
 The supervised POS tagging models require a pre-tagged 

corpora which is used for training to learn information about the tagset, 
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word-tag frequencies, rule sets etc [10]. The performance of the models 

generally increase with the increase in size of this corpora. 

 
 

1.3.2. Unsupervised POS Tagging 
 

 Unlike the supervised models, the unsupervised POS tagging 

models do not require a pre-tagged corpora. Instead, they use advanced 

computational methods like the Baum-Welch algorithm to automatically 

induce tagsets, transformation rules etc. Based on the information, they 

either calculate the probabilistic information needed by the stochastic 

taggers or induce the contextual rules needed by rule-based systems or 

transformation based systems [9, 10]. 

 

Both the supervised and unsupervised POS tagging models can be of 

the following types. 

 

 

1.3.3. Rule Based / Transformation Based 
 
 The rule based POS tagging models apply a set of hand written 

rules and use contextual information to assign POS tags to words. 

These rules are often known as context frame rules. For example, a 

context frame rule might say something like: “If an ambiguous/unknown 

word X is preceded by a Determiner and followed by a Noun, tag it as an 

Adjective.” On the other hand, the transformation based approaches use 

a pre-defined set of handcrafted rules as well as automatically induced 

rules that are generated during training. 

Morphology is a linguistic term which means how words are built up from 

smaller units of meaning known as morphemes [3]. In addition to 

contextual information, morphological information is also used by some 

models to aid in the disambiguation process. One such rule might be: “If 
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an ambiguous/unknown word ends in a suffix -ing and is preceded by a 

Verb, label it a Verb”.  

Some models also use information about capitalization and punctuation, 

the usefulness of which are largely dependent on the language being 

tagged. 

In general, the rule based tagging models usually require supervised 

training i.e. pre-annotated corpora. But recently, good amount of work 

has been done to automatically induce the transformation rules. One 

approach to automatic rule induction is to run an untagged text through a 

tagging model and get the initial output. A human then goes through the 

output of this first phase and corrects any erroneously tagged words by 

hand. This tagged text is then submitted to the tagger, which learns 

correction rules by comparing the two sets of data. Several iterations of 

this process are sometimes necessary before the tagging model can 

achieve considerable performance. [9] 

The transformation based approach is similar to the rule based approach 

in the sense that it depends on a set of rules for tagging. It initially 

assigns tags to words based on a stochastic method e.g. the tag with 

highest frequency for a particular word is assigned to that word. Then it 

applies the set of rules on the initially tagged data to generate final 

output. It also learns new rules while applying the already learnt rule, 

and can save the new rules if they seem effective i.e. improve the 

performance of the model. 

 
 

1.3.4. Stochastic 
 

 A stochastic approach includes frequency, probability or statistics. 

The simplest stochastic approach finds out the most frequently used tag 

for a specific word in the annotated training data and uses this 

information to tag that word in the unannotated text. The problem with 
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this approach is that it can come up with sequences of tags for 

sentences that are not acceptable according to the grammar rules of a 

language. 

  

An alternative to the word frequency approach is known as the n-gram 

approach that calculates the probability of a given sequence of tags. It 

determines the best tag for a word by calculating the probability that it 

occurs with the n previous tags, where the value of n is set to 1,2 or 3 for 

practical purposes. These are known as the Unigram, Bigram and 

Trigram models. The most common algorithm for implementing an n-

gram approach for tagging new text is known as the Viterbi Algorithm 

[11], which is a search algorithm that avoids the polynomial expansion of 

a breadth first search by trimming the search tree at each level using the 

best m Maximum Likelihood Estimates (MLE) where m represents the 

number of tags of the following word [4]. 

 

There are different models that can be used for stochastic POS tagging, 

some of which are described below. 

 

1.3.5. Conditional Random Fields 

 A Conditional Random Field (CRF) is a framework of probabilistic 

model to segment and label a sequence of data. A conditional model 

specifies the probabilities of possible label sequences given an 

observation sequence. The conditional probability of the label sequence 

can depend on arbitrary, non-independent features of the observation 

sequence. The probability of a transition between labels may depend not 

only on the current observation, but also on past and future observations 

[10]. The CRF model calculates the probability based on some features, 

which might include the suffix of the current word, the tags of previous 

and next words, the actual previous and next words etc. [9] 
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1.3.6. Hidden Markov Model 
 
A Hidden Markov Model (HMM) consists of: 

 

N: The number of states 

M: Total number of distinct observation symbols 

T: Length of observation sequence 

it: The state at time t 

V = {v1,v2….vM): The discrete set of possible observation symbols 

π = { πi } The probability of being in state i at the beginning of the 

experiment 

A = {aij} where aij = P(it+1=j | it = i)is the probability of being in state 

j at time t+1 given that we were in state i at time t. 

B = {bj(k)} where bj(k) = P(vk at t | it = j) is the probability of 

observing the symbol vk given that we are in state j. 

Ot: The observation symbol at time t. 

λ = (A, B, π) is the notation to denote an HMM [11, 12] 
 

There are three basic problems that the HMM must solve to be used for 

any practical purpose. They are as follows: 

 

1. Given the observation sequence O = O1O2…OT , and a model λ = (A, 

B, π), how do we efficiently compute P(O| λ), the probability of the 

observation sequences, given the model? 

 

2. Given the observation sequence O = O1O2…OT , and the model λ, 

how do we choose a corresponding state sequence V = v1,v2….vM, 
which is optimal in some meaningful sense (i.e., best “explains” the 

observations)? 

 

3. How do we adjust the model parameters λ = (A, B, π) to maximize 

P(O| λ)? 
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For supervised POS tagging, we solve problem 2, in which we attempt to 

uncover the hidden part of the model, i.e. to find the “correct” state 

sequence [13]. 

 
For POS tagging, HMM is used to model the joint probability distribution 

P(word, tag). The generation process uses a probabilistic Finite State 

Machine (FSM). 

 

The states of HMM correspond to the tags, it has an alphabet which 

consists of the set of words, the transition probabilities P(Tagi|Tagi-1) and 

the emission probabilities P(Wordi|Tagi) 

 

In HMM, for a given (word, tag) pair we have the probability: 

 

P(w, t) = Π P(Tagi|Tagi-1) * P(Wordi|Tagi) 
               i 
 

HMM is called Hidden as for a word sequence, we cannot determine the 

exact sequence of tags that generated this word sequence. It is called 

Markov as it is based on the Markovian assumption that the current tag 

depends only on the previous n tags. (n=1 or 2 defines the first or 

second order) 

 

The HMM model trains on annotated corpora to find out the transition 

and emission probabilities. For a sequence of words w, HMM 

determines the sequence of tags t using the formula: t = argmax P(w, t) 

 

The computation of this formula is very expensive as all possible tag 

sequences are required to be checked in order to find the sequence that 

maximizes the probability. So a dynamic programming approach known 

as the Viterbi Algorithm is used to find the optimal tag sequence [14]. 
We describe the operation of HMM for POS tagging in more details in 

the subsequent sections. 
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1.3.7. Maximum Entropy Model 
 
 The Maximum Entropy Model (MEM) is based on the principle of 

Maximum Entropy, which states that when choosing between a number 

of different probabilistic models for a set of data, the most valid model is 

the one which makes fewest arbitrary assumptions about the nature of 

the data [3]. 

 

The probability model for MEM is defined over (H, X, T), where H is the 

set of possible word and tag contexts or “histories”, and T is the set of 

allowable tags. The model's probability of a history h together with a tag t 

is defined as: 

 
where π is a normalization constant, {a1, ..., ak} are the positive model 

parameters, {f 1 , . .  , fk} are known as “features”, where fj(h, t) is in {0, 1} 

and each parameter aj corresponds to a feature fj. 

