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Enhancement of the direct optical transition in nanocrystallized GaAsN alloys
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Using x-ray diffraction, cross-sectional transmission electron micros@piEM), and infrared absorption
techniques, we have investigated the effects of nanocrystallization on the structural and optical properties of
GaAg o\ o1 grown by plasma-enhanced molecular-beam epitaxy. The x-ray diffraction results of postgrowth
annealed samples with a protectiveNsj cap exhibit significant lattice relaxation, structural inhomogeneity,
and apparent nitrogen “loss,” indicating the occurrence of phase separation after thermal treatment. High-
resolution XTEM confirms the formation of N-enriched GaAsN nanocrystals embedded at the GaNgN/Si
interface. Infrared absorption study demonstrates that the annealed sample has a strongly enhanced direct
optical transition.
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Recently, another class of 1ll-V semiconductor alloys,N-rich clusters and the dilute alloy matrix, appear after an-
which contain both arsenic and a small fraction of nitrogennealing. These structural changes lead to a strongly enhanced
in the group-V sublattice, has attracted great research attebvand-to-band direct transition probability at a slightly en-
tion due to their interesting physical propertie€and prom-  larged band gap in the infrared absorption measurements.
ising applications for optical fiber communications in the The investigated GaAsN sample was grown by electron-
1.3—-1.55um wavelength regimét It has been found that cyclotron-resonancéECR) N,-plasma-enhanced molecular
incorporation of 1% nitrogen for arsenic in GaAs decreasepeam epitaxy (MBE) at 565°C on semi-insulating
the room temperature band gap from 1.42 to 1.25 eV, correGaAg001) substrates and has-a500-A-thick GaAs buffer
sponding to an anomalously large and compositionand a~1500-A-thick epilayer. The existence of N in the
dependent band-gap bowing coefficient of 17*&§.°This  grown layer was confirmed by secondary-ion mass spectros-
drastically different behavior has been investigated as due toopy and the exact N concentrations were determined by
the formation of spatially separated and sharply localizedhigh-resolution x-ray rocking curves. A 1500-A-thick;Sj,
band edge states around the N atdf{sHowever, the appli- layer grown by plasma-enhanced chemical vapor deposition
cation of this material is limited by its poor optical proper- (PECVD) was used as a protective cap and an excellent dif-
ties. Many studies have shown that annealing can signififusion barrier for the annealing procedure. The rapid thermal
cantly improve its photoluminescence, but the exact origin onnealing procedure employed here is a 30 sec annealing at
this phenomenon is still unclei-* 900 °C (rising time from 30°C to 900°C is 1 mjnThe

Most studies on this material so far have assumed théar-infrared transmittance spectra in the infrared range were
formation of random alloys. However, calculations based ormeasured by a Bruker IFS 120HR Fourier transform infrared
ordered and disordered alloys have obtained very differemgpectrometer at different temperatures between 80 and 300 K
band bowing coefficient$® Also, as indicated by recent op- Wwith resolution better than 1 cm.
tical absorption and Raman studfeg® alloy ordering may Figure 1 shows004) double crystal rocking curves re-
play an important role at the dilute limit. In particular, short corded from the as-grown and annealed GaAsN samples.
range ordering such as clustering is highly expected sinc&he x-ray measurements demonstrate high homogeneity and
nitrogen in GaAs has limited solid solubility due to the sig- single phase in the as-grown samples. Also, the in-plane lat-
nificant differences in atomic size and electronegativity betice of the epitaxial layers is found to have a coherent tensile
tween As and N.Experimental observations of nitride clus- strain in order to match the substrate GaAs lattice. Assuming
tering have been reported for annealed GalnAsN fiifras-  Vegard’s law (confirmed by theoretical and experimental
grown nitrogen atomic-layer-doped planes in GdAsnd  studieé™° for as-grown dilute random alloysand elastic
GalnAsN/GaAs quantum welf$. deformation of the(001) epitaxial layer, the measured

In this Brief Report we report the structural and optical perpendicular mismatch A@/a), is equal to (1
properties of postgrowth annealed dilute GaAsN compared-2C,,/C ) x(Aa/a)y~1.%(Aa/a)y, whereC,; and Cy»
with that of the as-grown sample. The as-grown sampleare the elastic stiffness constantss the N molar fraction,
shows high structural homogeneity, but have poor opticabhnd (Aa/a)y=(agan—2acand/8cansiS the relaxed lattice mis-
properties as measured by photoluminescence and optical almatch of zinc-blende GaN and GaAsBy applying this to
sorption. The postgrowth annealing procedure is adoptethe as-grown GaAsN case shown in Fig. 1 for which
here to promote the formation of short-range ordering orfAa/a), = —0.36% (A #=486 arcsecy is the Bragg angle
clustering. We found that significant structural changesthe nitrogen concentration is 0.943%. Upon annealing, the
which can be attributed as due to the phase separation afray peak from the epilayer becomes weaker and broader,
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FIG. 1. (004 x-ray diffraction spectra of as-grown and annealed
GaAs oo o1 films grown on the GaA®01) substrate.

indicating that this procedure decreases the degree of homo-
geneity in the samples. Additionally, the measurdd/a)
changes to-0.266%(GaAsN, N: 0.697% indicating a sig-
nificant lattice relaxation along thi@01] growth direction.
These values of lattice relaxation correspond to an apparent
“loss” (~30%) of nitrogen for the annealed GaAsN. Since
the sample was capped by;Sj, which acts as an excellent  pig. 2. Cross-sectional TEM micrographs of the annealed
diffusion barrier, this relaxation is unlikely to result from the GaAg, 4Ny o, film with a PECVD-grown amorphous $i, cap
real loss of anion species. layer. Dark spots at the GaAsN{Ni, interface are N-rich
Figures 2a) and 2b) show the results of the cross- regions.

