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ABSTRACT

The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity
reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions.
We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the
coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the
waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can
separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and
phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra
of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3±1.3%, emissivity reduction 8.2±
1.4%, and local suppression 68.5±1.5%, for a wave packet corresponding to a phase velocity of 6.98×10−5 rad s−1.
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1. INTRODUCTION

Observations show that the power of solar acoustic waves
is reduced in magnetic regions. The mechanisms causing the
power reduction in magnetic regions are divided into three cat-
egories: absorption, emissivity reduction, and local suppres-
sion (Hollweg 1988; Cally & Bogdan 1993; Hindman et al.
1997; Crouch & Cally 2005; Wachter et al. 2006; Parchevsky
& Kosovichev 2007; Rajaguru et al. 2007; Gordovskyy & Jain
2008; Chou et al. 2009a, 2009b). All three mechanisms con-
tribute to the power directly measured in acoustic-power maps
(Lites et al. 1982; Braun et al. 1992; Hindman & Brown 1998;
Ladenkov et al. 2002), while only absorption and emissivity
reduction contribute to the measurements in Hankel analysis
(Braun et al. 1987; Bogdan et al. 1993; Braun 1995; Chen et al.
1996). Determining the contribution from these three mecha-
nisms in sunspots is one of the important problems in local
helioseismology. Chou et al. (2009a, hereinafter called Paper I)
have used the property that the waves emitted along the wave
path between two points have no correlation with the signal
at the starting point to separate the effects of absorption from
those of emissivity reduction and local suppression. The ab-
sorption coefficient has been defined and measured in Paper I.
In this study, we go one step further to define and measure the
coefficients of emissivity reduction and local suppression.

2. METHOD

A model for the energy budget of acoustic waves propagating
through the quiet Sun and a sunspot is illustrated with schematic
diagrams in Figure 1. The upper diagram shows the energy
budget in the quiet Sun. A wave packet, formed by modes with
similar horizontal phase velocity, propagating in a particular
horizontal direction, has a ray path shown in Figure 1. The
power in the quiet Sun is uniform with a value I. As the wave
packet propagates from A to B, its power is reduced to (1 − d)I
owing to dissipation, where d is the dissipation coefficient in the
quiet Sun. Energy generated along the path is eI , where e is the
emission coefficient in the quiet Sun. The uniformity of power

in the quiet Sun leads to e = d. As the wave packet propagates
from B to C, the power at B is reduced further by a factor of
(1 − d). On the way from B to C, power eI is generated again.
The total power at C equals to I as expected. It is noted that d
and e represent the dissipation and emission, respectively, as the
wave packet travels the one-skip distance in the quiet Sun.

If a sunspot is present at B, the energy budget is shown
in the lower diagram of Figure 1. The acoustic power at B
could be reduced by absorption, emissivity reduction, and local
suppression. As the wave packet propagates from A to B, besides
the dissipation in the quiet Sun, the power coming from A and
arriving at B is reduced by a factor of (1 − a) owing to the
absorption in the sunspot, where a is the absorption coefficient.
Energy generated along the path from A to B is reduced by a
factor of (1−r) owing to the magnetic field in the sunspot, where
r is the emissivity reduction coefficient. Both (1 − a)(1 − d)I
and (1 − r)eI are reduced by a factor of (1 − s) because of local
suppression in the sunspot, where s is the local suppression
coefficient. Only part of the power at B, (1 − s)(1 − a)(1 − d)I ,
correlates with that at A. The power (1 − s)(1 − r)eI at B,
generated along the path between A and B, has no correlation
with that at A.

As the wave packet propagates from B to C, its power is
reduced further by a factor of (1−a)(1−d), but local suppression
disappears at C because it is located outside the sunspot. Energy
generated on the way from B to C is again (1 − r)eI . It is noted
that the coefficients a and r defined here account for only the
contribution from half the wave path inside the sunspot. The
contribution from the first half of the path (propagating upward)
and the second half (propagating downward) may be different,
depending on the location of B in the sunspot. That is, the value
of a and r for the path from A to B may be different from that
from B to C. For simplicity, we assume that a and r are the
same for the upward and downward paths. This is a reasonable
approximation if a and r are averaged over an area in the sunspot,
as done in our analysis.

