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Facile synthetic modulation of the pore shape and pore

entrance of large pore cubic silica mesophases with fcc and

bcc three-dimensional structures was achieved by applying

post-synthesis treatment with sulfuric acid.

Highly porous materials consisting of three-dimensionally (3-D)

interconnected mesopores1–4 are attracting wide current interest

for applications as selective sorbents, catalyst supports, regulated

flow and transport systems, matrices for biomolecule immobiliza-

tion, or nanostructured host–guest systems. Mesoporous SBA-

161,2 and related KIT-54 silicas, which consist of spherical cavities

arranged in body-centered cubic (bcc Im3̄m) and face-centered

cubic (fcc Fm3̄m) symmetries, respectively, are particularly

interesting because of their highly interconnected 3-D structures

with cage-like mesopores (>5 nm) bridged through smaller

entrances. However, practical synthetic methods are still being

intensively sought to tailor pore geometry, dimension and

interconnectivity in an efficient and systematic manner. Besides,

these structural and textural properties are affected by the process

of removal of the block copolymer templates selected to open the

pores5–8 Calcination has been the most widely applied method5

during which the template molecules are thermally decomposed

and all pores are vacated in a single step. However, calcination is

usually accompanied with extensive silanol condensation and

marked shrinkage of the mesostructure.5 Conversely, the novel

method of sulfuric acid treatment recently reported for meso-

porous SBA-15 silica having straight channel-type mesopores9,10

enables consecutive generation of mesoporosity and micro-

porosity. Moreover, this treatment facilitates further condensation

of the silica framework to render the thus-treated material more

stable against shrinkage at high temperature.10 Therefore, we

expect that acid treatment could be very suitable to tailor cage-like

materials, with emphasis on the pore entrances regulating the

access to the large cavities. In this communication, we report our

preliminary findings concerning the sulfuric acid treatment of cage-

like materials. While the highly ordered cubic structure is retained,

remarkable differences in the size of the mesopores, the pore

entrance and pore volume are observed for the acid-treated

materials compared to calcined materials.

The large pore 3-D cubic mesoporous silicas were prepared

according to previously described procedures,4,11 and subsequently

treated with H2SO4.
9,10{ The surface properties are expected to be

different for calcined and acid-treated materials, similarly to SBA-

15 silica.9,10 Argon was therefore chosen as the adsorbate to avoid

specific interactions with different surfaces and to achieve higher

accuracy for measurements in the micropore range. Fig. 1 shows

the Ar sorption isotherms measured at 87 K for both series of

template-free cubic bcc and fcc materials. The samples obtained

after conventional calcination exhibit typical type IV isotherms

with a capillary condensation step at high relative pressure and

H2-type hysteresis loops. These characteristics are indicative of

large mesopores with ink-bottle or cage-like shapes.4,12 In contrast,
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Fig. 1 Ar physisorption isotherms of cubic mesoporous silicas with fcc

(a) or bcc (b) structures after conventional calcination at 550 uC (open

circles) or H2SO4 treatment followed by calcination at 250 C (filled circles).
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the materials treated with H2SO4 show significantly higher

adsorption capacity. Interestingly, the sorption isotherms for the

acid-treated materials have H1-like hysteresis loops, which are

remarkably different from those for the calcined samples. The

H1-like hysteresis is usually attributed to uniform mesopores

with cylindrical geometry.13 Therefore, the difference in the

features of the hysteresis loops seems to be correlated to different

pore topology.

The elongation (tailing) of the desorption curve for the acid-

treated fcc material is indicative of small fractions of pores with

distributions of pore entrance sizes. The lower limit of the closure

of the hysteresis loop occurs at a relative pressure slightly higher

than that corresponding to the lower limit of the condensed fluid

stability, which may exclude cavitation.12 On the other hand, the

isotherm of the acid-treated bcc material exhibits a distinctive

hysteresis shape: The loop is narrower than that of the fcc phase

and the closure of the desorption branch takes place well above the

limit of stability of the fluid. This suggests the presence of pores

with wide entrances of more uniform size. Analysis methods based

on non-local density functional theory (NLDFT) were chosen to

characterize the textural properties of the samples, and the results

are shown in Table 1. Significantly larger pore volumes were

measured for acid-treated materials compared to calcined samples.

However, the highest surface areas are observed for calcined

samples, a fact which might originate from a substantial contribu-

tion of intrawall microporosity usually present in the silica mate-

rials templated by polyalkylene oxide-based block copolymers.13,14

Both calcined samples show a bimodal pore size distribution

(PSD), with a broad distribution of small pores centered at 1.9 nm

accompanying the main mesopore cages of 5.7 nm for the fcc

sample and 6.8 nm for the bcc material (see ESI{ Fig. S1). On the

other hand, the samples with H2SO4 treatment exhibit larger pores

with one main maximum in PSD centered at 7.9 nm for fcc and

8.8 nm for bcc samples, respectively. Moreover, these acid-treated

samples seem to exhibit very low microporosity in the pore walls,

as also concluded from analyses of comparative plots (Table 1).

This is in contrast with the observations made for hexagonal

mesoporous SBA-15 silica made with a different triblock

copolymer with shorter hydrophilic ethylene oxide (EO) chains

(Pluronic P123, EO20PO70EO20). This reduced microporosity in

the acid-treated materials might be related to pronounced

segregation of silica and large EO domains in the mesophase,

caused by extensive silica condensation triggered in wet acidic

conditions. Further investigation is in progress to clarify this

particular aspect. Compared to strategies based on blends of the

copolymers or extensive thermal treatments,15,16 the method based

on H2SO4 treatment emerges as a potential alternative to achieve

uniform expansion of the pore size and pore entrances.

The powder X-ray diffraction (PXRD) patterns of the acid-

treated mesophases, depicted in Fig. 2, are shifted to the lower

two-theta region as compared to the calcined samples but still can

be clearly indexed to the same fcc and bcc phases. This suggests

that no collapse of the mesostructure or major structural trans-

formation in terms of symmetry occurs during the treatment with

H2SO4. The unit cell parameters (Table 1) are, however, noticeably

larger for the acid-treated materials. Thus, the larger mesopore size

and pore volume observed for acid-treated materials might result

from reduced shrinkage of the mesostructure. TEM investigations

further confirm highly ordered cubic structures after the harsh

acid treatment, as exemplified in Fig. 3 for the case of the bcc

mesophase (see also ESI{ Fig. S2). Direct visualization of the pore

geometry and connectivity of the acid-treated silica is made

possible by imaging these materials with the pores infiltrated with

platinum.10,17 This method is used here in combination with gas

physisorption in an attempt to obtain more detailed information.

Fig. 3b shows an example of the TEM image of such a composite

of acid-treated bcc mesophase with infiltrated Pt. The metal

nanostructures reflect a highly interconnected 3-D cubic network

of large mesopores. Furthermore, the shape of the infiltrated Pt

seems to be necklace-like along the pore axis, which may suggest a

pseudo-cylindrical pore geometry consisting of arrays of regularly

undulating channels rather than discrete spherical cavities. Such a

pore system may originate from structural rearrangement induced

during silica condensation in the acid treatment, generating wide

pore entrances and, most likely, pronounced modulation of pore

surface curvature. Comprehensive high-resolution transmission

electron microscopy investigations will be useful to clarify all these

structural aspects.

To check whether the open pore system is indeed created upon

H2SO4 treatment but not as a consequence of suppressed

Table 1 Structural properties of the fcc and bcc samples after
calcination at 550 uC or H2SO4 treatment followed by calcination at
250 uCa

Symmetry Methodb a/nm
Sc/
m2 g21 Vt/cm3 g21

Vm
e/

cm3 g21
Dc/
nm

fcc A 20.9 833 0.45 (0.45)d 0.13 (0.16) 5.7
B 21.8 662 0.82 (0.83) 0.04 (0.00) 7.9

bcc A 16.2 786 0.70 (0.71) 0.08 (0.06) 6.8
B 18.4 581 1.05 (1.07) 0.02 (0.00) 8.8

a a: unit cell parameter; S: surface area; Vt: total pore volume; Vm:
micropore volume; D: mesopore diameter. b Method A: conventional
calcination at 550 uC; method B: H2SO4 treatment followed by
250 uC calcination. c Calculated by the NLDFT method using the
adsorption branch. d Pore volume at P/P0 = 0.99. e Evaluated from
the cumulative pore volume obtained by the NLDFT method for all
porosity below 2 nm. In parentheses are the values obtained from as

plot using Ar on nonporous silica as reference isotherm.
Fig. 2 PXRD patterns of calcined and acid-treated samples with fcc (a)

or bcc (b) structures.
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framework shrinkage, we performed Soxhlet extraction of the

copolymer with pure ethanol. This soft treatment enabled the

removal of large amounts of copolymer without initiating silica

condensation.18 Nitrogen physisorption (see ESI{ Fig. S3)

measurement of these extracted materials resulted in type IV

isotherms with H2 type hysteresis identical to those of the calcined

counterparts. This hence provides clear evidence that the

mesophase topology is initially cage-like prior to template removal.

We can speculate that during the H2SO4 treatment, the extensive

silica densification facilitated by the highly acidic environment,

combined with oxidative cleavage of the copolymer,19 provoke

profound restructuring of the framework.

In conclusion, a new method to control the pore topology of

large pore cubic silica mesophases through post-synthesis treat-

ment with sulfuric acid has been demonstrated. The thus-treated

materials exhibit larger unit cell parameters, larger pore volumes

and larger mesopore diameters than those for the materials

prepared via conventional calcination. In addition, the treatment

results in materials with pseudo-cylindrical mesopores while

maintaining the overall cubic symmetry.
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Fig. 3 (a) TEM image of the cubic bcc silica obtained after H2SO4

treatment and subsequent calcination at 250 uC viewed along the [100]

axis. (b) TEM image of the composite of the same silica with infiltrated Pt.
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