 

Given a sequence of words {wl , . . . , wn} and tags {tl,..., tn} as training 

data, hi is defined as the history available when predicting ti. The 

parameters {a1, …, ak} are then chosen to maximize the likelihood of the 

training data p [10], using the following formula:  
 

 
 

 

1.3.8. Memory Based Learning 
 

 The Memory Based Learning (MBL) Model takes tagged data as 

input, and produces a lexicon and memory based POS tags as output. 

MBL consists of two components, one is a memory based learning 
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component, and the other is a similarity based performance component. 

The learning component is called memory based as it memorizes 

examples while training. The performance component matches the 

similarity of the input with the output of the learning component to 

produce the actual output of the system [10]. 

 

The different models described above have their own advantages and 

disadvantages, however, they all face one difficulty, which is to assign a 

tag to an unknown word which the tagger has not seen previously i.e. 

the word was not present in the training corpora. Different tagging 

models use different methods to get around this problem. The rule 

based taggers use certain rules to specially handle unknown or 

ambiguous words. But the stochastic taggers have no way to calculate 

the probabilities of an unknown word beforehand. So to solve the 

problem, the taggers of this category calculate the probability that a 

suffix of an unknown word occurs with a particular tag. If HMM is used, 

the probability that a word containing that suffix occurs with a particular 

tag in the given sequence is calculated. An alternate approach is to 

assign a set of default tags to unknown words. The default tags typically 

consist of the open classes, that are word classes, which freely admit 

new words and are readily modified by morphological processes [3], 

examples are Noun, Verb, Adjective, Adverb etc. The tagger then 

disambiguates using the probabilities that those tags occur at the end of 

the n-gram in question. A third approach is to calculate the probability 

that each tag in the tagset occurs at the end of the n-gram, and to select 

the path with the highest probability. This, however, is not the optimal 

solution if the size of the tag set is large [9]. 
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Chapter I:  Previous Work 
 
Considerable amount of work has already been done in the field of POS 

tagging for English. Different approaches like the rule based approach, 

the stochastic approach and the transformation based learning approach 

along with modifications have been tried and implemented. However, if 

we look at the same scenario for South-Asian languages such as Bangla 

and Hindi, we find out that not much work has been done. The main 

reason for this is the unavailability of a considerable amount of 

annotated corpora of sound quality, on which the tagging models could 

train to generate rules for the rule based and transformation based 

models and probability distributions for the stochastic models [15]. 
 
In the following sections, we describe some POS tagging models that 

have been implemented for English along with their performances. Then 

we have a look at the models implemented for Hindi, Bangla and some 

other South-Asian Languages. 

 

 

2.1 Rule Based and Transformation Based Approaches 

 The most widely used rule based or transformation based 

approach for POS tagging is the linguistically motivated model by Brill 

[16, 17], that initially assigns POS tags to words based on the most likely 

tags and later changes the tags using rules that could be predefined or 

learnt while the tagger is processing the annotated training corpora. We 

explore the Brill tagger in depth in the subsequent sections. 

 

 

2.2 Stochastic Approaches 

 Most of the stochastic approaches are based on first or second 

order HMM and generally achieve good performance in POS tagging. 
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The supervised approaches use a training corpus on which they apply 

statistical models to find the most likely tag for a word [18, 19, 20, 21]. 
Some of the taggers based on stochastic approaches are as follows: 

 

Trigrams N Tags (TNT) is a stochastic HMM tagger based on trigram 

analysis which uses a suffix analysis technique based on properties of 

words like suffices in the training corpora, to estimate lexical probabilities 

for unknown words that have the same suffices.  

 

A bootstrapping method for training is described in [22], which use a 

small annotated corpora to train the initial model. This initial model is 

then used to tag more text, which are corrected manually before re-

training the model using the corrected text. This is the method that we 

used to enlarge the size of the Prothom-Alo corpus [23].  

 

Most of the supervised approaches require a large pre-annotated 

corpora which might not be available for new languages. This is where 

the unsupervised models come in. There have been several works that 

have utilized unsupervised learning for training a HMM for POS tagging. 

The most widely known is the Baum-Welch algorithm [24], that can be 

used to train a HMM from unannotated data.  

 

A HMM based POS tagger is described in [20]. This model uses a 

lexicon and an unannotated corpus. The whole system consists of three 

modules, that are the tokenizer, the trainer and the tagger.  The task of 

the tokenizer is to identify a set of tags, also known as an ambiguity 

class, for each word. The training module uses the Baum-Welch 

algorithm on a sequence of ambiguity classes on a large corpus to train 

an HMM. The tagging module buffers sequence of ambiguity classes 

between sentence boundaries. These sequences are disambiguated by 

computing the maximal path through the HMM using the Viterbi 

algorithm. 
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An approach to improve the estimation for unsupervised tagging is 

described in [25]. It states that a simple HMM model can display very 

good performance for unsupervised tagging by improving aspects of 

standard Baum-Welch estimation. According to them, one such 

improvement is to use word similarities to smooth the lexical tag to word 

probability estimates, which avoids over-fitting the lexical model. Another 

improvement is to limit the model to preserve a specified marginal 

distribution over the hidden tags, which avoids over-fitting the tag to tag 

transition model.  

 

 

2.3 Other Approaches 

 An language independent approach is reported in [26], that 

achieves 77% accuracy on the Brown corpus. This approach does not 

require a pre-annotated corpus, lexicon or language specific information 

for determining tags. Instead, it uses six language features along with 

information on language universals to tag syntactic clusters with 

corresponding POS tags. These six features are called the openness, 

affixation, numeracy, optionality, binding, and word order of the 

language and are extracted from the language clusters. According to the 

authors, a preliminary evaluation of this process on the Brown corpus 

shows that the system can accurately tag most of the major categories 

of POS. for English  

 

A recurrent neural network based POS tagging approach is reported in 

[27], which trains a discrete time recurrent neural network to predict the 

ambiguity class of the next word. In this approach, the information about 

POS tagging is stored in the states of this neural network.  

 

To test the tagger, a 14276 entry lexicon was built from the first 20 

sections of the 24 data sets of the Penn Treebank corpora, 

corresponding to the Wall Street Journal. 95% coverage was found by 
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discarding all words appearing less than 4 times. No guessers were 

used in the experiment. The experiments performed to compute error 

rates on this text displayed performance similar to a HMM based 

unsupervised model that uses the Baum Welch estimation algorithm for 

training. 

 

Another different approach [28] is used in a POS tagger for the German 

language. This tagger is known as the tree tagger. To correctly tag text, 

the tagger builds a decision tree where the nodes are tags of previous 

words. These nodes are used to determine the current node i.e. the tag 

of the current word. Along with this, the tagger also uses a suffix tree to 

improve its performance. Figure shows a small part of a sample decision 

tree built by the tree tagger. 

 

 

 
 

Figure 2: A Sample decision tree (Partially drawn) [28] 
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2.4 Hindi and Other South-Asian Languages 

 

2.4.1. Stochastic Approaches 
 
 We have found that most of the research on POS tagging on the 

South-Asian languages has been done using stochastic tagging models 

like HMM, MEM etc. A POS tagging approach based on Maximum 

Entropy Markov Model using supervised training is reported in [29]. This 

model trains using a pre-tagged corpora and uses a feature set to 

predict the tag for a word. The feature set consists of POS tagging 

features, context based features, word features, dictionary features and 

corpus based features. The tagger reports an accuracy of 89.34% on the 

development data of the NLPAI Machine Learning Competition 2006. To 

attain such performance, the tagger uses a pre-annotated training 

corpus consisting of around 35,000 words annotated with a tagset 

consisting of 29 different POS tags.  