For the powers at A, B, and C, only those connected by the
arrows shown in Figure 1 correlate. In Paper I, the correlation
between A and C is used to determine the value of a. The
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Figure 1. Schematic plot for energy budget of solar acoustic waves propagating
in one horizontal direction (see the text for explanation).

cross-correlation function (CCF) between A and C is computed
as

FAC(τ ) =
∑
t

ΨA(t)ΨC(t + τ )∑
t

[ΨA(t)]2
(1)

where ΨA and ΨC are the wave functions (velocity fields) at
A and C, respectively. It is noted that the normalization factor
defined here is the sum of the square of the wave function at A
over time, different from the conventional definition. The CCF
FAC(τ ) corresponds to the second skip for our wave packet.
The magnitude of FAC(τ ), hereinafter denoted by FAC, is the
peak value of the envelope of FAC(τ ). The width of the CCF
increases with the number of skips owing to the dispersion of
the wave packet, but the product of the square of the magnitude
of the CCF and the width remains unchanged in the absence of
dissipation and absorption (Chou & Ladenkov 2007; Burtseva
et al. 2007). To correct the effect of dispersion, we compute the
width-corrected CCF, F̃AC ≡ FAC(WAC)1/2, where WAC is the
ratio of the width of the CCF at C to that at A. The CCF at A is
simply the autocorrelation function at A. Note that WAC defined
here is different from that in Paper I. The width-corrected CCF,
F̃AC , is proportional to the square root of the power at C that
correlates with the signal at A. For the quiet Sun,

1 − d = F̃
(qs)
AC . (2)

For the sunspot, F̃
(sp)
AC = (1 − a)(1 − d). Thus, (1 − a) can be

expressed as

1 − a = F̃
(sp)
AC

F̃
(qs)
AC

. (3)

This formula has been used in Paper I to determine the value of
a for a sunspot in NOAA 9062.

Similarly, one can compute the CCF between A and B that
yields F̃

(sp)
AB = [(1 − s)(1 − a)(1 − d)]1/2 if

∑
t |ΨA(t)|2 is the

normalization constant like Equation (1). Thus, (1 − s) can be

expressed as

1 − s = [F̃ (sp)
AB ]2

F̃
(sp)
AC

. (4)

The last coefficient to be determined is r that relates to the
CCF between B and C. From Figure 1, the power (1 − s)(1 −
a)(1 − d)I at B correlates with the power (1 − a)2(1 − d)2I
at C, and the power (1 − s)(1 − r)eI at B correlates with the
power (1−a)(1−d)(1− r)eI at C. If we use

∑
t |ΨA(t)|2 as the

normalization constant in computing the CCF between B and C,
F̃

(sp)
BC = [(1 − s)(1 − a)(1 − d)]1/2[(1 − a)(1 − d) + (1 − r)d].

Together with Equations (2), (3), and (4), (1−r) can be expressed
as

1 − r =
[

F̃
(sp)
BC

F̃
(sp)
AB

− F̃
(sp)
AC

] [
1 − F̃

(qs)
AC

]−1
. (5)

3. DATA AND ANALYSIS

In this study, we use the helioseismic data taken with MDI
onboard the Solar and Heliospheric Observatory (Scherrer et al.
1995). The data are 1024 × 1024 full-disk Dopplergrams taken
at a rate of one image per minute. A time series of 2048 minutes
taken in a period of 2000 June 29–30 is used in this study. The
procedure of the preliminary data reduction is similar to that in
Paper I and Chou et al. (2009b). It is briefly described as follows.
(1) The 61-frame running mean is subtracted from the measured
signal at each spatial point. (2) A temporal filter is applied to
remove signals below 1.5 mHz and above 5.0 mHz. (3) Each
full-disk image is transformed into coordinates of longitude
and latitude. (4) The differential rotation of the solar surface is
removed. (5) An area centered at the leading sunspot of NOAA
9057 is selected, and each image is transformed into a coordinate
system of (φ, θ ), centered at the sunspot center, where φ is
the east–west direction and θ the north–south direction. The
dimension of the selected region is 30◦ in φ and 30◦ in θ ,
corresponding to 256 × 256 pixels.

The waves above the cutoff frequency escape into the outer
atmosphere, and would complicate the interpretation of the
measured CCFs. Thus, we apply a filter to remove the waves
above 5 mHz to avoid the complication.

The data cube after the above procedure is ready for further
analysis. The acoustic-power map of the selected area is shown
in Figure 2(b). The corresponding magnetic map is shown
in Figure 2(a). A direction filter and a phase-velocity filter
are applied to isolate waves propagating in a narrow range
of directions and phase velocities. The details of direction
filters and phase-velocity filters have been discussed in Chou
et al. (2009b). The direction filters used in this study are
either northward or southward, with three different widths: 10◦,
15◦, and 20◦. The phase-velocity filter used in this study is
centered at 6.98 × 10−5 rad s−1 (corresponding to � = 300 at
3.33 mHz) with a width of 5.82 × 10−5 rad s−1. Both direction
and phase-velocity filters are smoothed by a Hanning window.
Two examples of acoustic-power map filtered with direction and
phase-velocity filters are shown in Figures 2(c) and (d).

