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Considered as a multipartite quantum system, time-multiplexed nonlinear Schrödinger solitons after

collision are rigorously proved to become quantum entangled in the sense that their quadrature

components of suitably selected internal modes satisfy the inseparability criterion. Clear physical insights

for the origin of entanglement are given, and the required homodyne local oscillator pulse shape for

optimum entanglement detection is determined.
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The quantum nonlinear Schrödinger equation (QNLSE)
has been widely used as a model equation for studying the
quantum effects of bosonic solitons. In particular, quantum
optical solitons in photonic waveguides with Kerr nonline-
arity can be accurately described by the QNLSE [1–3]. For
weakly interacting ultracold atoms in a Bose-Einstein con-
densate, the bosonic matter wave field evolves also in the
form of QNLSE, possibly with additional terms of linear or
periodic potentials [4,5]. Based on the studies of the
QNLSE, the possibility of squeezing generation through
quantum solitons was predicted by theoretical works in
1987 [1] and subsequently confirmed by fiber soliton ex-
periments in 1991 [6]. Some of the important theoretical
approaches for solving QNLSE and other more compli-
cated quantum nonlinear pulse propagation problems in-
clude the quantum stochastic simulation method [2], the
Bethe’s ansatz method [3], the quantum perturbation the-
ory [7], the back-propagation method [8], and the cumulant
expansion technique [9]. Some of the important experi-
ments include the quantum nondemolition measurement
using solitons [10], the generation of amplitude squeezed
states through optical filtering [11,12] or imbalanced non-
linear interference [13], the intrasoliton photon number
quantum correlation in both the spectra and time domain
[14,15], and the generation of continuous variable
Einstein-Podolsky-Rosen entangled states by adiabatically
expanding an optical vector soliton [16]. Among them, the
generation of entangled states using nonlinear Schrödinger
solitons is of particular interest for possible quantum in-
formation applications.

The known optical soliton scheme of generating con-
tinuous variable Einstein-Podolsky-Rosen states is based
on the generation and mixing of two independent squeezed
vacuum states from a fiber squeezer [17]. In the soliton
quantum nondemolition measurement schemes, soliton
collision has been widely utilized to induce a quantum
correlation between two solitons of different wavelengths
or polarizations. The photon number noises of one soliton
can be encoded to the phase noises of the other soliton

through the cross-phase modulation and thus create quan-
tum correlation between the two solitons. Recently we
have also shown that the photon number correlation of
two time-multiplex solitons can be directly established
through nonlinear interaction [15]. The whole system is a
pure state of infinite modes if no optical loss is assumed.
However, if one selects one mode for each soliton and
traces out all the other modes to form a two-partite system,
the reduced two-partite state will be a mixed state in
general. Such a reduced two-partite state is thus not guar-
anteed to be entangled even when the quantum correlation
has been proven. The situation is also true for studying
finite internal modes of a single soliton, where the quantum
correlation is known to exist but the quantum entanglement
is not for sure.
Even for squeezed state generation using solitons, there

are still important issues left unanswered. Typically the
generation of pulse squeezed vacuum states from solitons
is through the use of a balanced nonlinear interferometer.
The homodyne detection scheme is then used to detect the
quadrature component of the output squeezed vacuum state
with the mean field pulse from the other port of the
interferometer as the local oscillator. Larger squeezing
can be detected if one only detects the soliton parts and
rejects all the continuum parts [7]. In several studies of
squeezing generation using nonfundamental solitons, it has
also been suggested that the continuum may help with
achieving larger squeezing within some parameter space
[18]. The determination of optimal local oscillators for
squeezing detection has been investigated in the literature
and has been related to eigenfunction problems based on
the correlation properties or the transformation matrix of
the multimode field operators [19–21]. Description of in-
trasoliton photon number correlations in terms of three
simply chosen internal modes has also been shown to be
effective [21]. However, since the considered soliton sys-
tems here are intrinsic, complicated multimode problems,
the complete correlation properties or transformation ma-
trices of the multimode field operators are not easy to
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obtain as the starting point. It is thus very desirable to
develop numerically efficient algorithms that can directly
determine the optimal local oscillators for squeezing or
entanglement detection as well as the optimal basis func-
tions for the mode description of quantum solitons.
Recently, experimental observation of squeezed lights
with 10 dB quantum noise reduction from optical para-
metric oscillation processes has been reported [22]. It will
be interesting to see whether the soliton schemes can also
generate and detect large quantum squeezing through
optimization.

In the this Letter we start by developing a theory that can
efficiently determine the true optimum homodyne local
oscillator pulse shape for soliton squeezing detection.
Our theory leads to the discovery of the ‘‘natural’’ internal
squeezing modes that are minimum-uncertainty states. By
thinking in terms of these internal squeezing modes, one
can easily understand why there are intra- and intersoliton
quantum correlations and how to optimally detect the
correlation. Most importantly, based on the theory we
can rigorously prove that the time-multiplexed optical
solitons after nonlinear interaction are indeed quantum
mechanically entangled in the sense that the ‘‘quadrature
components’’ of the specially selected multipartite state
can satisfy the following inseparability criterion: the un-
certainty product of the inferred quadrature components is
below the Heisenberg uncertainty product limit.

We start from the well known QNLSE given below:
@Û
@z ¼ i 12

@2Û
@t2
þ iÛyÛ Û . By assuming the quantum noises

are much less than the mean fields, the linearization ap-
proximation can be justified. The quantum noise part of the
soliton can be described by the following linearized opera-
tor equation:

@û

@z
¼ i
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@2û
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þ i2U0

�U0ûþ iU2
0û
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Here U0ðz; tÞ is the classical solution and ûðz; tÞ, ûyðz; tÞ
are the perturbed quantum field operators. In order to
calculate the quantum noises by the back-propagation
method [8], the adjoint system of Eq. (1) is intro-
duced by requiring the inner product of the solutions
of the two systems to be a conserved quantity along z.
Here the definition of the inner product is given
by huAðz; tÞjûðz; tÞi ¼ R

1
2 ½uA�ðz; tÞûðz; tÞ þ H:c:�dt. This

leads to the following classical linear adjoint evolution
equation:
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Since both Eqs. (1) and (2) are linear, their solutions can
be formally written as ûðz; tÞ ¼ Lz 0 � ûð0; tÞ and
uAðz; tÞ ¼ Az 0 � uAð0; tÞ. Here Lz 0 and Az 0 are the
formal evolution operators of the two systems (linear and
adjoint) from 0 to z. The symbol � is introduced to remind
us of the fact that these formal linear differential operators
operate on both û and ûy. With such compact notations and

by assuming the initial input state is a coherent state, the
detected squeezing ratio after the propagation distance z
can be nicely expressed as

RðzÞ ¼ hA0 z � fðtÞjA0 z � fðtÞi
hfðtÞjfðtÞi : (3)

Here fðtÞ is the local oscillator pulse used in the homo-
dyne detection, and A0 z � fðtÞ is the back-propagated
local oscillator pulse through the adjoint system.
Mathematically Eq. (3) can be viewed as a functional of
fðtÞ, and the condition for its stationary solutions can be
determined by performing a variation with respect to fðtÞ.
Using the fact that the inner product of two solutions is
conserved along z, one has hA0 z � fðtÞjA0 z � fðtÞi ¼
hfðtÞjLz 0A0 z � fðtÞi. It is then easy to show that the
variational equation �RðzÞ ¼ 0 leads to the following ei-
genvalue problem with the eigenvalue � equal to the
optimum squeezing ratio:

Lz 0A0 z � fðtÞ ¼ �fðtÞ: (4)

Equation (4) is one of the main results in this Letter. It
elegantly describes the necessary condition that the opti-
mal local oscillator pulse shape must satisfy. Since we are
mainly interested in the solution with the globally mini-
mum eigenvalue �, the numerical inverse power method
can be applied to Eq. (4) for iteratively approaching the
eigensolutions we want to find.
It is not difficult to prove that if fðtÞ is the eigenstate of

Lz 0A0 z with the eigenvalue �, then i � fðtÞ is also the
eigenstate of Lz 0A0 z with the eigenvalue 1=�. This
implies that if one uses fðtÞ as the basis to project out the
corresponding internal mode field operator âðzÞ ¼R
f�ðtÞûðz; tÞdt=R jfðtÞj2dt, the projected mode will be a

minimum-uncertainty state with one quadrature squeezed
and the other quadrature antisqueezed. So the results in
Eq. (4) physically imply that the minimum-uncertainty
state requirement is the necessary condition to achieve
optimum squeezing detection. This is a very meaningful
result that can provide us with deeper physical insights
about the internal squeezing modes of the solitons. This set
of internal modes is the natural basis set for describing the
quantum noise properties of the soliton, in the sense that
there is no quantum correlation among these internal
modes. This can be easily seen from the formula for
calculating the quantum correlation of two measured op-
erators by the homodyne detection: C12ðzÞ / hA0 z �
f1ðtÞjA0 z � f2ðtÞi, where f1ðtÞ and f2ðtÞ are the two local
oscillator functions.
With the above physical insights, we now demonstrate

how to determine the optimum local oscillator pulse shapes
for detecting entanglement. To illustrate, let us consider the
intersoliton case and assume the classical time-multiplexed
two-soliton solution is symmetric in time t. Assume foptðtÞ
is the found (symmetric) eigenfunction with the smallest
eigenvalue �opt and we choose the two normalized local

oscillator functions for detecting the two solitons to be

PRL 103, 013902 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
3 JULY 2009

013902-2



f1ðtÞ / foptðtÞ for t > 0 and f2ðtÞ / foptðtÞ for t < 0. Since

f1ðtÞ is zero for t < 0 and f2ðtÞ is zero for t > 0, the two
functions do not overlap in time and correspond to the
measurements on each soliton. The four related quadrature
components are q̂1 ¼ hf1jûi, p̂1 ¼ hif1jûi, q̂2 ¼ hf2jûi,
and p̂2 ¼ hif2jûi. From the minimum-uncertainty state
property stated above, it is not difficult to prove that the
squeezing ratio for Var½q̂1 þ q̂2� is just �opt � 1, and the

squeezing ratio of Var½p̂1 þ p̂2� is just 1=�opt � 1. So q̂1
and q̂2 are anticorrelated, while p̂1 and p̂2 are correlated.
To more accurately estimate how much p̂1 and p̂2 are
correlated, we need to estimate the squeezing ratio of
Var½p̂1 � p̂2�. Note that the projection function for p̂1 �
p̂2 is antisymmetric, and thus it will be orthogonal to i �
foptðtÞ. Therefore p̂1 � p̂2 does not contain any contribu-

tion from the optimum internal mode. The squeezing ratio
ofVar½p̂1 � p̂2� is thus upper bounded by 1=�snd, with �snd

being the second smallest eigenvalue of the system. Based
on these observations, we now have the following impor-
tant result:

Squeezing Ratio of Var½q̂1 þ q̂2�

� Var½p̂1 � p̂2� �
�opt

�snd

< 1:

Here the definition of the squeezing ratio of the uncertainty
product is to compare the uncertainty product with the case
of two independent coherent states.

The above result is a sufficient condition for proving that
the two solitons after collision are indeed entangled in the
sense that the inseparability criterion for bipartite continu-
ous variables is satisfied [23]. The proof can be easily gen-
eralized to the more general soliton collision/interaction
cases. It can also be applied to the single soliton case to
determine the optimum local oscillator for detecting intra-
soliton entanglement. For the case of multipartite N iden-
tical solitons, the proof still can be applied by simply
noting that the squeezing ratio for Var½c1q̂1 þ . . .þ
ckq̂k þ . . .þ cNq̂N� is �opt, if ck ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRtkþ�=2
tk��=2 jfoptðtÞj2dt

q
.

Here the projection function for the kth soliton is
chosen to be foptðtÞ=ck within its time and to be

zero elsewhere. The squeezing ratio for Varfp̂k �
½ðc1p̂1 þ . . . þ ck�1p̂k�1 þ ckþ1p̂kþ1 þ . . . þ cNp̂NÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijc1j2 þ . . . þ jck�1j2 þ jckþ1j2 þ . . . þ jcNj2
p �g is
then upper bounded by 1=�snd since its projection func-
tion is orthogonal to foptðtÞ. Therefore one can use

�ðc1q̂1 þ . . . þ ck�1q̂k�1 þ ckþ1q̂kþ1 þ . . . þ cNq̂NÞ=ck
and ðc1p̂1 þ . . .þ ck�1p̂k�1 þ ckþ1p̂kþ1 þ . . .þ
cNp̂NÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijc1j2 þ . . .þ jck�1j2 þ jckþ1j2 þ . . .þ jcNj2
p

to
infer q̂k and p̂k in order to satisfy the nonlocal criterion
between the kth mode and the rest N � 1 modes.
As some numerical examples, let us consider the two-

soliton and three-soliton collision cases illustrated in
Fig. 1. The initial conditions are 2 or 3 solitons of the
same phase with the soliton amplitude ¼ 1 and
separation ¼ 5. Such a bound soliton pair/train will evolve
periodically (collide, separate, and collide again as breath-
ers). For the 2-soliton case, the optimum mode function
foptðtÞ at z ¼ 20 is plotted in Fig. 2. The eigenvalues �opt ¼
�33:0 dB and �snd ¼ �22:4 dB. Therefore one can ex-
pect the squeezing ratio of the inferred uncertainty product
is �10:6 dB. For the 3-soliton case, the optimum mode
function foptðtÞ at z ¼ 25 is plotted in Fig. 3. The eigen-

values �opt ¼ �35:4 dB and �snd ¼ �24:4 dB. This time

it is �11:0 dB below the Heisenberg uncertainty product
limit. Actual numerical calculation of the squeezing ratio
usually yields a smaller number than the predicted upper
bound because the squeezing ratio of Var½p̂1 � p̂2� is
usually less than the bound 1=�snd.
In practice the achievable squeezing may be limited by

optical losses, nonlinear scattering noises, and detector
quantum efficiency. The conventional length normalization
unit (pulse-width2=dispersion) used in the theory can be
about several meters if hundreds of fs pulses are used and
can be up to several hundred meters if ps pulses are used.
Currently more than 6 dB squeezing has been reported with
the help of gigahertz erbium-doped fiber lasers [24] and
photonic crystal fibers [25]. If the soliton separation is
reduced, the required propagation length as well as the
achievable squeezing can also be reduced. In this way, the
predicted squeezing or entanglement ratio can be adjusted
to be of the order of several dB, located within the observ-

FIG. 1 (color online). Intensity evolution patterns for (a) 2 in-phase solitons and (b) 3 in-phase solitons. Soliton separation ¼ 5.
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able range of current technologies. The impacts of fiber
losses on the achievable squeezing or entanglement for
given local oscillators can be readily calculated by the
back-propagation method [8]. Determination of the opti-
mal local oscillator in the presence of fiber losses should
also be possible with some further development of the
theory. The theory developed here should also be appli-
cable to the study of Bose-Einstein condensates. However,
in contrast to the traditional soliton perturbation theory or
the Bose-Einstein condensation Bogoliubov–de Gennes
equation approach based on the perturbed nonlinear
Schrödinger equation [4], the expansion eigenmodes em-
ployed in this Letter are not the (generalized) eigenmodes
of the perturbed nonlinear equation itself. Instead, they are
the eigenmodes of the cascaded (linearizedþ adjoint) evo-
lution operators for a fixed propagation length.

In conclusion, we have presented an elegant theory to
rigorously prove that multipartite entangled states can be
directly generated by time-multiplexed solitons. The en-
tanglement can only be detected by using specially chosen
homodyne local oscillators to project out the correspond-

ing quadrature components of the solitons. The optimum
detection functions are related to the internal modes of the
soliton systems, under which all the modes are uncorre-
lated minimum-uncertainty states. The presented theory
provides the way to find the optimum local oscillator pulse
shapes for detecting intra- and intersoliton entanglements
and helps to clarify the physical origin of the entanglement.
The theoretical concept is general and should be also
applicable to other soliton squeezing and entanglement
schemes. The results presented here are believed to be
helpful for future quantum information experiments that
require larger squeezing or entanglement factors.
The work by Y. Lai is supported in part by the National

Science Council in Taiwan under the projects of NSC 97-
2120-M-001-002 and NSC 96-2628-E-009-154-MY3.

[1] S. J. Carter, P. D. Drummond, M.D. Reid, and R.M.
Shelby, Phys. Rev. Lett. 58, 1841 (1987).

[2] P. D. Drummond and S. J. Carter, J. Opt. Soc. Am. B 4,
1565 (1987).

[3] Y. Lai and H.A. Haus, Phys. Rev. A 40, 844 (1989); 40,
854 (1989).

[4] A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001).
[5] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179

(2006).
[6] M. Rosenbluh and R.M. Shelby, Phys. Rev. Lett. 66, 153

(1991).
[7] H. A. Haus and Y. Lai, J. Opt. Soc. Am. B 7, 386

(1990).
[8] Y. Lai and S. S. Yu, Phys. Rev. A 51, 817 (1995).
[9] E. Schmidt, L. Knoll, and D.G. Welsch, Phys. Rev. A 59,

2442 (1999).
[10] S. R. Friberg, S. Machida, and Y. Yamamoto, Phys. Rev.

Lett. 69, 3165 (1992).
[11] S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and

T. Mukai, Phys. Rev. Lett. 77, 3775 (1996).
[12] R.-K. Lee and Y. Lai, Phys. Rev. A 69, 021801(R)

(2004).
[13] S. Schmitt et al., Phys. Rev. Lett. 81, 2446 (1998).
[14] E. Schmidt et al., Phys. Rev. Lett. 85, 3801 (2000).
[15] R.-K. Lee, Y. Lai, and B.A. Malomed, Phys. Rev. A 71,

013816 (2005).
[16] M. Tsang, Phys. Rev. Lett. 97, 023902 (2006).
[17] Ch. Silberhorn et al., Phys. Rev. Lett. 86, 4267 (2001).
[18] R.-K. Lee, Y. Lai, and Y. S. Kivshar, Phys. Rev. A 71,

035801 (2005).
[19] J. H. Shapiro and A. Shakeel, J. Opt. Soc. Am. B 14, 232

(1997).
[20] R. S. Bennink and R.W. Boyd, Phys. Rev. A 66, 053815

(2002).
[21] T. Opatrny, N. Korolkova, and G. Leuchs, Phys. Rev. A 66,

053813 (2002).
[22] H. Vahlbruch et al., Phys. Rev. Lett. 100, 033602 (2008).
[23] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys.

Rev. Lett. 84, 2722 (2000).
[24] C. X. Yu, H. A. Haus, and E. P. Ippen, Opt. Lett. 26, 669

(2001).
[25] D. Elser et al., Phys. Rev. Lett. 97, 133901 (2006).

10 5 0 5 10

0.05

0.1

0.15

0.2

0.25

3

2

1

0

1

2

3

Intensity and phase of fopt

FIG. 3 (color online). foptðtÞ for the three-soliton case at z ¼
25. The solid line is for the intensity, and the dashed line for the
phase.
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FIG. 2 (color online). foptðtÞ for the two-soliton case at z ¼ 20.
The solid line is for the intensity, and the dashed line for the
phase.
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