 

As described in [30], a HMM based POS tagger was developed which 

demonstrated 85.42% accuracy. The tagger was also trained on a pre-

annotated corpus consisting of 40956 tokens. The tagger was tested on 

a annotated corpus having 5967  tokens. The tagger demonstrated 

79.12% accuracy when tested on an un-annotated test set consisting of 

5129 tokens.  

 

Yet another HMM based tagger is described in [31], reporting a 

performance of 76.49% accuracy on training and test data having about 

25000 and 6000 words, respectively. This tagger uses HMM in 

combination with probability models of certain contextual features for 

POS tagging. 

 

Finally, as reported in [5], a stochastic model based on Conditional 

Random Fields (CRF) is developed which demonstrates a performance 

of 77.48% accuracy. This is the baseline performance of the tagger 



 16

when trained on 21,000 words. When the tagger is trained on the same 

amount of data with the best feature set, the accuracy improves to 

82.67%. But the size and type of the testing data is not mentioned in this 

paper, which can improve or deteriorate  the performance of the tagger 

to a great extent. 

 
 

2.4.2. Hybrid Approaches 
 
 In [32], the authors report a hybrid tagger for Hindi that runs on 

two phases to POS tag input text. In the first phase, the HMM based TnT 

tagger is run on the untagged text to perform the initial tagging. During 

this phase, a set of transformation rules is induced which are used later. 

In the second phase, the set of transformation rules learnt earlier is used 

on the initially tagged text to correct error created in the first phase. 

However, the performance of this tagger is not as good as the other 

taggers reported for Hindi. It uses a corpus of 35,000 words annotated 

with 26 tags, and the resulting accuracy is 79.66% using the TnT tagger. 

The authors suggest that the low score could be the result of the 

sparseness of the training data. The use of the set of transformation 

rules in post processing improves the overall accuracy to 80.74%.  

 

 
For the Telegu language, [10] reports the performances of various 

approaches of POS tagging. Here the pre-annotated training corpora are 

the training data released for the NLPAI Machine Learning Competition 

2006, consisting of 27336 words. The size of the testing data used is 

around 5662 tokens. Using the above data, the HMM based approach 

demonstrates an accuracy of 82.47% whereas the MEM based 

approach displays 82.27% which are very similar. The Memory Based 

Learning approach has 75.75% accuracy, and finally, the Conditional 

Random Fields based approach exhibits 75.11% accuracy. 
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For the Tamil language, a tagger is reported in [33], that uses a suffix 

stripper before performing the actual tagging to improve the accuracy. 

The suffix stripper uses a list of suffices, pronouns, adjectives and 

adverbs to remove the suffices from words. A simple block diagram of 

the suffix stripper is included below. 

 

 

 
 

Figure 3: Block diagram of suffix stripper [33] 
 

 

The input format for the tagger is one sentence per line in which each 

word is separated by a white space. On the input text, the tagger runs 

the following algorithm to remove suffices and then to complete the 

tagging. 

 

1. Split the sentence in to words. 

2. For each word, 

2.1. find the longest suffix at the end 

2.2. find the table number of the suffix and eliminate the suffix from 

the word 

2.3. Go to 2.1 until the word length is 2. 



 18

3. Using the combination of suffixes and the rules, apply the lexical rules 

and assign the category. 

4. For each sentence, 

4.1. Apply the context sensitive rules on the unknown words. 

4.2. Apply the context sensitive rules on the wrongly tagged words. 

4.3. If no context rule applies for any unknown words, tag it as 

noun. 

 
 
 

2.5 Bangla 

 

2.5.1. Rule Based and Transformation Based Approaches 
 
 A rule based POS tagger for Bangla is reported in [34], but only 

the rules for Noun and Adjective are showed. No review or comparison 

with established work on POS tagging is done, neither is the presence of 

any performance analysis report in the paper, which makes uncertain 

whether the approach is worthwhile or not.  

 

Furthermore, the work described here can be thought as more of a 

morphological analyzer than a POS tagger. A morphological analyzer 

indeed provides some POS tag information, but we need more fine-

grained tags from a POS tagger.   

 

The tagset here consists of only 9 tags which is very small compared to 

renowned tagsets. A POS tagger works as an intermediate tool or 

component for many advanced NLP applications as described earlier, 

but with a tagset consisting of only 9 tags, the output of the POS tagger 

can only be used in restricted applications. For English, most widely 

used tagsets include the Brown tagset [35] consisting of 87 distinct tags, 

and Penn Treebank’s tagset [36], consisting of (36 + 12 = 48) tags. 
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These show the necessity of a large tagset to use the POS tagging 

information in other applications.  

 
 

2.5.2. Stochastic Approaches 
 
 Notable work on POS tagging has been reported in [37] for Indian 

Bangla. Here, a HMM based approach is used for tagging Bangla which 

is a combination of both supervised and unsupervised learning for 

training a Bigram based HMM. It also uses a morphological analyzer 

before tagging that takes a word as input and gives all possible POS 

tags for the word. This restricts the set of possible tags for a given word 

to possibly increase the performance of the tagger.  

 

To test this tagger, a tagset of 27 tags and a training corpus consisting 

of 3085 sentences, approximately 41,000 words have been used. The 

tagger can train in two ways, unsupervised and supervised. For 

unsupervised learning, the tagger uses the HMM trained from 

supervised learning as the initial model. The Baum-Welch estimation 

algorithm is then used to re-estimate the parameters of the model. For 

this, a fixed set of 11,000 unlabeled sentences with approximately 

100,000 words taken from CIIL corpus is used. As reported in the paper, 

the baseline model demonstrates performance of 69.11% accuracy, 

which improves to 89.65% using morphological analyzer and semi-

supervised learning. 

 

Another paper in [38] uses a suffix based tree tagger, influenced by [28], 

but this is also more of morphological analyzer than POS tagger. Here 

the authors also mention about the n-gram based tagging, but do not 

describe how to combine both. This paper also lacks any review or 

comparison with established work on POS tagging, instead it only 

proposes a rule-based technique. The paper also does not show any 
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performance analysis of the proposed work, and it also uses a small 

tagset with 9 tags.  

 
 

2.5.3. Hybrid Approaches 
 
 A hybrid POS tagger for Bangla based on HMM is described in [6] 

that tags using three methods. The first method uses only supervised 

learning, the second one uses a partially supervised learning and 

decodes the best tag sequence without using morphological analyzer to 

restrict the possible tags. The third method also uses partially 

supervised learning and decodes the best tag sequence with using 

morphological analyzer to restrict the possible tags. 

 

To test the performance of this tagger, the authors used a tagset of 40 

different tags, along with an annotated corpus consisting of 500 tagged 

sentences for supervised learning. For unsupervised learning, un-

annotated data of 50,000 words was used for re-estimating parameter. 

 

As reported, the tagger demonstrates impressive performance of 

96.28% accuracy when run on the third method. The performance on 

method 1 is 64.31% and that one method 2 is 67.6% 

 

The tagger was also tested on random sentences of 1003 words from 

the CIIL corpus, which were more complex than the training data and 

these were tagged manually. This resulted in some reduction in 

accuracy. The performance of method 3 in this case was 84.37% while 

that of method 1 and 2 were 59.93% and 61.79%, respectively. 