In Figures 2(c) and (d), a secondary image appears behind
the leading sunspot with respect to the wave direction. The
separation between the secondary image and the sunspot is
consistent with the one-skip travel distance associated with the
phase-velocity filter. In the following discussion, points B and
C in Figure 1 are placed at the locations of the sunspot and the
secondary image, respectively. Point A is located at the opposite
side of the secondary image. The CCF using A as the reference
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Figure 2. (a) Magnetic map, (b) raw acoustic-power map, (c) acoustic-power
map of the waves filtered with the northward direction and phase-velocity filters;
(d) acoustic-power map of the waves filtered with the southward direction and
phase-velocity filters. The width of the direction filter is 15◦. The phase-velocity
filter is described in the text. The white circles indicate the areas of A, B, and C.

Figure 3. Peak value of the envelope of cross-correlation function vs. angular
distance for the southward waves filtered with direction filter of three different
widths.

point is computed. The computation of CCF is repeated for
different reference points in a circular area with a radius of 5
pixels such that point B is located inside the umbra. (The radius
of the umbra is about 5 pixels.) The areas of A, B, and C are
indicated by the white circles in Figures 2(c) and (d). These
CCFs are averaged to reduce noise. The envelope of the average
CCF at each distance is determined by a method of demodulation
(Bracewell 1986). The peak value of the envelope vs. distance
is shown in Figure 3. The first peak in Figure 3, corresponding
to the first skip, is the magnitude of the CCF between A and B,
F

(sp)
AB . The second peak, corresponding to the second skip, is the

magnitude of the CCF between A and C, F
(sp)
AC . To correct the

effect of dispersion, we need to determine the width (FWHM)
of the CCF at A, B, and C. The width-corrected magnitude
F̃

(sp)
AB = F

(sp)
AB [W (sp)

AB ]1/2 and F̃
(sp)
AC = F

(sp)
AC [W (sp)

AC ]1/2, as described
in Section 2. Similarly, we also compute the CCF between B
and C to determine F̃

(sp)
BC .

Table 1
Measured Parameters

Parameter N10◦ N15◦ N20◦ S10◦ S15◦ S20◦

d 0.252 0.256 0.269 0.279 0.282 0.293
a 0.182 0.204 0.235 0.116 0.165 0.188
s 0.383 0.510 0.583 0.355 0.474 0.546
r 0.146 0.243 0.245 0.080 0.153 0.191
PB 0.511 0.385 0.318 0.576 0.441 0.368
P ′

B 0.530 0.410 0.337 0.592 0.462 0.387
PC 0.722 0.659 0.630 0.826 0.741 0.702
P ′

C 0.731 0.673 0.637 0.864 0.756 0.703
ã 0.278 0.247 0.252 0.197 0.212 0.211
s̃ 0.647 0.652 0.652 0.750 0.710 0.700
r̃ 0.075 0.101 0.097 0.053 0.077 0.089

The same procedure can be carried out for the quiet Sun to
obtain F̃

(qs)
AC . In this study, we use an area of 30◦×30◦ in the quiet

Sun to compute F̃
(qs)
AC . Using four width-corrected magnitudes

F̃
(qs)
AC , F̃

(sp)
AB , F̃

(sp)
AC , and F̃

(sp)
BC , together with Equations (2), (3),

(4), and (5), we can compute the four coefficients d, a, s, and r.
The results of d, a, s, and r for different directions and widths
are shown in Table 1.

4. DISCUSSION

From Figure 1, the total power at B, in units of I, is
PB = (1− s)(1−a)(1−d) + (1− s)(1− r)d. The total power at
C is PC = (1 − a)2(1 − d)2 + (1 − a)(1 − d)(1 − r)d + (1 − r)d.
The values of PB and PC computed with d, a, s, and r are shown
in Table 1. We can also directly measure the power at B and
C, in units of power at A, from the acoustic-power map. The
measured power averaged over a circular area with a radius of 5
pixels in the umbra, denoted by P ′

B , and in the secondary image,
denoted by P ′

C , is shown in Table 1. The difference between
PB and P ′

B or between PC and P ′
C is less than 7%. It is noted

that they are computed with totally different methods: PB and
PC are computed with the CCFs at A, B, and C, while P ′

B and
P ′

C are purely local and computed directly from the acoustic-
power map. The consistency between the values derived from
two different methods supports two things: the model of energy
budget described in Figure 1, and the values of a, s, and r
determined with our method. We have tested the consistency
between PB and P ′

B or between PC and P ′
C for different energy

budget models with some modifications to the model in Figure 1.
These modified models do not yield the consistency.