sectional transmission electron microsco@YTEM) study
on the annealed sample shown in Fig. 1. In addition to thé?) vs energy plots displayed in Fig. @erived from the
absence of misfit dislocations in the annealed sample, thetgansmittance dajaThe measured absorption coefficients of
are clear dotlike features embedded at the GaAsN/Sh-  annealed epitaxial layers obey a square law vs energy, indi-
terface[Fig. 2(b) is an image of an individual dptWe at-  cating direct band-to-band absorption. The band-gap energy
tribute these dots as N-rich regions because their darker cofiEg) of the measured samples was obtained by extrapolating
trast is consistent with the expected contrast between N-ricie linear part of the square of the absorption coefficient to
and N-deficient regions as reported in previous XTEM stud-Z€ro. The decrease of megsurement temper.ature from 300 to
ies on GaAsN/GaAs quantum wells or superlattiees., see 80 K causes a “blue” shift of the absorption edge from
Ref. 18. Judging from Fig. £a), we can find that the size of
these dots is quite uniform with diameters in the range of
10-20 nm and they do not possess a particular crystal shapt 7 | Gahs, N, /GaAs at 250K I
The XTEM observations suggest that an embryonic phase
separation, i.e., the formation of N-rich nanocrystals oc- l

/As-grown

Annealed

curred during annealing. Also, these nanocrystals have a ten
dency of out-diffusion toward the §N, capping.

The optical band gaps of the same set of mixed-anion’
nitride films were examined by the optical absorption mea-
surements taken in the transmission mode. Typical transmit;
tance spectra of annealed and as-grown samples shown i
Fig. 3 (taken at 250 Kindicate that the optical properties of
the as-grown film are poor and a significant enhancement ir
absorption occurred after annealing. At this temperature, the
absorption edge of the as-grown GaAsN layeri$.2 eV 900 10000 11000 12000 13000
(~9680 cm%) and that of the annealed GaAsN-idl.31 eV
(~10566 cm'Y), an energy shift of~110 meV. Both absorp-
tion edges of the annealed epitaxial layer and GaAs substrate FIG. 3. Infrared transmission spectra of as-grown and annealed
can be clearly seen in the square of the absorption coefficie@aAs, oNg o; measured at 250 K.
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since SIMS and x-ray measurements indicate most incorpo-
rated N atoms are substitutional ()]l and the activation of
N interstitial atoms would increase lattice mismatch instead
of inducing lattice relaxation. Thus the observed improve-
ment in optical properties should result from the N-rich clus-
200K 80K ters. Long range alloy orderinguch as those in nGa, 5P
and Al sing sAs) is unlikely to occur because of the dilute
nitrogen concentratiofr~1%) in our sample. Alloy ordering
within the phase-separated and nanocrystallized regions
could be an option, but is not observed in our high-resolution
cross-section TEM imagé-ig. 2(b)]. Furthermore, the band
R gap reduction effect due to the alloy ordering is typically
i GaAs Sulstrate quite small(a few tens of meV; see, for example, Ref) 21
S S S and not accountable for the observed large band-gap reduc-
116 120 125 130 135 140 145 150 155 tion. We believe that the formation of nanocrystallized ni-
Energy (eV) trides increases greatly the oscillator strength of the band-to-
band direct transition. And the volume deformati®D) of

FIG. 4. Plots of the square of the absorption coefficierf) (of N-rich clusters in a dilute GaAsN matrix leads to a large
annealed GaAsNg o film as a function of photon energy at dif- a-‘

‘3_- Annealed GaAs_ N 300
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ferent t f howina direct band-aap absorotion. The ban and-gap energy reduction in N-rich nitride clusters. Using
erent lemperatures, showing direct band-gap pron. e calculated deformation potential parameters and elastic
gap energy values are obtained by extrapolating the linear part o

o2 to zero. The absorption edges of GaAs substrate can also be seggnstants, the GaN-Ilke Se)herlcal cluster, which has a .VOI'
at higher energies. ume mismatch strain 0f24% embedded in a GaAs matrix,

can have a gap energy reduction on the order@f7-2.0

_ , eV (the original gap is 3.2—3.3 @¥° In contrast, the VD
~1.29 t10~1.39 eV for GaAsN without a substantial change ,n4.gap reduction in the dilute GaAsN alloy film grown on
of the spectrum shape. The measured “blue” shift of thegyaq'is quite negligible due to a small VD.
substrate is-70 meV from 300 to 150 K, in good agreement |, concjusion, we have observed a drastic improvement of
with the stan.dard temperature dependence of the GaAs ©Bhtical properties of GaAsdNo o, dilute alloy upon post-
ergy gap derived from Varshni's equation. The temperaiureg o th annealing. Phase separation due to the formation of
induced energy shift of the band %ap of the annealed GaASN, yjch nanocrystals and strongly enhanced direct optical
film is of the same magnitude-10% largey as GaAs. This  yansition were found after annealing of the as-grown dilute
is another indication that the observed absorption edge of th loy film, which shows poor optical properties. Our results
annealed GaAsN layer has a very different origin compareg,gicate that any complete theoretical understanding of this

to the as-grown GaAsN alloy, which has a reportdey/  ¢|5s5 of material should consider the possible compositional

dT Vl%"zj(? significantly - lower (~40% than that of j,homogeneity originated from the short-range nitride clus-
GaAs.™ .
tering.
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