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Abstract 

We tested the preferences of three nematode taxa, Geomonhystera villosa, Plectus spp. and 

Teratocephalus spp., extracted from moss at Signy Island in the Maritime Antarctic, for two 

microalgae, three microfungi and six heterotrophic bacteria, each also from soils at Signy Island. 

Choice test experiments on water agar medium, in which nematodes were enumerated in wells 

containing microbes at 24 and 48 h, indicated that there were differing preferences between nematodes 

for distinct prey. G. villosa was significantly attracted to the alga Chlorella cf. minutissima and the 

fungus Mortierella hyalina, and was more attracted to all algae and fungi than either of the other two 

nematodes. Both G. villosa and Teratocephalus spp. were attracted to an actinobacterium. Plectus spp. 

were significantly attracted to the alga Stichococcus bacillaris and bacteria with close taxonomic 

affinities to Arthrobacter, Pseudomonas and Polaromonas. Experiments using 0.5 µm diameter 

fluorescent beads indicated significantly increased ingestion by nematodes in the presence of each of 

these microbes compared with controls, except by Plectus spp. in the presence of S. bacillaris. We 

conclude that complex trophic interactions may occur in apparently simple Antarctic soil food webs. 
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1. Introduction 

Nematodes are dominant components of Antarctic soil food webs. Not only are they abundant, with up 

to 106 individuals present per m2 of soils in the Maritime Antarctic [11], but they also play important 

ecological roles in these soils by acting as consumers, typically of bacterial prey, and also as predators 

of other nematodes, rotifers and protozoa [21]. Furthermore, nematodes are the top predators in what 

are thought to be the simplest soil food webs encountered on Earth, those occurring in the McMurdo 

Dry Valleys of Continental Antarctica [7]. Previous studies have concentrated on Antarctic nematode 

taxonomy, ecophysiology and biogeography [2,7,10,11,15,26]. However, despite their potentially large 

ecological influence, little is known of the feeding preferences of Antarctic soil nematodes [11]. Direct 

observations suggest that a species of Mesodorylaimus at Signy Island in the Maritime Antarctic may 

feed upon coccoid algae and dead collembola [21]. Coomansus gerlachei has also been shown to feed 

upon algae, fungal hyphae and spores, arthropods, rotifers and tardigrades in Signy Island soil [21]. 

Furthermore, laboratory studies have shown that a yeast and bacteria isolated from the McMurdo Dry 

Valleys support the growth of Scottnema lindsayae Timm. extracted from the same habitat [14]. 

However this is the only information available on the specific feeding preferences of Antarctic soil 

nematodes.       

Here we report a study which aimed to determine the preferences of the three most abundant 

soil nematode taxa at Signy Island, viz. Geomonhystera villosa (Bütschli) Andrássy, Plectus spp. and 

Teratocephalus spp., for 11 microbes, each isolated from Signy Island soil. These nematodes are 

currently classified as microbivores and are assumed to feed predominantly on bacteria, although their 

diet might potentially include algae and filamentous fungi [21]. We also tested for significant 

differences between nematodes’ preferences for microbes to assess whether apparently simple 

Antarctic soil food webs consist of complex patterns of trophic interactions.  

 

2. Methods 

2.1. Extraction of nematodes 

Nematodes were extracted from turves of the moss Sanionia uncinata (Hedw.) