**Applied Physics** Letters

# Electrical characterization of CeO2/Si interface properties of metaloxide-semiconductor field-effect transistors with CeO2 gate dielectric

Chun-Heng Chen, Ingram Yin-Ku Chang, Joseph Ya-Min Lee, and Fu-Chien Chiu

Citation: Appl. Phys. Lett. 92, 043507 (2008); doi: 10.1063/1.2838746 View online: http://dx.doi.org/10.1063/1.2838746 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v92/i4 Published by the American Institute of Physics.

# **Related Articles**

Charge transport in dual-gate organic field-effect transistors APL: Org. Electron. Photonics 5, 20 (2012)

Top-gate thin-film transistors based on GaN channel layer Appl. Phys. Lett. 100, 022111 (2012)

Charge transport in dual-gate organic field-effect transistors Appl. Phys. Lett. 100, 023308 (2012)

Solid polyelectrolyte-gated surface conductive diamond field effect transistors Appl. Phys. Lett. 100, 023510 (2012)

Percolation model for the threshold voltage of field-effect transistors with nanocrystalline channels J. Appl. Phys. 111, 014510 (2012)

### Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about\_the\_journal Top downloads: http://apl.aip.org/features/most\_downloaded Information for Authors: http://apl.aip.org/authors

#### **ADVERTISEMENT**



# Electrical characterization of CeO<sub>2</sub>/Si interface properties of metal-oxidesemiconductor field-effect transistors with CeO<sub>2</sub> gate dielectric

Chun-Heng Chen, Ingram Yin-Ku Chang, and Joseph Ya-Min Lee<sup>a)</sup> Department of Electronics Engineering and Institute of Electronics Engineering, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China

Fu-Chien Chiu

Department of Electronics Engineering, Ming Chuan University, Taoyuan, Taiwan, Republic of China

(Received 15 November 2007; accepted 9 January 2008; published online 30 January 2008)

Metal-oxide-semiconductor field-effect transistors with CeO<sub>2</sub> gate dielectrics were fabricated. The lowest interface trap density  $(D_{it})$  of CeO<sub>2</sub>/Si interface in comparison with other high- $\kappa$  gated diodes is  $1.47 \times 10^{12}$  cm<sup>-2</sup> eV<sup>-1</sup> due to the very low lattice mismatch of CeO<sub>2</sub>/Si. The interfacial properties were characterized by gated-diode measurements. The surface recombination velocity  $(s_0)$  and the minority carrier lifetime in the field-induced depletion region  $(\tau_{0,FII})$  measured from the gated diodes are about  $1.03 \times 10^4$  cm/s and  $2.73 \times 10^{-8}$  s, respectively. The effective capture cross section of surface state  $(\sigma_s)$  extracted using the gated diode technique and the subthreshold swing measurement is about  $8.68 \times 10^{-15}$  cm<sup>2</sup>. © 2008 American Institute of Physics. [DOI: 10.1063/1.2838746]

With aggressive scaling of the dimensions of complementary metal-oxide-semiconductor (MOS) transistors, the issues of gate leakage current, static power consumption, and gate dielectric reliability become more important. Recently, high-dielectric-constant (high- $\kappa$ ) materials have been widely researched for replacing SiO<sub>2</sub> beyond the sub-45-nm technology node.<sup>1–3</sup> Among various high- $\kappa$  dielectrics, cerium oxide (CeO<sub>2</sub>) is considered as a potential candidate for high- $\kappa$  dielectric application. CeO<sub>2</sub> has many superior properties such as good thermal stability on silicon,<sup>4</sup> a high value of dielectric constant (20–26), a large bandgap (~6 eV), and a very small lattice mismatch with silicon ( $\Delta a$ =0.35%).<sup>5–7</sup> However, some of the CeO<sub>2</sub>/Si interface properties such as the effective capture cross section and the surface recombination velocity have not been fully addressed.

In this work, the CeO<sub>2</sub> thin films were deposited by radio frequency (rf) magnetron sputtering. The capacitancevoltage (*C*-*V*) measurements were made on Al/CeO<sub>2</sub>/*p*-Si MOS capacitors. The current-voltage (*I*-*V*) characteristics were investigated by using Al/CeO<sub>2</sub>/*p*-Si MOS field-effect transistors (MOSFETs). Moreover, the subthreshold measurement<sup>8</sup> and gated diode technique<sup>9,10</sup> were utilized to analyze high- $\kappa$ /Si interfacial characteristics.

(100) *p*-type silicon wafers  $(1-5 \ \Omega \ cm)$  were used as the starting substrate. After standard RCA clean and HF dip, the source and drain areas were defined by wet etching and doped by phosphorous (P) diffusion. The CeO<sub>2</sub> films were deposited by rf magnetron sputtering in argon (Ar) ambient at room temperature. The postdeposition annealing was performed at 500 °C in N<sub>2</sub> ambient for 60 s. The aluminum (Al) electrodes were deposited using reactive dc magnetron sputtering and patterned by a wet etching process using H<sub>3</sub>PO<sub>4</sub>. Postmetallization annealing was performed at 400 °C in N<sub>2</sub> ambient for 3 min. The thickness, refractive index, and energy bandgap of CeO<sub>2</sub> films were measured by N&K analyzer. The current-voltage (*I-V*) and the capacitance-voltage (C-V) characteristics were measured by Keithley 236 electrometer and MI494 HF CV/IV meter, respectively.

Figure 1 shows the *C*-*V* curve of MOS capacitor with CeO<sub>2</sub> dielectric annealed at 500 °C in nitrogen for 60 s. The dielectric constant and equivalent oxide thickness of the CeO<sub>2</sub> thin film extracted from the accumulation region are about 23.2 and 1.88 nm, respectively. Figure 2 shows the  $I_{\rm DS}$ - $V_{\rm DS}$  characteristics of *n*-channel MOSFETs with CeO<sub>2</sub> gate dielectric. The inset in Fig. 2 shows the  $I_{\rm DS}$ - $V_{\rm GS}$  curve. The subthreshold swing and the density of interface traps per area and energy ( $D_{\rm it}$ ) determined from the subthreshold region of the  $I_{\rm DS}$ - $V_{\rm GS}$  curve are 67.1 mV/decade and  $1.47 \times 10^{12}$  cm<sup>-2</sup> eV<sup>-1</sup>, respectively. A  $I_{\rm on}/I_{\rm off}$  ratio is about  $10^5-10^6$  at  $V_{\rm DS}=0.1$  V, revealing that the MOSFETs with CeO<sub>2</sub> gate dielectrics have a good current switch ability.

The inset in Fig. 3 shows the setup of the gated diode measurement using a floating source and a grounded substrate of the MOSFETs. The drain corresponding to the substrate is reversely biased ( $V_R = V_{DB}$ ). When the gate voltage ( $V_G$ ) is less than the flatband voltage  $V_{FB}$ , the CeO<sub>2</sub>/Si inter-



FIG. 1. The C-V curve of MOS capacitor with  $Ce_2O_3$  dielectric annealed at 500 °C in nitrogen for 60 s.

© 2008 American Institute of Physics

<sup>92, 043507-1</sup> 



FIG. 2. The  $I_{DS}$ - $V_{DS}$  characteristics of *n*MOSFETs with CeO<sub>2</sub> gate dielectric at various gate voltages  $V_{GS}$ . The inset shows the  $I_{DS}$ - $V_{GS}$  characteristics of *n*MOSFETs with CeO<sub>2</sub> gate dielectric at  $V_{DS}$ =0.1 V.

face is in the accumulation mode and the reverse current  $(I_R)$ is introduced by the generation-recombination (GR) centers in the depletion region of the metallurgical junction  $(I_{\text{gen,MJ}})$ . When  $V_{\rm FB} < V_G < V_T$  (where  $V_T$  is the threshold voltage), the field-induced junction is depleted and an increase of the reverse current originates from the generation of the electronhole pairs at the generation-recombination centers of the field-induced junction depletion region  $(I_{\text{gen,FIJ}})$  and at those of the surface region  $(I_{gen.s})$ . The field-induced region is in the inversion mode and the reverse current is reduced by filling the interface states with the minority carriers when  $V_T < V_G$ . Figure 3 shows the  $I_R - V_G$  gated diode characteristics of the MOSFETs with CeO2 gate dielectrics. The magnitude of the reverse current depends on the density of the GR centers and the volume of the depletion region and, therefore, is the sum of the generation currents in the metallurgical junction depletion volume and the field-induced junction depletion volume. Based on the Shockley-Read-Hall theory for single-level centers,<sup>8</sup> the equations of the gated diode measurement are summarized as<sup>9,11–13</sup>

$$I_{\text{gen,MJ}} = q U_{\text{MJ}} A_{\text{MJ}} W, \tag{1}$$

$$I_{\text{gen,FIJ}} = q U_{\text{FIJ}} A_g W_{d,\text{max}} = \frac{q n_i A_g W_{d,\text{max}}}{2 \tau_{0,\text{FIJ}}},$$
(2)

$$I_{\text{gen},s} = \frac{qn_i A_g s_0}{2},\tag{3}$$

$$s_0 = \sigma_s v_{\rm th} N_{\rm it} = \sigma_s v_{\rm th} (\pi k T D_{\rm it}), \tag{4}$$



FIG. 3. The reverse diode current  $I_R$  of the gated diode with CeO<sub>2</sub> gate dielectric is plotted as a function of gate voltage  $V_G$  at various reverse bias  $V_R$ . The inset shows the effect of the depletion region on the reverse current  $I_R$  at various gate voltages  $V_G$  with a fixed reverse bias  $V_R$ .

$$W = \sqrt{\frac{2\varepsilon_{\rm Si}}{q}(V_{\rm bi} + V_R)\left(\frac{1}{N_A} + \frac{1}{N_D}\right)},\tag{5}$$

$$W_{d,\max} = \sqrt{\frac{2\varepsilon_{\rm Si}}{qN_A}} (2\phi_F + V_R), \qquad (6)$$

where the  $U_{\rm MI}$  and  $U_{\rm FII}$  are GR rates of the carriers per unit volume in the depletion region of the metallurgical junction and in that of the field-induced junction;  $A_{MJ}$  and  $A_g$  are the areas of the metallurgical junction and of the gate, respectively; W is the width of the depletion region of the metallurgical junction;  $W_{d,\max}$  is the maximum width of the surface depletion region;  $n_i = 1.45 \times 10^{10} \text{ cm}^{-3}$  is the intrinsic carrier concentration of Si;  $\tau_{0,\text{FIJ}}$  is the minority carrier lifetime in the depletion region of the field-induced junction;  $s_0$ is the surface recombination velocity;  $\sigma_s$  is the effective capture cross section;  $v_{\rm th} = 10^7$  cm/s is the thermal velocity;  $N_{\rm it}$ is the density of the single-level surface GR centers per unit area;  $D_{it}$  is the density of uniformly distributed surface GR centers per unit area and energy;  $V_{bi}$  is the built-in potential of the *p*-*n* junction; and  $\phi_F$  is the quasi-Fermi potential of the majority carriers in the substrate.

In this experiment, the interface trap density per area and energy  $(D_{\rm it})$  measured from the subthreshold swing is about  $1.47 \times 10^{12}$  cm<sup>-2</sup> eV<sup>-1</sup>. The minority carrier lifetime in the field-induced junction depletion region  $(\tau_{0,\rm FII})$  determined by the gated diode measurement is about  $2.73 \times 10^{-8}$  s. The surface recombination velocity  $(s_0)$  extracted from the reverse diode current  $(I_{\rm gen,s})$  at  $V_R$ =3 V in the surface region is  $1.03 \times 10^4$  cm/s. The effective capture cross section  $(\sigma_s)$  is

TABLE I. A comparison of the experimental results of gated diodes with SiO<sub>2</sub>,  $ZrO_2$ , and  $CeO_2$  (this work) gate dielectrics. The  $V_R$  for CeO<sub>2</sub> gated diodes is 3 V.

| Gate<br>dielectrics                 | $I_{\text{gen,MJ}}$<br>(A/cm <sup>2</sup> )                | $I_{\text{gen},s}$<br>(A/cm <sup>2</sup> )  | $I_{\text{gen,FIJ}}$<br>(A/cm <sup>2</sup> )                | <sup>s</sup> <sub>0</sub><br>(cm/s)            | $\sigma_s$ (cm <sup>2</sup> )                            | $N_{\rm it}$<br>(cm <sup>-2</sup> )                                | $\begin{array}{c} D_{\rm it} \\ (\rm cm^{-2}eV^{-1}) \end{array}$ | $	au_{0,	ext{FIJ}} (	ext{s})$                                                                   |
|-------------------------------------|------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $SiO_2^a$<br>$ZrO_2^b$<br>$CeO_2^c$ | $10^{-4}$<br>$1.3 \times 10^{-6}$<br>$2.01 \times 10^{-5}$ | $10^{-8}$<br>4.1 × 10^{-6}<br>1.2 × 10^{-5} | $\sim 1.1 \times 10^{-4}$<br>5.7 × 10^{-6}<br>3.4 × 10^{-6} | $5 \\ 3.5 \times 10^{3} \\ 1.03 \times 10^{4}$ | $1 \times 10^{-16}$<br>5.8 × 10^{-16}<br>8.68 × 10^{-15} | $5 \times 10^{9}$<br>$6.0 \times 10^{11}$<br>$1.19 \times 10^{11}$ | $5 \times 10^{10}$<br>7.4 × 10^{12}<br>1.47 × 10^{12}             | $   \begin{array}{r} 10^{-5} \\     2.6 \times 10^{-6} \\     2.73 \times 10^{-8} \end{array} $ |

<sup>a</sup>References 8, 9, and 14.

<sup>b</sup>Reference 15. <sup>c</sup>This work.

This work

determined to be about  $8.68 \times 10^{-15}$  cm<sup>2</sup>. Table I summarizes the parameters of this experiment and are compared with those of SiO<sub>2</sub> and ZrO<sub>2</sub> extracted by the same method.<sup>8,9,14,15</sup> The results show that the  $D_{it}$  and  $N_{it}$  values of MOSFETs with CeO<sub>2</sub> gate dielectric are smaller than those with ZrO<sub>2</sub> gate dielectric. The effective capture cross section  $\sigma_s$  at the CeO<sub>2</sub>/Si interface is larger than that at the ZrO<sub>2</sub>/Si interface.

In summary, MOSFETs with CeO<sub>2</sub> gate dielectric were fabricated. Using the gated diode technique and the subthreshold measurement, the surface recombination velocity  $(s_0)$ , effective capture cross section  $(\sigma_s)$ , and interface trap density per area  $(N_{it})$  were characterized. The experimental results show that  $D_{it}$  and  $N_{it}$  of MOSFETs with CeO<sub>2</sub> gate dielectric are the lowest in comparison with other high- $\kappa$ gated diodes. The reason of the low  $D_{it}$  and  $N_{it}$  values with CeO<sub>2</sub> gate dielectric is attributed to the very low lattice mismatch of CeO<sub>2</sub>/Si interface. The effective capture cross section  $\sigma_s$  at the CeO<sub>2</sub>/Si interface is about 2 orders of magnitude larger than that at the SiO<sub>2</sub>/Si interface and about 1.5 orders of magnitude larger than that at the ZrO<sub>2</sub>/Si interface.

The authors would like to thank the National Science Council, Taiwan, Republic of China for supporting this work under Contract Nos. NSC 95-2221-E-007-243 and NSC 95-2218-E-130-001.

- <sup>1</sup>S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, IEEE Electron Device Lett. **18**, 209 (1997).
- <sup>2</sup>D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong, Proc. IEEE **89**, 259 (2001).
- <sup>3</sup>M. Houssa, L. Pantisano, L.-Å. Raganarsson, R. Degraeve, T. Schram, G. Pourtois, S. De Gendt, G. Groeseneken, and M. M. Heyns, Mater. Sci. Eng., R. **51**, 37 (2006).
- <sup>4</sup>K. J. Hubbard and D. G. Schlom, J. Mater. Res. **11**, 2757 (1996).
- <sup>5</sup>N. V. Skorodumova, R. Ahuja, S. I. Simak, A. Abrikosov, B. Johansson, and B. I. Lundqvist, Phys. Rev. B 64, 115108 (2001).
- <sup>6</sup>J. C. Wang, Y. P. Hung, C. L. Lee, and T. F. Lei, J. Electrochem. Soc. **151**, F17 (2004).
- <sup>7</sup>Y. Nishikawa, T. Yamaguchi, M. Yoshiki, and H. Satake, Appl. Phys. Lett. **81**, 4386 (2002).
- <sup>8</sup>C. T. Sah, *Fundamental of Solid-State Electronics* (World Scientific, Singapore, 1991), p. 661.
- <sup>9</sup>A. S. Grove and D. J. Fitzgerald, Solid-State Electron. 9, 783 (1966).
- <sup>10</sup>T. Giebel and K. Goser, IEEE Electron Device Lett. 10, 76 (1989).
- <sup>11</sup>P. L. Castro and B. E. Doal, J. Electrochem. Soc. **118**, 280 (1971).
- <sup>12</sup>P. C. T. Roberts and J. D. E. Beynon, Solid-State Electron. **16**, 221 (1973).
- <sup>13</sup>M. Randolph and L. G. Meiners, J. Electrochem. Soc. 136, 2699 (1989).
   <sup>14</sup>D. K. Schroder, *Semiconductor Material and Device Characterization*, 3rd
- ed. (Wiley, New York, 2006), p. 354.
- <sup>15</sup>C. H. Liu and F. C. Chiu, IEEE Electron Device Lett. 26, 62 (2007).