  

In [39], the authors describe a tagset of 84 tags and a tagging program 

for Bangla using Oracle 8i, Visual Basic 6.0 and GistSDK ActiveX 

Controls Version 2.7. In this paper, the user interface of the tagger is 

given much importance and is described in detail. However, nothing is 
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mentioned about the training or testing corpora as well as tagging 

performance of the tagger. 
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Chapter II:  Methodology 
 
In this chapter, we describe the theories behind the working of n-gram 

and HMM based taggers as well as the Brill tagger. We also discuss the 

experiments that we did for several languages. We describe the results 

of the experiments in the next chapter. 

 

As discussed in the previous chapter, notable work has already been 

done for English as well as Indian Bangla. The results of the works on 

Indian Bangla might suggest how the different techniques for POS 

tagging should perform on Bangladesh Bangla. But we cannot say 

anything decisively as, at present, we do not have training corpora of 

considerable amount developed using Bangladesh Bangla. So we 

focused mainly on Bangladeshi Bangla and the baseline taggers without 

using advanced techniques to see how they perform for similar cases in 

comparison to other languages. Here we describe the resources that we 

used for the experiments. 

 

 

3.1 Corpora 

 For correctly POS tagging, training the tagger well is very 

important, which requires the use of well annotated corpora. Annotation 

of corpora can be done at various levels which include POS, phrase or 

clause level, dependency level etc. For English we used some of the 

genres of the Brown corpus from NLTK [40], while for Bangla we used 

two different corpora. The first one was the annotated Prothom-Alo 

corpus, currently under development at the Center for Research on 

Bangla Language Processing (CRBLP), BRAC University, Dhaka, 

Bangladesh, consisting of around 6000 words from a Bangladeshi 

Newspaper Prothom-Alo [23]. The other was the combination of the 

training and development corpora provided for [41]. For all the 
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experiments that we did, our test sets had been disjoint from the training 

corpora. 

 

As not much work on Bangladeshi Bangla has been done, we had to 

start with the unannotated Prothom-Alo corpus. We took a small part of it 

and manually tagged it. We used the Python language which, at present  

has some issues representing the two Bangla characters ‘ঠ’ and ‘a’. We 

had to take care of it by replacing each occurrence of these with the flag 

characters ‘t’ and ‘o’, respectively. After fixing the problem, we structured 

the corpus in the Brown corpus format. This became our initial corpus. 

We used a bootstrapping method to enlarge its size. We ran some 

unannotated data through the n-gram, HMM, and Brill taggers and took 

the output of the tagger that performed best. Then we manually 

corrected the generated output and added it to our annotated training 

corpus. In the next iteration, the taggers were trained using this corpus. 

We repeated this process several times to get a corpus of around 6000 

tagged tokens. Later we also used the training and development data 

provided for the SPSAL contests 2006 [41]. We experimented with the 

corpora for all the three languages Hindi, Bangla and Telegu provided by 

the authority, but before that, we again had to fix the aforementioned 

problem. Then we converted the data from the given SSF format [42] to 

the format used by the Brown corpus in NLTK [40].  

 

 

3.2 Tagsets 

 Apart from a corpora, a well chosen tagset is also important. 

According to [15], for deciding upon a tagset, we should consider the 

following properties: 

 

1. Fineness Vs coarseness 

When choosing the tagset for a POS tagger, we have to decide 

whether the tags will allow for precise distinction of the various 
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features of POS of the language i.e. whether features like 

plurality, gender and other information should also be available or 

whether the tagger would only provide the different lexical 

categories. 

 

2. Syntactic function Vs lexical category 

The lexical category of a word can be different than the POS of 

the word in a sentence, and the tagset should be able to 

represent both. 

 

e.g. uttara (North) - noun (lexical category) 

uttara bhArata me bhArI varRA HuI. - adjective (syntactic 

category) 

("north" "India" "in" "lots" "rain" "happened") 

 

3. New tags Vs tags from a standard tagger 

It has to be decided whether an existing tagset should be used, or 

a new tagset should be applied according to the specifics of the 

language on which the tagger will work. 

 

For English, we used the Brown tagset [35], while for Bangla we used 

our bangla tagset [43], which is a two level tagset. The first level is the 

high-level tagset for Bangla, which consists of only (12+2 = 14) tags 

(Noun, Adjective, Cardinal, Ordinal, Fractional, Pronoun, Indeclinable, 

Verb, Post Positions, Quantifiers, Adverb, Punctuation, Abbreviation and 

Others). The second level is more fine-grained with 41 tags. Most of our 

experiments are based on the level 2 tagset (41 tags). However, we also 

experimented several cases with the level 1 tagset (14 tags). We also 

used the 26 tags tagset in [15], for experimenting with Bangla, Hindi and 

Telegu. 

 

Apart from the corpora and the tagsets, we used the Natural Language 

Toolkit (NLTK) [40], which is a set of computational linguistics and NLP 

program modules, annotated corpora and tutorials supporting research 



 25

and teaching for the Python language. NLTK allows various NLP tasks 

by providing implementation of various algorithms such as the Brill 

tagger, HMM based POS tagger, n-gram based taggers etc. For our 

experiments, we used the parts of the Unigram, Bigram, Brill and the 

HMM tagging modules of NLTK. 

 

 

3.3 Taggers 

 

3.3.1 Unigram and Bigram Taggers 
 
 The Unigram tagger (n-gram, n = 1) is a simple statistical tagging 

algorithm. For each token, it assigns the tag that is most likely for that 

token. For example, it will assign the tag ‘adj’ to any occurrence of the 

word ‘frequent’, since ‘frequent’ is used as an adjective (e.g. a frequent 

word) more often than it is used as a verb (e.g. I frequent this cafe).  

 

Before a Unigram Tagger can be used to tag data, it must be trained on 

a training corpus. It uses the corpus to determine which tags are most 

common for each word. We used the default tagger that assigns ‘NP’ to 

all words that it encounters, as the back-off tagger for the Unigram 

Tagger, meaning the Unigram Tagger will pass any word not 

encountered in the training data, to the back-off tagger to tag as ‘NP’. 

We assigned the default tag to be ‘NP’ as most of the unknown words 

are members of open word classes and commonly are Proper Nouns 

(NP).  

 

The Bigram tagger works in exactly the same way as the Unigram 

Tagger, the only difference is that it considers the context when 

assigning a tag to the current word. When training, it creates a frequency 

distribution describing the frequencies with which, each word is tagged 

in different contexts. The context consists of the word to be tagged and 
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the tag of the previous word. When tagging, the tagger uses the 

frequency distribution to tag words by assigning each word, the tag with 

the maximum frequency given the context. For our case, when a context 

is encountered for which no data has been learnt, the tagger backs off to 

the Unigram tagger.  

We compared the Unigram and Bigram taggers to the more advanced 

taggers like HMM and Brill. We also used the Unigram tagger as the pre-

tagger of the Brill tagger. We used the unigram and n-gram (specifying 

n=2 for creating a Bigram model) tagging modules of NLTK [40] to 

create Unigram and Bigram taggers and do the tagging. We found that 

for a small corpus of Bangla, both the taggers tag with similar results. 

They are also extremely fast compared to the other taggers. 

 

 

3.3.2 HMM 
 
 As all other stochastic taggers, the task of HMM based taggers 

are very simple, i.e. to find the most likely tag for a word or a sequence 

of words. Unlike other taggers, HMM usually tags one sentence at a 

time. Given the sentence, it chooses the tag sequence that maximizes 

the following formula: 

 

P (word | tag) * P (tag | previous n tags)  

 
The HMM approach is different than the other POS tagging approaches 

in the sense that it considers the best combination of tags for a 

sequence of words, whereas the other tagging methods greedily tag one 

word at a time, without regard to the optimal combination. [10] 

 

In the HMM based tagging approach, we have the following entities:  

 

{w1, w2, …, ww} is a set of words 

{t1, t2, …, tT} is a set of POS tags 
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W1,n = W1 W2 … Wn is a sentence of n words 

T1,n = T1T2 … Tn is a sequence of n POS tags 

 

As each of the words Wi can take any of the words in {w1, w2, …, ww} as 

its value, we denote the value of Wi by wi and a particular sequence of 

values for Wi,j (i<= j) by wi,j. Similarly, we denote the value of Ti by ti and a 

particular sequence of values for Ti,j (i<=j) by ti,j. Then the probability 

Pr(t1,n, wl,n) using the following formula can be used to find the most 

likely sequence of POS tags for a given sequence of’ words. 

 

 
 

In HMM, the probability of the current tag ti depends on only the previous 

k tags ti-k,i-1 and the probability of’ the current word wi depends on only 

the current tag ti. [9, 10] 

 

Bangla, unlike English and some other European languages, is a free 

word order language meaning that the words in a sentence can change 

their order but still keep the sentence meaningful. [6] gives an example 

of this which is as follows: 

 

Consider the simple English sentence I/PRP eat/VB rice/NN 

 

The possible Bengali equivalents of this sentence could be one of the 

following: 

 

Ami/NN bhAta NN khAi/VB (I rice eat) 

Ami/NN khAi/VB bhAta/NN (I eat rice) 

bhAta NN Ami/NN khAi/VB (Rice I eat ) 

bhAta NN khAi/VB Ami/NN (Rice eat I ) 

khAi/VB Ami/NN bhAta NN ( Eat I rice ) 

khAi/VB bhAta NN Ami/NN ( Eat rice I ) 
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Using linguistic rules for a free word order language is more troublesome 

than a language that is not so. For languages like this, [6] suggests that 

the HMM based approach is more appropriate than other approaches for 

POS tagging. 

 

We used the HMM tagger of NLTK [40] on parts of the Brown corpus as 

well as the Bangla corpora to test its performance. We started from a 

small size and increased the size of the corpus to find out how the 

performance improves with the increase in size of training tokens. We’ve 

noticed that for Bangla HMM performs with similar results even when the 

size of the tagset changes. This can be observed in the results given in 

the next chapter. We’ve also experimented with merging or disjointing 

the training and testing data sets to find out how the performance of 

HMM changes with data that have been seen previously. 

 

 

3.3.3 Brill’s Tagger 
 
 The stochastic taggers have high accuracy and are very fast to 

tag after having been trained. But a common drawback for all stochastic 

taggers is the size. A stochastic nth order tagger using back-off may 

store huge tables containing n-gram entries and large sparse arrays 

having millions of entries. So these taggers are not a very good choice if 

they have to be deployed on mobile computing devices which have 

relatively small storage space and computation power. This is where the 

rule or transformation based taggers are useful.  

 

The Brill tagger is a transformation based tagger that performs very well 

but uses only a tiny fraction of the space required by the nth-order 

stochastic taggers [16, 17]. The general idea of the tagger is very 

simple. It uses a set of rules to tag data. Then it checks the tagged data 

for potential errors and corrects those. In the same time it may learn 

some new rules. Then it uses these new rules to again tag the corrected 
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data. This process continues until a threshold in improvement in each 

pass has been reached. 

 

The process of Brill tagging is usually explained by analogy with 

painting. Suppose we were painting a tree, with all its details of boughs, 

branches, twigs and leaves, against a uniform sky-blue background. 

Instead of painting the tree first then trying to paint blue in the gaps, it is 

simpler to paint the whole canvas blue, then "correct" the tree section by 

over-painting the blue background.  

 

In the same fashion we might paint the trunk a uniform brown before 

going back to over-paint further details with a fine brush. Brill tagging 

uses the same idea: get the bulk of the painting right with broad brush 

strokes, then fix up the details. As time goes on, successively finer 

brushes are used, and the scale of the changes becomes arbitrarily 

small. The decision of when to stop is somewhat arbitrary [2]. 
 

The Brill tagging model works in two phases. In the first phase, the 

tagger tags the input tokens with their most likely tag. This is usually 

done using a Unigram tagging model. Then in the second phase, a set 

of transformation rules are applied to the tagged data [16]. An 

improvement to this technique is described in [17], where unannotated 

text is passed through the initial state annotator at first. The initial state 

annotator can range in complexity from assigning random structure to 

assigning the output of a sophisticated manually created annotator. After 

getting the output from the initial state annotator, it is compared to the 

truth as specified in a manually annotated corpus. In this stage, 

transformation rules are applied to the output of the initial state annotator 

so that it resembles the truth better. After that, a greedy learning 

algorithm is applied. At each iteration of learning, the transformation is 

found whose application results in the highest score and  the 

transformation is then added to the ordered transformation list and the 

training corpus is updated by applying the learned transformation.  
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After completing the learning stage, unannotated text is tagged by 

applying the initial state annotator to it and applying each of the learned 

transformations, in order. A diagram of the whole system is included 

below [16, 17]. 

 

 

 
 

Figure 4: Diagram of improved Brill tagger [17] 
 

 

 

3.4 Tagging Example 

 Here we include the outputs of the taggers on two sample 

Bangla sentences. The training corpus was the Prothom-Alo corpus 

using 4484 tokens 

 

3.6.1. Untagged Text 
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1. িdতীয় িব˞যেুd িমt বািহনীর েনতা িbিটশ pধানমntী uinটন চাির্চলেক গত সpােহর শরুেুত টপেক েবয়ার e 

তািলকায় sান লাভ কেরন ।  

 

2. তেব িতিন যিদ আবার িনরব্াচন কেরন eবং জয়ী হন তাহেল হয়েতা e েরকর্ডo ভাঙেত পারেবন ।  

 

3.6.2. Tagged output 
 
Using level 2 tagset (Full tagset: 41 tags) 
 

Brill: 

1. িdতীয়/NC িব˞যেুd/NC িমt/NC বািহনীর/NC েনতা/NC িbিটশ/ADJ pধানমntী/NC 

uinটন/NP চাির্চলেক/NP গত/ADJ সpােহর/NC শরুেুত/ADVT টপেক/NP েবয়ার/NP 

e/DP তািলকায়/NC sান/NC লাভ/NC কেরন/VF । /PUNSF  

 

2. তেব/INDO িতিন/PP যিদ/INDO আবার/ADVM িনরব্াচন/NC কেরন/VF 

eবং/CONJC জয়ী/NC হন/VE তাহেল/INDO হয়েতা/OTHER e/DP েরকর্ডo/NC 

ভাঙেত/NC পারেবন/VF । /PUNSF  

 

Unigram: 
1. িdতীয়/NP িব˞যেুd/NP িমt/NP বািহনীর/NC েনতা/NC িbিটশ/ADJ pধানমntী/NC 

uinটন/NP চাির্চলেক/NP গত/ADJ সpােহর/NC শরুেুত/ADVT টপেক/NP েবয়ার/NP 

e/DP তািলকায়/NC sান/NC লাভ/NP কেরন/VF । /PUNSF  

 

2. তেব/INDO িতিন/PP যিদ/INDO আবার/ADVM িনরব্াচন/NC কেরন/VF 

eবং/CONJC জয়ী/NP হন/VE তাহেল/INDO হয়েতা/OTHER e/DP েরকর্ডo/NP 

ভাঙেত/NP পারেবন/NP । /PUNSF  

 

HMM: 

1. িdতীয়/DP িব˞যেুd/NC িমt/NC বািহনীর/NC েনতা/NC িbিটশ/ADJ pধানমntী/NC 

uinটন/NP চাির্চলেক/NP গত/ADJ সpােহর/NC শরুেুত/ADVT টপেক/ADVT েবয়ার/NP 

e/NP তািলকায়/NC sান/NC লাভ/NC কেরন/VF । /PUNSF  
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2. তেব/INDO িতিন/PP যিদ/INDO আবার/ADVM িনরব্াচন/NC কেরন/VF 

eবং/CONJC জয়ী/NC হন/VF তাহেল/PUNSF হয়েতা/OTHER e/DP েরকর্ডo/NC 

ভাঙেত/VNF পারেবন/VF । /PUNSF  

 

Using Level 1 Tagset (Reduced tagset: 14 tags) 
 

Brill: 
1. িdতীয়/NN িব˞যেুd/NN িমt/NN বািহনীর/NN েনতা/NN িbিটশ/ADJ pধানমntী/NN 

uinটন/NN চাির্চলেক/NN গত/ADJ সpােহর/NN শরুেুত/ADV টপেক/NN েবয়ার/NN 

e/PN তািলকায়/NN sান/NN লাভ/NN কেরন/VB । /PUNC  

 

2. তেব/IND িতিন/PN যিদ/IND আবার/ADV িনরব্াচন/NN কেরন/VB eবং/IND জয়ী/NN 

হন/VB তাহেল/IND হয়েতা/OTHER e/PN েরকর্ডo/NN ভাঙেত/VB পারেবন/VB 

। /PUNC  

 
Unigram: 
1. িdতীয়/NN িব˞যেুd/NN িমt/NN বািহনীর/NN েনতা/NN িbিটশ/ADJ pধানমntী/NN 

uinটন/NN চাির্চলেক/NN গত/ADJ সpােহর/NN শরুেুত/ADV টপেক/NN েবয়ার/NN 

e/PN তািলকায়/NN sান/NN লাভ/NN কেরন/VB । /PUNC  

 

2. তেব/IND িতিন/PN যিদ/IND আবার/ADV িনরব্াচন/NN কেরন/VB eবং/IND জয়ী/NN 

হন/VB তাহেল/IND হয়েতা/OTHER e/PN েরকর্ডo/NN ভাঙেত/VB পারেবন/NN 

। /PUNC  

 
HMM: 
1. িdতীয়/PN িব˞যেুd/NN িমt/NN বািহনীর/NN েনতা/NN িbিটশ/ADJ pধানমntী/NN 

uinটন/NN চাির্চলেক/NN গত/ADJ সpােহর/NN শরুেুত/ADV টপেক/ADV েবয়ার/NN 

e/NN তািলকায়/NN sান/NN লাভ/NN কেরন/VB । /PUNC  

 

2. তেব/IND িতিন/PN যিদ/IND আবার/ADV িনরব্াচন/NN কেরন/VB eবং/IND জয়ী/NN 

হন/VB তাহেল/IND হয়েতা/OTHER e/PN েরকর্ডo/NN ভাঙেত/VB পারেবন/VB 

। /PUNC  
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Chapter III:  Results 
 
Different types of POS tagging models have been implemented for 

English and other western languages, which perform well over the 90% 

mark. On the contrary, only a small amount of work has been done for 

Bangla and some other South Asian languages. From the results of the 

SPSAL machine learning contest 2006 [41], we find out the performance 

of various taggers to be 60%-78% for Bangla, 62%-79% for Hindi and 

53%-78% for Telegu. As shown later in the chapter, our baseline tagging 

models perform well in these intervals for the development data 

provided, using no special tools like Morphological Analyzers and others. 

 

 

The results of our experiments are shown below in the forms of tables 

and graphs. 

 
 

4.1 Bangla - Prothom Alo Corpus and Level 1 Tagset 

 HMM Unigram Brill 
Tokens Accuracy Accuracy Accuracy 

0 0 0 0 
60 15.4 51.2 50.4 

104 18 51.1 44.6 
503 34.2 60.7 56.3 

1011 42.3 64.2 62.6 
2023 45.8 69.1 67.8 
3016 49.4 70.1 70.9 
4484 45.6 71.2 71.3 

 
Table 1: Performance of POS Taggers for Bangla [Test data: 85 
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 1 
Tagset (14 Tags)] 
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Figure 5: Performance of POS Taggers for Bangla [Test data: 85 
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 1 

Tagset (14 Tags)] 
 

 
 

4.2 Bangla - Prothom Alo Corpus and Level 2 Tagset 

  HMM Unigram Brill 
Tokens Accuracy Accuracy Accuracy 

0 0 0 0 
60 19.7 17.2 38.7 

104 18.1 17.4 26.2 
503 28.8 26.1 46.1 

1011 32.8 30 51.1 
2023 40.1 36.7 49.4 
3016 44.5 39.1 51.9 
4484 46.9 42.2 54.9 

 
Table 2: Performance of POS Taggers for Bangla [Test data: 85 
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 2 
Tagset (41 Tags)] 
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Figure 6: Performance of POS Taggers for Bangla [Test data: 85 
sentences, 1000 tokens from the (Prothom-Alo) corpus; Tagset: Level 2 

Tagset (41 Tags)] 
 
 
 

4.3 English - Brown Corpus and Tagset 

  HMM Unigram Brill 
Tokens Accuracy Accuracy Accuracy 

0 0 0 0 
65 36.9 28.7 33.6 

134 44.2 34 42.9 
523 53.4 41.6 53.7 

1006 62 47.7 58.3 
2007 66.8 52.4 62.9 
3003 68.2 55.1 66.1 
4042 70 57.2 67.5 
5032 71.5 59.2 70.2 
6008 71.9 60.8 71.4 
7032 74.5 61.5 71.8 
8010 74.8 62.1 72.4 
9029 76.8 63.5 74.5 

10006 77.5 65.2 75.2 
20011 80.9 69.5 79.8 
30017 83.1 71.7 78.8 
40044 84.7 73.3 79.8 
50001 84.6 74.4 80.4 
60022 85.3 75.2 80.8 
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70026 86.3 75.8 81 
80036 87.1 77.1 81.6 
90000 87.8 78.1 82.4 

100057 87.5 78.9 83.4 
200043 91.7 83 86.8 
300359 89.5 84.2 87.3 
400017 89.7 84.8 88.5 
500049 90.3 85.6   
600070 90 85.9   
700119 90.3 86.1   
800031 90.2 86.2   
900073 90.3 86.6   

1000107 90.3 86.5   
 

Table 3: Performance of POS Taggers for English [Test data: 22 
sentences, 1008 tokens from the Brown corpus; Tagset: Brown Tagset] 
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Figure 7: Performance of POS Taggers for English [Test data: 22 
sentences, 1008 tokens from the Brown corpus; Tagset: Brown Tagset] 

 
 
 
Apart from these experiments, where we incremented the size of the 

corpora in small increments to plot the performance, we also 

experimented with taggers on Bangla, Hindi and Telegu where we 
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trained the taggers using the training data as well as the development 

data provided for [41] and tested the performance using the testing data 

for the same. 

 

 

4.4 Hindi - SPSAL Corpus and Tagset 

Test data: 209 sentences, 4924 tokens from the SPSAL test 
corpus 
    HMM Unigram Bigram Brill 
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

0 0 0 0 0 0
4 60 36 18  Insufficient data 37.6
7 113 32.2 23.8  Insufficient data 43.6

12 201 30.6 27.6  Insufficient data 46.7
21 415 39.8 35.8 35.8 53.8
30 607 43.6 37.6 37.7 56.2
38 826 50.5 40.3 40.5 60.3
43 1039 53.3 41.9 42.1 59.7
85 2017 57.8 46 46.4 61.8

182 4031 61.9 49.2 49.3 64.9
259 6017 62.8 50.9 51 68.8
362 8009 64.4 52 52.3 69.4
450 10001 64.4 52.7 53.1 69.1
535 12003 65.7 54.1 54.5 69.6
619 14011 66.3 54.5 54.9 69.7
698 16020 67.3 55.5 55.5 70.6
784 18019 67.3 55.8 56.2 70.6
865 20004 68 56.9 57.1 70.7
934 22010 67.5 57 57.3 70.8

1007 24030 68.6 57.7 55.7 71.1
1125 26005 68.5 58.4 57.5 71.3
1135 26148 68.5 58.5 57.5 71.5

 
Table 4: Performance of POS Taggers for Hindi [Test data and Tagset 

source: [41]] 
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Figure 8: Performance of POS Taggers for Hindi [Test data and Tagset 
source: [41]] 

 
 
 

4.5 Telegu - SPSAL Corpus and Tagset 

Test data:  415 sentences, 5193 tokens from the SPSAL test 
corpus 
    HMM Unigram Bigram Brill 
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

0 0 0 0 0 0
5 50 28.4 15.6  Insufficient data 45.7
9 102 28.1 16.4  Insufficient data 47.7

23 202 32.1 16.9  Insufficient data 48
54 401 30.8 18  Insufficient data 49.2
87 612 29.6 18.3 18.3 49.1

107 811 30.9 18.8 18.8 49.6
131 1004 31.7 19.1 19.1 38.2
248 2010 32.8 23.4 23.4 53.5
421 4001 42.6 28.1 28.2 57.9
605 6007 48 31.7 31.7 60.4
783 8002 51.1 34.9 34.5 62.6
994 10018 53 37.4 37.2 63.9

1192 12000 53.6 38.8 38.3 64.6
1409 14010 53.3 38.8 38.7 64.4
1626 16005 53.9 39.6 39.2 65
1842 18004 53.7 40.1 39.7 65.1
2048 20012 54.9 40.4 40.2 65.1
2184 22013 54.8 41.5 41 65.8
2335 24002 55.6 41.6 41 65.8
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2485 26025 55.9 41.9 41.3 66
2655 27511 56.6 42.8 42.2 66.9

Table 5: Performance of POS Taggers for Telegu [Test data and Tagset 
source: [41]] 
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Figure 9: Performance of POS Taggers for Telegu [Test data and Tagset 

source: [41]] 
 

 

4.6 Bangla - SPSAL Corpus and Tagset 

Test data: 400 sentences, 5225 tokens from the SPSAL test 
corpus 
    HMM Unigram Bigram Brill 
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

0 0 0 0 0 0
8 51 14.3 14  Insufficient data 35.6

13 108 20.7 17.9  Insufficient data 39.6
21 206 26.5 19.3 19.3 40.9
37 405 30.7 21.8 21.8 42.7
53 605 32.7 24.1 24.1 45.4
69 807 36.4 27.7 27.7 48.6
87 1002 39.3 28.6 28.6 50.2

173 2004 44.3 36 36 55.8
304 4003 49.7 42.4 41.9 61.3
398 6036 49.8 45.6 45.3 63.8
532 8026 53.6 48.1 47.9 64.7
677 10001 54.3 49.8 49.5 65.6
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846 12006 56.7 51.7 51.1 66.4
960 14027 57.5 52.9 51.7 67.2

1130 16000 58.6 53.9 52.6 68.2
1301 18006 60.5 54.5 53 68.7
1427 20001 61.9 55.8 54.4 69.1
1535 22014 62.4 56.2 54.7 68.3
1656 24001 63.3 56.7 55.2 68.4
1786 25426 63.6 56.9 55.5 69.6

 
Table 6: Performance of POS Taggers for Bangla [Test data and Tagset 

source: [41]] 
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Figure 10: Performance of POS Taggers for Bangla [Test data and 
Tagset source: [41]] 

 
 

We also experimented merging the development data with the training 

data and using this for training. 

 

4.7 Bangla - SPSAL Corpus and Tagset (Merged) 

Test data: 340 sentences, 5029 tokens      
    HMM Unigram Bigram Brill 
Sentences Tokens Accuracy Accuracy Accuracy Accuracy

1785 25426 92.9 74.4 73.2 83
 

Table 7: Performance of POS Taggers for Bangla on merged training 
and testing data [Test data and Tagset source: [41]] 
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The resulting high accuracy gain of the HMM model (62.7 to 92.9) once 

more reveals that stochastic models are far superior to any other when 

the knowledge about unknown words is available. 
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Chapter IV:  Analysis Of Results 
 
We have experimented with basic tagging models which report 

performance in the 96%+ range for English, but for our cases they 

performed in the 50%-70% range for South Asian Languages and 

around 90% for English using the Brown tagset [35] and genres from the 

Brown Corpus taken from NLTK [40]. The reason behind this is in the 

cases where performance was reported in the 95% range, very large 

corpora were employed for training the model. 

 
For Bangla, we did not have any annotated corpus available, and the 

reason of very low performance of Bangla on our cases is mostly due to  

the small corpus size and sparseness of training data, which makes it 

very difficult for stochastic taggers to create probability distribution to 

hold transitions between different states [44]. 
 

We have compared the performance of English and Bangla as well as 

two other South Asian languages, using same corpus size and showed 

that the performance is similar in some cases. So if we can extend the 

corpus size of South Asian languages then we will probably be able to 

get similar performance for these languages as English.  

 

Within this limited corpus, our experiments suggested that for the three 

South Asian languages Bangla, Hindi and Telegu, with limited tagged 

corpus, Brill’s tagger performs better than HMM based tagger and n-

gram based Unigram and Bigram taggers. Researchers, who want to 

implement a tagger for a language with limited language resources, i.e. 

annotated corpora of large size, can try Brill’s tagger or any other rule 

based tagger for their languages too.  
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Chapter V:  Future Work 
 
We compared different POS tagging models like n-gram, HMM and 

Brill’s transformation based techniques for three South Asian languages 

(Bangla, Hindi and Telegu). At present with the training corpus with a 

size of around 20000 words of a single domain we get a performance of 

over 90% when the test set is extracted from the training corpus, and we 

get a performance of over 70% if the test set is taken randomly from any 

other source. If we can increase the training corpus size covering most 

of the domains then we might get a recognizable performance of 95%+ 

for Bangla too.  

 

From [20], we find that a tagger should have the following qualities to be 

of any practical purpose.  

 

Robust: Text corpora may contain ungrammatical constructions, isolated 

phrases (titles), nonlinguistic data (tables) as well as unknown words. 

The tagger should be able to deal with these. 

 

Efficient: The tagger should be efficient in the sense that it should be 

able to train fast on newly available corpora and text genres. It should be 

able to train in a relatively short time on large corpora, and it should also 

perform in time linear complexity on the number of words to tag. 

 
Accurate: The tagger should assign the best possible POS tag for every 

word in the text to tag. 

 
Tunable: The tagger should be able to avoid erroneous tagging by 

accepting a priori hints.  

 

To improve the performances of tagging models, these features could be 

implemented.  
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In [15], we find information about a method that augments a probabilistic 

tagger with a  handcrafted procedure to pre-tag problematic idioms. As 

stated there, the procedure improves the accuracy of the tagger by 3%, 

resulting in a total of 95%-96% accuracy. 

 

[45] reports that Finite State Transducers (FST) can be used to 

represent the transformation rules used by the Brill tagger, which 

improves the running time of the tagger Also, to decrease the training 

time on corpora of large sizes, Directed Acyclic Graphs (DAG) could be 

used to represent the corpora.  

 

[46] describes a new approach that suggests the use of Dynamic 

Bayesian Network instead of HMM that performs with similar accuracy.  