Table 1 shows that all of three coefficients a, s, and r
increase with the width of direction filter for both northward and
southward waves. This phenomenon connects with the increase
in the power deficit in the sunspot, (1 − PB) or (1 − P ′

B), and
the power deficit in the secondary image, (1 − PC) or (1 − P ′

C),
with width. This can be understood with the complementary
property between the spatial domain and the corresponding
Fourier domain: signals filtered with the direction filter spread in
the direction perpendicular to the wave direction; the narrower
the direction filter, the more spreading the signals (Chou et al.
2009b). Thus the power deficit in the sunspot is smaller for a
narrower direction filter. This also leads to smaller a, s, and r
for a narrower direction filter. Since their values depend on the
width of the direction filter used in analysis, the coefficients
a, s, and r measured with our method are not appropriate
parameters to represent the three mechanisms: absorption, local
suppression, and emissivity reduction, respectively. A better
parameter for each mechanism is the fraction of the contribution
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Table 2
Averaged Parameters

Parameter N S Average of N and S

Average ã 0.259 ± 0.017 0.207 ± 0.008 0.233 ± 0.013
Average s̃ 0.650 ± 0.003 0.720 ± 0.026 0.685 ± 0.015
Average r̃ 0.091 ± 0.009 0.073 ± 0.018 0.082 ± 0.014

of the mechanism to the power deficit in the sunspot, hereinafter
called the normalized coefficient. From Figure 1, the fraction
of contribution of absorption to the power deficit in the sunspot
is ã = a(1 − d)(1 − PB)−1. Its value is listed in Table 1. The
discrepancy in ã among different widths significantly reduces,
and unlike a, ã no longer depends on the width. Similarly, the
fraction of the contribution of emissivity reduction to the power
deficit in the sunspot is r̃ = rd(1 − PB)−1. The fraction of
the contribution of local suppression to the power deficit in
the sunspot is s̃ = s[(1 − a)(1 − d) + (1 − r)d](1 − PB)−1 =
[s(1−s)−1][PB(1−PB )−1]. The values of r̃ and s̃ are also listed
in Table 1. Like ã, the discrepancy among different widths for s̃
and r̃ significantly reduces, and no longer depends on the width.
It can be shown that ã + s̃ + r̃ = 1.

If we adopt the variations of each normalized coefficient
among different widths as measurement errors, we can compute
the mean value averaged over different widths and the error. The
results are shown in Table 2. The difference between the values
determined from the northward and southward waves could be
caused by the asymmetric distribution of the magnetic field in
and around the sunspot. The last column in Table 2 is the average
of the northward and southward values.

It should be noted that the coefficients determined here are
associated with a specific wave packet. The dependence on
frequency and phase velocity could provide more complete
information on the interaction between the acoustic waves and
the sunspot. It is also of interest to study variations of three
coefficients with wave direction.

The surface flows in and around sunspots would modify the
local acoustic power: The local acoustic power would increase
if the flows and waves have the same direction, and decrease
if they have the opposite directions (Landau & Lifshitz 1987).
This local change in acoustic power would appear as an effect of
local suppression. Thus the flows in the sunspot would modify
the coefficient of local suppression of the sunspot, while the
flows at A and C would complicate the energy budget model
because two additional coefficients of local suppression at A
and C need to be introduced.

5. SUMMARY

We propose an energy budget model for the waves propagat-
ing through a sunspot as shown in Figure 1. The model contains

four coefficients: d (dissipation in the quiet Sun), a (absorption),
r (emissivity reduction), and s (local suppression). We use the
property that the waves emitted along the wave path between
two points have no correlation with the signal at the starting
point to separate the effects of absorption, emissivity reduction,
and local suppression in a sunspot. The coefficient d can be de-
termined from the CCF in the quiet Sun. The coefficients a, r,
and s can be determined from three CCFs between three points:
A, B (sunspot), and C (secondary image). We apply this method
to the leading sunspot of NOAA 9057. Although the value of a,
r, and s depends on the width of direction filter, the normalized
coefficients ã, s̃, and r̃ , defined as the fraction of the contri-
bution of each mechanism to the power deficit in the sunspot,
are independent of the width of direction filter. The powers in
the sunspot and secondary image computed from a, r, and s are
consistent with the powers directly measured in the sunspot and
secondary image within 7%. This supports the model of energy
budget proposed here and the values of a, r, and s measured
with our method.

SOHO is a project of international cooperation between ESA
and NASA. The authors are supported by the NSC of ROC under
grant NSC-96-2112-M-007-034-MY3.
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