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1 Introduction Fang's self-transfori? employed the pattern itself in the
This paper is primarily concerned with the object recogni- k_ernel of a transform _that is invariant to objects SRT_vgria—
tion invariant to object’s scaling, rotation, and translation fions. By means of this transform, a number of coefficients
(SRT). This type of recognition plays an important role in extracted from the transformed domain can be utilized as
machine vision, pattern recognitide.g., optical character ~ the invariant features.

recognition (OCR)], or automatic inspection. It is well On the other hand, some approaches were proposed for
known that the conventional correlation method is suscep- shape r93009”|t|0n- ‘Wanget al’'s moment Fourier
tible to object's geometric variatiofrotation and scaling descriptot® was exploited to recognize object by shapp-

i.e., only a small range of variation can be tolerated. Hence, plication of OCR. Flusset proposed an improved shape
it entails extracting invariant features before recognition. matrix method to depict the shape of object, and then
Many methods for invariant recognition have been pro- matching likelihood coefficients were used for invariant

posed by usinty(1) transform coefficient feature€) alge- matching. Log-polar mappid§ was another popular
braic features(3) visual features, an@4) moment-based  method by which object scale and orientation can be trans-
methods. formed into translations. In addition to the invariant recog-

The moment invariants methbdlis often utilized for  nition, the method also offers the advantage of estimating

invariant reCOgnition or character reCOgnition. Flusser and the geometric features of the test pattern — scale and rota-
Suk' used the affine moment invariants for object matching ion_This function is not incorporated in other methods.

to estimate the affine parameters in the application ofimage  he solutions to recognition or classification problems
registration. Sheng and Stieproposed the orthogonal = ¢4 he considered as the combination of the following four
Fourier-Mellin moments, which are thought of as general- component¥: (1) a feature spacd?) a search space3) a
ized Zernike moments and orthogonalized complex Mo- goqcpy strategy, and) a similarity metric. On account of

ments. However, moment-based methods tend to be time- L .
consuming and fall short of expectation in case of noise the variations of SRT of the test pattern, the search space is

degradation. Teh and CHimnalyzed the effect of noise of the Wh(.)le 4-D _space.il&The search will b_e very time-
image on various types of moments, and examined the cONSUMINg. Caelli and Lit proposed an adaptive approach

properties and the interrelations among them. whi.ch is based on the .analysis of pattern"mt‘rinsic in-
Circular harmonid¢CH) method*® has been well utilized ~ Variance property’ By virtue of the analysis of the prop-
to deal with the issue of rotation invariant recognition. The €rty, & set of exquisite templates can be found and designed
technique equivalent to the CH is the Mellin radial with different orientations and scales for different classes of
harmonics which was employed for scale invariant recog- Patterns, i.e., the search space can be reduced. It is claimed
nition; alternatively, that can also be achieved by means of that the considerable number of correlations can be pro-
the higher order autocorrelation featut@€xcept the CH  cessed in a parallel manner. It is deplorable, however, that
and Mellin radial harmonics, most of the invariant recogni- enormous numbers of templates are expected to render the
tion methods are capable of identifying objects invariant to parallel implementation impractical; still, the search space
SRT simultaneously, e.g., Fourier-Mellin descripttks. s too large.
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To reduce the large search space, a registration-based
search strategy is proposed in this paper. The main prin-
ciple is to apply the affine transform to the test pattern to
acquire an image that is, in geometry, close to the related
reference pattern. Hence, the geometric discrepancy and the
search space can be reduced. The affine parameters are es-
timated by paired control points. These points are the cen-
troids of segmented regions obtained from the test and the
reference patterns, respectively. These points are used for
matching(point pairing and estimating the required affine
parameters. Due to the utilization of the affine transform,
all kinds of affine deformations of the test pattern can be s
transformed to be similar to the reference pattern. This is
much different from Sheng and Arsenault's methd,
which is a normalization approach and only invariant to (a)
SRT.

The proposed system, which needs no invariant feature
extraction, can be divided into two stages. The first stage is
responsible for registering the test pattern to be close to the s
related reference pattern using the centroids of thresholded Casn
images as control points. Note that the centroid of a region
is very stable under random noise and gray level ‘
variations? The second stage is utilized to evaluate the 7 .
similarity. Two kinds of reference sets are defined. In the Cs
first kind, only one template is required for each class if the
geometric discrepancy between the transformed test pattern x
and the related reference pattern is small. The second set
consists of different numbers of templates for different s
classes. The scales and rotation angles of the templates are
designed according to the intrinsic invariance properties of (b)
objects.

The organization of the paper is as follows. Section 2
derives the affine relation between two sets of centroids of Fig. 1 (a) Original image with three gray levels and (b) the image
thresholded images. The proposed algorithm of invariant after affine transform.
pattern recognition is described in Sec. 3. Section 4 dem-
onstrates the experimental results. The optical implementa-
tion is discussed in Sec. 5. Section 6 brings up the conclu-

sions. whereP; denotes the coordinaten the grid of a point in
I, and P,, which may not be on the grid df,, is the

2 Affine Relation Between Two Sets of mapping ofP;. HereA is the scale and rotation matrix and
Centroids of Thresholded Images T is the translation vector. Image can be divided into

Suppose that two images are given, with one image affine- (L +1) regions and be denoted as

transformed related to the other. The centroids of the partial

images, which are obtained by specific gray level thresh- I;,={U,;,U;5,---,Uj_, 7} =12, 2
olds, can satisfy the same affine relation between the origi-

nal images. Thus, these centroids can be used as the contrlhere U;; denotes each thresholded region apdis the
points for estimating the affine parameters between theseuninteresiting area.

two _images. The principle is sh(_)wn as follqws. _ Let£y[1] e Uy andé,[1] e Uy, be the coordinate vec-
Figure Xa) shows reference imageg, which contains tors of points, denoted by

three regions with different gray levels. Regith; has

gray level 50 and its centroid is located @f; with mark %[
“x.” Region Uy, has gray level 125 and its centroid is gij[l]:<v” ) i=12; j=1,--,L; I=1,--,N;,
C.,. RegionU,3 has gray level 200 and its centroid is yiill]
C,3. Figure 1b) is imagel,, which is the rotated, trans- (©)
lated and down-scaled version bf. The affine relation
betweenl ; and|, is expressed as where N;; denotes the pixel number of theth region in
imagel; . Hence,U;; consists of the point sets of thresh-

P,=AP;+T, olded images, which are represented as follows:
Aes cosf —sin 9) _(tx) n Ui ={&;[11tj1<g(&;[1D <tjp,1=1,-- - N}

sin® cosé |’ t,)’ i=12; j=1,--,L, (4)
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where g(x) is the gray level at poink. The point sets Unknown pattern g

Uy; andU,; are obtained by thresholding the two images r~-—--—-—F5----=-——--——-—=—-——-—==——--~- |

g . . I
using the threshold intervaj in the threshold seZ, I :
I
|
: ! Extract th Unyj Threshold set datab
Z={z=(tj1,t;)[j=1,--,L}, (5) ! bytveshald set zn (<] olcassn :
[
i
wheret;, is the upper bound of; andt;, is the lower : v :
bound. ) | Preprocess Unj :
Note that the numbe,; may not be equal tbl,; owing : I
to the scaling effect. LeC;; denote the centroid of area I v :
Uj; . C4; andCy; can be evaluated as follows: : Evaluate the centroids |
C[j] as feature points |
: from Unj |
Zgyeuy | I |
Clj:N—, (6) ' A . . l
1j | Estimate affine | Feature points database |
: parameter p(n) of class n |
i
CZgeuybe Tgycnb) @ : !
2= = ) ]
: N2] Nl] l Cn=-1, :
. . . . : no n=n+1 ] |
where () is the point set that contains the points ;. | |
The point in) is the corresponding nearest mapping of : yes :
each point inUy;; thus, the set() has Ny; points. If [ :
N2 <Ny, Uy is a subset of). If Ny;>Njy;, Q is a subset | % Affine transform |
of Uy,;. By using Eq.(1) we have }__________________'_ﬁle_fi_rS_tftgge_____:
r-—-—-"""~"$~" T,/ /v, T T T T T
§2J:A§1]+T (8) | . :
| Evaluate correlation Templates of class n
oL . | coefficients N R1or R2 !
Substituting Eq(8) into Eq. (7), we have I :
| v
I |
Eglj € Ulj[Aglj + T] 2§1j e()glj ! Find the maximum :
2i= =A +T=AC1~+T. ! matching ¢n
: Ny Ny ’ ' :
i
9) | |
| :
From Eq.(9), it is clear that the centroid pailCy;,Cy;) : nenet R
also satisfies the same affine relatjae., Eq.(1)] approxi- : no :
mately. Hence, by using the centroid pairs, the affine pa- | " |
rameters between two images can be estimated. It is impor- : Y :
tant to note that these centroid pailS,(,C,;) are, so to | Find the [
speak, ‘labeled point8 because they are generated from : maximum e h d st :
the same process, i.€C;, and C,, can be automatically Lo __J_______"™ e secondstage _ _
paired as soon as these two centroids are available. Hence, Classification result

the design of the pairing algorithm is not required in the

proposed mthOd'_ In gener_alv flndlng_ the pairing O_f two sets Fig. 2 Proposed system for object classification invariant to SRT.

of control points is a crucial and difficult task since the

invariant featureqe.g., moment invariantsof the small

area around each control point must be evaluated. It is usu- i . :

ally time-consuming to some extent. However, this process I € first stage can be considered as performing a pre-

can not be omitted in the conventional registration meth- PrOCessing function for the second stage to reduce the geo-
ods metric discrepancy between the test pattern and the refer-

ence pattern of the same class. Via the first stage, the

conventional complicated scale and rotation invariant fea-

3 Classification System Based on Registration ture extraction is thus avoided; instead, a simple similarity
Strategy metric can be employed. In another point of view, while

The proposed registration-based classification system is il-c0mpared with Caelli and Liu's methddthe amount of
lustrated in Fig. 2. This system is divided into two stages. éference templates can be much reduced. In Caelli and
The first stage is for the affine transform of a test pattern. LiU'S method, reference templates must be prepared on ev-
After affine transform, the resultant pattern is expected to €Y As scale in the whole possible scale range of a test
be close to its related reference in geometry; thus, the pat-pattern and on everdg in the range (0 deg, 360 dgg
tern can be used directly to match with reference pattern. whereAsandAg are acquired from the analysis of objects’
The second stage is for evaluating similarities between theintrinsic invariance properties. Our proposed method
transformed test pattern and the reference templates. merely provides the reference templates on eves\scale
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Fig. 3 (a) Reference pattern M1 and (b) histogram of pattern M1.

in the much reduced scale range and on eukgyin a
small range of rotation angles.

It is assumed in this paper thét) there arek sorts of
objects for classificationk(=5), which are named ‘“class
i,” i=1,--,k; (2) there arek primary reference patterns:
Mn for classn, n=1,---,k; eachMn has scale1.0 and
rotation=0 deg, as shown in Figs(8, 4(a), 5(a), 6(a), and
7(a), respectively;(3) each test pattern’s scale is con-
strained in(0.5,1.5, while rotation is not restricted4) the
test objectge.g., industrial toolsare composed of several

Fig. 4 (a) Reference pattern M2 and (b) histogram of pattern M2.

tern Mn. Hence, the correlation coefficient betwegrmand

Mn will approach 1. According to the principle described
in Sec. 2, it is necessary to prepare the threshold sénrZ
classn. In this paper, the appropriate threshold intervals are
determined by choosing the regions of intereski. Fig-

ure 3b) shows the image histogram &fil. First, it is
required to analyze the gray level distribution of each re-
gion of interest. The three darkened rectangular areas in

regions, each of which is related to a specific gray level Fig. 3(b) are the selected threshold intervals. Each interval
distribution that can be distinguished from the gray level is related to a specific region of the primary reference

distribution of other regions and can be inspected in ad-

vance; (5) the light source is under contrgk.g., in the

M1. By the same principle, the threshold intervals of
M2, M3, M4, and M5 are demonstrated in Figs(b},

factory) such that the gray level change of the test pattern is 5(p), 6(b), and 7b), respectively. After this procedure, the

small; and(6) the gray level distribution of the background
is not mixed up with that of any object’s regions of interest.

3.1 First Stage: Registration-Based Strategy

If the test patterng’ belongs to classn, its affine-
transformed patterg will be similar to the reference pat-

1116 Optical Engineering, Vol. 36 No. 4, April 1997

selected threshold sets are stored in a database to be used in
the first stage. They are listed in Table 1. By using such
threshold sets, the control points of the primary references
can be acquired and stored in advance. Note that choosing
just three regions for every class of object is simply for
ease of explanation.
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Fig. 5 (a) Reference pattern M3 and (b) histogram of pattern M3. Fig. 6 (a) Reference pattern M4 and (b) histogram of pattern M4.

Step 4 Estimate affine parametepgn) = (s, 0,t,,t,) by

As shown in Fig. 2, as the unknown patteyh enters, minimizing the following criterion,

n is set to 1 and the procedures of the first stage can be
described by the following steps. L
Step 1.Extract each arealm- by _thej'th threshold in- J:E {XTI1=%Li D2+ (Y [i1=Yali D2, (12)
terval of the threshold set, (listed in Table L i=1

Step 2.Preprocess),,;. Seeing that a small amount of .
pixels, which have gray levels distributed in the threshold Where &,,yn) are the control points dfin and are stored
interval of U,,;, might be scattered around the background I the databa}se. Hetm_s the number of threshold mtervals
and some other regions and cause a small shift of the cenand &',y’) is the affine transform ofx,y) and is ex-
troid of Uy,;, preprocessing obl,,; is required. LetNg(x) pressed as follows
denote the number of 8-neighbors of an elemgnin — _ 1
U,j. If Ng(x)=p, the positionx can be adopted in the x'[11=s(x[j1cod 0) ~yLjIsin(6)) +1,

. S ; . ) (12
;i%:gwneﬁtrg.’ p is a constant and is chosen as 3 in the ex y'[1]=S(x[}1sin(6) +y[cog 6)) +1,
Step 3.Evaluate centroicC[j] as a control point from wheres and 0 are the scale and rotation-angle parameters
Unj - to be estimated, respectivelyt, (t,) is the translation pa-
. rameters to be estimated.
C[j]=(xm). (10 Step 5.Determine whether the estimated scale is in a
ylil proper range. LeS=1/s. If S, <S< Syax 00 ahead,

Optical Engineering, Vol. 36 No. 4, April 1997 1117
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The estimated scaléi.e., S=1/s) and rotation(i.e.,

®=—6) are shown in Table 2step 2 is not usedwhere

the test pattern is of class 1, ascand @ are estimated at

the step 4. The true scale and rotation angle of the test

patterns, i.e., $,0), are given in the first two columns.

There are 11 test patterns of each class used for classifica-

tion. It is clear that the third and fourth columns have the
closest scales and rotation angles to the true values. The

. estimated §,0) by other threshold sets cannot give a rea-
sonable estimations because the transformed vegsitmes

{ not match theMn wheren is not equal to 1. Even if
(S,0) have values close to the tru&,@), the similarity

betweeng andMn (n # 1) will not be high owing to the
fact that the two patterns are not of the same class. Table 3

shows the average estimated erros.@) are the average
(a) of (|S—5[,|6—0]), where 6,0) are the results in case
thatg andMn originate from the same class.

30
o5 3.2 Second Stage
The second stage is employed to evaluate the correlation
20 coefficients of the transformed test patterand the refer-
ence templates. The procedure of the second stage is de-
scribed as follows.
15 Step 1.Evaluate the correlation coefficient gfand the
(m)th template of class as
10 — —
CanEiEJ—[g(i J)=GI[ fam(iLj) — an]’{zizj[g(i )
5 _G]2}1/2/{2i§:j[ fnm(i1j)_an]2}1/21 (13)
0 whereX denotes the mean of a pattetn

0 50 100 150 200 250 300 Step 2.Find the maximum ot,,,, and denote it byc,,,
(b) which determines the similarity betweegn and clasa.
Step 3If n=k, go ahead, otherwise, go back to the first
stage.
Step 4.Find the maximum ot,, to lead to the classifi-
cation result.
Two types of template sets are proposed. The first type
otherwise seh=n+1, c,=—1 and go back to step 1. In is the setR1,
the proposed syster,,, is set as 0.1 an8,,,,is set as 2.0
on account that the possible scale range of the test pattern iR1={M1M2M3M4M5}. (14
(0.5, 1.9. Hence, ifS exceeds the rangeS{n, Snay, the ) ) )
scaleS is considered unreasonable; thayss setas-1and ~ According to the experiments, if the test patterns are not
the affine transform can be omitted. degraded by noisé®1 is able to accomplish the classifica-
Step 6.Apply affine transform tay’ with the estimated ~ tion task without failure. The second type is the Be,
affine parameterp(n).
Step 7.Go to the second stage to evaluate correlation R2={fy,-- fang e fane Fonnts (15
coefficients.

Fig. 7 (a) Reference pattern M5 and (b) histogram of pattern M5.

in which each class contains different numbiy) of tem-
plates whose scale and rotation intervals are determined
according6 to each class of objects intrinsic invariance
property™® Figure §a) shows the correlation coefficients of
patternf,(S) andMn. The threshold is chosen as 0.85. For

Table 1 Threshold intervals of each class.

4 22 2 24 % example,f,(0.9)=0.86; thus, the scale interval is chosen
(15,95) (40,75) (40,85) (10,70) (60,90) asAg=2|1.0-0.9=0.2, i.e., class 1 must prepare refer-
(110,185)  (100,165)  (110,155)  (115,175)  (105,150) ence templates on evetys scale interval to guarantee the
(200,215)  (175,215)  (160,195)  (180,210)  (170,235) correlation coefficients not below the threshold 0.85 when

the scale of the test pattern ranges from 0.5 to 1.5. By the

1118 Optical Engineering, Vol. 36 No. 4, April 1997
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Table 2 Estimated scale S and the rotation angle © of the test patterns g’ of class 1.

M, M, Ms M, Ms
§ 6 s 0 s 0 s 0 s 0 s 0
05 30 044 3117 081 3135 089 3125 037 20396 039 26.72
06 60 050 59.73 093 59.32 102 5885 042 23650 044 60.14
07 90 074 9052 145 9140 165 90.75 040 262.60 0.37  84.67
0.8 120 0.67 12024 125 120.16 1.38 119.83 0.55 29514 0.58 118.37
09 150 0.72 150.39 1.29 14957 140 14937 071 326.75 0.78 150.25
1.0 180 100 179.99 194 18059 219 179.99 0.60 353.50 0.58 176.24
1.1 210 0.94 209.61 176 209.22 1.94 208.64 074 27.07 078 210.90
12 240 0.99 240.18 180 23954 196 23924 091 56.62 0.99 240.16
1.3 270 119 269.70 226 269.85 252 26925 0.81 8544 0.82 268.89
14 300 1.14 299.82 208 29892 226 29851 1.07 117.48 116 301.25
15 330 135 32953 252 329.07 278 32846 1.07 147.44 112 331.38

same principle, the rotation interval of each class can be 1.0 T

determined by Fig. @). Therefore, by the analysis of the

intrinsic invariance property from Fig. 8, the scale and ro-
tation intervalsAg and A of reference templates of each

class can be obtained and shown in Table 4.

0.9
0.8

0.7
4 Experimental Results
The test patterns are arranged with scale and rotation angle 0.6
at (0.5,30 deg (0.6,60 deg (0.7,90 deg (0.8,120 dey
(0.9,150 dey (1.0,180 dey (1.1,210 dey (1.2,240 dey
(1.3,270 dey (1.4,300 dey (1.5,330 dey respectively.
Therefore, each class has eleven test patterns and the total 0.4
number of test patterns is 55.

Table 5 shows the average errors of the estimated scales 0.3
and rotations by using the first sta@tep 2 is employedn
case that the test patterns and the reference patterns are of
the same class. The total average rotation error is 0.33 deg,
which is smaller than 0.71 deg, as shown in Table 3 where
step 2 is omitted. Table 5 also shows the scale and rotation 0.95
range of the transformed imagg It is clear that the scale
range ofg is around 1.0 and the rotation range is around

0.5

0.80
Table 3 Average errors of the estimated scales and the rotation

- 0.75
angles. For example, S=0.13 is the average of the differences be-

tween the first and the third columns of Table 2. 0.70
Class S %) 0.65
1 0.13 0.38 0.60
2 0.03 0.68 0.55
3 0.03 2.07

4 0.02 0.26

5 0.01 0.18

Average 0.04 0.71

0.90

class 1
class 3

N
class 2

[ threshold=0.85

I class 2'/
. ; . . . . e
00 1 (e} 20 30 40 50 60 70
(b)

Fig. 8 (a) Correlation coefficients for scale variation and (b) corre-
lation coefficients for rotation variation.
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Table 4 Scale and the rotation intervals of each class’s templates. Table 6 Average errors and ranges of the estimated scales and
rotation angles. The test patterns are degraded by zero mean
Gaussian noise with variance 100.

Class Ag Ag

1 0.20 7 Class S Range 1) Range

2 0.15 5

3 0.20 6 1 0.12 (1.00,1.56) 0.89 (—3.74,1.22)

4 0.30 10 2 0.05 (0.93,1.14) 0.65 (-0.65,1.97)

5 0.40 9 3 0.03 (0.94,1.05) 1.75 (-1.72,5.57)
4 0.03 (0.95,1.00) 0.25 (~0.36,0.50)
5 0.13 (0.94,1.54) 3.73 (—5.29,7.45)
Average 0.07 1.45

0 deg, which is the goal of the first stage to reduce the
geometric discrepancy between the test pattern and its re-
lated reference template. S . . .

If the test patterns are degraded by zero mean Gaussia ification results by using the reference Bet are given in

noise with variance 100, the average scale and rotation er-!2Ple 11. The correct ratio is 0.927, which is much higher
rors will be larger, as shown in Table 6. The total average than those that resulted froRi, while the number of the

scale and rotation errors are 0.07 and 1.45 deg respec_reference templates does not increase too much. Thus, the

tively. The scale and rotation ranges are also enlarged. Es.analysis of object’s intrinsic invariance property can facili-

pecially for classes 1 and 5, the scale ranges are extended téAte the design of the reference &3. .
1.5. That is so because the added noise affects the scope of N other words, the registration-based strategy is pro-
the thresholded regions to some extent; also, the selected?0Sed to reduce the geometric discrepancy between the test
threshold intervals are one of the reasons to affect the varia-Pattern and the related reference pattern. The estimated
tions of the positions of the control points. Table 7 shows Scale and rotation are very accurate, i.e., the test pattern can
the results if the test patterns are degraded by zero mearPe transformed to be close to the related reference template
Gaussian noise with variance 150. Figure 9 shows the testin geometry. Two types of reference template sets can be
pattern of class 1, which is degraded by noise. The averageutilized according to the requiremenf81 containsk pri-
scale error is 0.18, which is expected to bring about poor mary reference templates aR@ consists of different num-
classification results. The classification resultsing the ber of templates for each class according to the analysis of
reference seR1 defined in Sec. 3)Xor the test patterns,  the intrinsic invariance property of each class. Hefiejs
which are degraded by noise, are given in Table 8. The first sensitive to noise degradation. However, it is reasonable to
column represents the true class number of the test patternstealize thatR2 can maintain a satisfactory correct classifi-
For instance, the 11 test patterns of class 1 are classified agation ratio by designing the reference templates appropri-
eight of class 1 and three of class 4. The correct ratio is ately.
0.727. The proposed method registers the test pattern with the
Table 9 shows the average scale and rotation ranges byreference patterns before matching. It is different from
averaging the ranges as shown in Tables 5, 6 and 7. TheSheng and Arsenault’s methdd(a normalization ap-
scale and rotation ranges gfare empirical results, which ~ proach, which normalizes both the test and the reference
are related to the selected threshold sets and the level of thepatterns. Although only SRT is discussed in this paper, the
noise degradation. However, it is reasonable to find a rangeskewing problem can also be solved by the proposed
that is large enough to design the referenceR&tAccord- registration-based method owing to the utilization of the
ing to Table 9, the reference siP is designed by using affine transform. HOWeVer., Sheng and Arsenault’'s method
the scale and rotation intervals, as shown in Table 4. The cannot deal with the skewing problem because the normal-
desiredR2 is given in Table 10. For example, class 1 con- 1zéd angle(the direction of the principal axiswill change
sists of two templates with rotation anglel deg:f,; and Wh.e” skewing occurs. Regarding the ISsue of_lntenslty In-
f-- The scales of .. andf..are 1.1 and 1.3. respectively. arance, Sheng and Arsenault normalize the intensity _and
12 1 12 : 'esp Y- the image scale together by low-order moments after orien-
Hence, there are eight reference templateR2n The clas-

Table 7 Average errors and ranges of the estimated scales and

Table 5 Average errors and ranges of the estimated scales and the rotation angles. The test patterns are degraded by zero mean
rotation angles with preprocessing of each thresholded regions. Gaussian noise with variance 150.

Class S Range o Range Class S Range 1) Range

1 0.07 (0.99,1.25) 0.19 (—0.37,0.54) 1 0.20 (1.03,1.43) 2.23 (—5.47, 4.10)

2 0.02 (0.97,1.04) 0.16 (—0.30,0.25) 2 0.18 (1.03,1.39) 5.32 (—33.80,4.25)
3 0.02 (0.96,1.00) 0.96 (—0.44,1.56) 3 0.16 (1.11,1.28) 2.69 (—0.43, 6.41)
4 0.03 (0.95,1.00) 0.10 (—0.26,0.10) 4 0.03 (0.99,1.17) 1.40 (—0.79, 6.53)
5 0.02 (0.91,1.03) 0.23 (—0.65,0.39) 5 0.35 (1.44,1.90) 211 (—3.69, 3.50)
Average 0.03 0.33 Average 0.18 2.75
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Fig. 9 Pattern of class 1 degraded by zero mean Gaussian noise
with variance 150 (scale=1.5, angle=330 deg).

Table 8 Classification result using the reference set R1. The test
patterns are degraded by zero mean Gaussian noise with variance
150. The correct ratio is 0.727.

Class 1 Class 2 Class 3 Class 4 Class 5
1 8 0 0 0
2 0 10 0 1 0
3 0 0 11 0
4 0 0 0 11 0
5 0 0 0 11 0

Table 9 Scale and rotation ranges of the templates for each class.

Class Scale Range Rotation Range
1 (1.01,1.41) (—3.19,1.95)
2 (0.97,1.19) (—11.58,2.16)
3 (1.00,1.11) (-0.87,4.52)
4 (0.96,1.05) (~0.47,2.38)
5 (1.10,1.49) (—3.21,3.78)

Table 10 Scales and rotations of the reference templates in R2.

Class Scales Rotations Template Number
1 1.10,1.30 -1 2
2 1.10 -7,-2 2
3 1.05 2 1
4 1.00 1 1
5 1.10, 1.50 0 2

Table 11 Classification result using the reference set R2. The test
pattern are degraded by zero mean Gaussian noise with variance
=150. The correct ratio is 0.927.

Class 1 Class 2 Class 3 Class 4 Class 5
1 10 0 0 1 0
2 0 10 0 1 0
3 0 1 10 0 0
4 0 0 11 0
5 0 0 0 1 10

tation normalization. The proposed method also requires an
intensity change relation for the threshold sets. This other
work will be accomplished in the near future.

At the end of this section, the computational cost of the
proposed method is compared with the cost of the log-polar
mapping method? The matching procedure by log-polar
mapping is given in Fig. 10. It is clear that the computa-
tional cost of the proposed method is much smaller than the
cost of the log-polar mapping method. The main reason lies
in the fact that the second stage of the proposed method
computes only “one” value of the similarity metric be-
cause the translation betwegn(dimensior=NXN) and
the related reference pattern is very small. Nonetheless, the
usual similarity metric must compute the whdle< N val-
ues by shifting the template to search the best match.

5 Optical Implementation

The conventional matched filtéMF, i.e., VanderLugt cor-
relatop cannot handle the geometric deformation. By using
the proposed method, a bank of filters can be designed and
used in the optical system. The filter design can be accom-
plished off-line. For example, the phase-only fit&OP

can be chosen as the similarity metric because the POF can
eliminate light attenuation in the Fourier plane. It has the
maximum optical transmittance. Hence, it can sharpen the
correlation signal and result in good discrimination ability.
However, it is notetf that POF is even more sensitive to
object rotation than the MF, i.e., the number of filters for
rotation variation will increase. Other filter variatidisire
POC, binary phase only filtefBPOPF, and binary phase
only correlator(BPOQ), etc. An optical correlator can be
designed by a real-time spatial light modulat®LM) to
sequentially introduce the multiple filters. Figure 11 depicts
a schematic diagram of simple optical correlator. The filter
bank contains all of the designed filters for each class. The
correlation output pattern can be detected by a CCD cam-
era. Since only a negligible amount of lateral translation

reference pattern f(x,y)

test l
pattern
g(xy) | centroid- log-polar
finding mapping

matching

result

Fig. 10 Matching method of the log-polar mapping.
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7.
Filter bank
8
. . 9
Fourier Fourier .
Int[;)ut * transform * * transform ‘ Petik'f'?]d';:’g and
pattern lens lens resholding
10.
Recognition result
. . 11.
Fig. 11 Optical system.
12.

still exists between the reference pattern and the trans-
formed test pattern, peak-finding is not necessary. After
thresholding, the recognition is achieved.

14.

6 Conclusions

A new approach for SRT invariant pattern recognition has
been proposed in this paper. The method is based on a
registration strategy so that the geometric discrepancy be-
tween the test pattern and the related reference template ca
be much reduced before matching. The centroids of regions

of interest are extracted as control points and automatically 18.

paired. The pairing procedure is not required, in contrast to
the conventional registration method. By means of the pro-
posed system, the extraction of scale and rotation invariant
features is also not required and a simple similarity metric
becomes satisfactory. In another point of view, the number
of reference templates is much reduced compared with
Caelli and Liu’'s method. Therefore, the proposed system is
novel and feasible.
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