 

A suffix stripper as described in the earlier chapters could be 

implemented that might prove useful for Bangla and experiments could 

be done with the tagset as it can improve the performance of the tagger 

[3], to some extent. 
 
More experiments could be performed on the South Asian languages to 

find out whether some specific POS tagging model or modification to a 

specific model performs better than others for a specific language. The 

unsupervised approaches are left out of the present discussion, mainly 

because of their high requirements of computational power and slow 

speed to train. But for languages, in which resources are limited, 

unsupervised POS tagging models [47, 48, 49] are very good options. 

These models could also be experimented with for Bangla or other 

South Asian languages.  

 

The Baum Welch re-estimation algorithm is widely used for 

unsupervised training of POS taggers. [50] describes three patterns of 

behavior in Baum Welch re-estimation. These are: 
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Classical: A general trend of rising accuracy on each iteration, with any 

falls in accuracy being local. It indicates that the model is converging 

towards an optimum which is better than its starting point. 

 

Initial maximum: Highest accuracy on the first iteration, and falling 

thereafter. In this case the initial model is of better quality than BW can 

achieve. That is, while BW will converge on an optimum, the notion of 

optimality is with respect to the HMM rather than to the linguistic 

judgements about correct tagging. 

 

Early maximum: Rising accuracy for a small number of iterations (2-4), 

and then falling as in initial maximum. 

 

Using these patterns, the paper describes some guidelines for 

unsupervised training of HMM models. These are: 

 

1. If a hand-tagged training corpus is available, use it . If the test and 

training corpora are near identical, do not use BW re-estimation; 

otherwise use for a small number of iterations. 

 

2. If no such training corpus is available, but a lexicon with at least 

relative frequency data is available, use BW re-estimation for a 

small number of iterations. 

 

3. If neither training corpus nor lexicon are available, use BW re-

estimation with standard convergence tests such as perplexity. 

Without a lexicon, some initial biasing of the transitions is needed 

if good results are to be obtained. 

 

The next step could be to find out whether these patterns are present in 

South Asian Languages and also, whether the above mentioned 

guidelines are applicable for these languages as well. There are some 

other state of the art POS tagging techniques, which could also be tried 

out for Bangla.  
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In another study we have seen that in case of n-gram based POS 

tagging, backward n-gram (considers next words), performs better than 

usual forward n-gram (considers previous words), Based upon this 

observation, further experiments can be carried out to determine 

whether the feature is worthwhile to implement in a tagging model. 

 

Finally, a hybrid solution for POS tagging in Bangla can be proposed 

that can be used in other advanced NLP applications, which might use a 

combination of the techniques mentioned earlier to achieve a significant 

gain in performance and performs with very good accuracy as English or 

other western languages in all domains. 
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Appendix 
 

Bangla POS Tagset used in our experiments 

 

Level 1 – High Level Tags 

No. Tag Name Short 
Name 

Example 

1 Proper Noun NN মিতuর 
 Common Noun  পািন, গr 
 Verbal Noun  করােনা, পড়ােনা 
2 Adjective ADJ লাল, গরম 
3 Cardinal (Det) CAR eক, di 
4 Ordinal (Det) ORD pথম, dাদশ 
5 Fractional (Det) FRA তৃতীয়াংশ 
6 Personal Pronoun PN আিম, তিুম 
 Demonstrative Pronoun  e, eরা, oরা 
 Indefinite Pronoun  েকu 
 Relative Pronoun  েয, িযিন, যা 
 Reflexive Pronoun  আপিন, িনজ 
 Inclusive Pronoun  সব, সকল, uভয় 
 Reciprocal Pronoun  আপনা–আপিন 
7 Connective Conjunction IND o, eবং, আর 
 Adversative Conjunction  বা, aথবা 
 Interjection  বাহ!, oহ! 
 Vocatives  oেগা, oের  
 Other Indeclinables  যিদ, তেব, সুতরাং, বেট, িকnt 
 Assertive Particle  হয্া  
 Negative Particle  না, নাi  
 Question Particle  িক, েক, কীেনা 
 Onomatopes  টনটন, কনকন 
8 Finite verb VB কির, েখিল 
 Non-finite verb  করেত, েখলেত 
 Causative verb  করাi, েখলাi  
 Verb Imperatives  কেরা, েখেলা 
 Negative Verb  যাiিন, কিরিন  
 Existential Verb  থােক, হয়, আেছ 
9 PostPositions POSTP েথেক, িদেয়, সংেগ, সােথ 
10 Quantifiers QUAN িকছু, eেতা, aেনক, খুব, আেরা 
11 Temporal Adverb ADV আজ, কাল, সরব্দা, kমশ 
 Spatial Adverb  িনেচ, uপেড় 
 Adverb of Manner  আেs, drত 
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12 Sentence-Final 
Punctuation 

PUNC |, ?, ! 

 Quote  ", " 
 Parenthesis  ( ) {} [] 
 Mid-sentence 

Punctuation 
 , ; : 

 Other Punctuation  %. 
13 Abbreviation ABB েমাঃ, ডাঃ  
14 Others OTHER  

 

 

Level 2 – Detailed Tags 

No. Tag Name Short 
Name 

Example 

1 Proper Noun NP মিতuর 
2 Common Noun NC পািন, গr 
3 Verbal Noun NV করােনা, পড়ােনা 
4 Adjective ADJ লাল, গরম 
5 Cardinal (Det) CAR eক, di 
6 Ordinal (Det) ORD pথম, dাদশ 
7 Fractional (Det) FRA তৃতীয়াংশ 
8 Personal Pronoun PP আিম, তিুম 
9 Demonstrative Pronoun DP e, eরা, oরা 
10 Indefinite Pronoun IP েকu 
11 Relative Pronoun RP েয, িযিন, যা 
12 Reflexive Pronoun REFP আপিন, িনজ 
13 Inclusive Pronoun INCP সব, সকল, uভয় 
14 Reciprocal Pronoun RECP আপনা–আপিন 
15 Connective Conjunction CONJC o, eবং, আর 
16 Adversative Conjunction CONJA বা, aথবা 
17 Interjection INTJ বাহ!, oহ! 
18 Vocatives VOC oেগা, oের  
19 Other Indeclinables INDO যিদ, তেব, সুতরাং, বেট, িকnt 
20 Assertive Particle PRTA হয্া  
21 Negative Particle PRTN না, নাi  
22 Question Particle PRTQ িক, েক, কীেনা 
23 Onomatopes ONO টনটন, কনকন 
24 Finite verb VF কির, েখিল 
25 Non-finite verb VNF করেত, েখলেত 
26 Causative verb VC করাi, েখলাi  
27 Verb Imperatives IMP কেরা, েখেলা 
28 Negative Verb VN যাiিন, কিরিন  
29 Existential Verb VE থােক, হয়, আেছ 
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30 PostPositions POSTP েথেক, িদেয়, সংেগ, সােথ 
31 Quantifiers QUAN িকছু, eেতা, aেনক, খুব, আেরা 
32 Temporal Adverb ADVT আজ, কাল, সরব্দা, kমশ 
33 Spatial Adverb ADVS িনেচ, uপেড় 
34 Adverb of Manner ADVM আেs, drত 
35 Sentence-Final 

Punctuation 
PUNSF |, ?, ! 

36 Quote PUNQ ", " 
37 Parenthesis PUNPAR ( ) {} [] 
38 Mid-sentence 

Punctuation 
PUNMS , ; : 

39 Other Punctuation PUNO %. 
40 Abbreviation ABB েমাঃ, ডাঃ  
41 Others OTHER  

 

 


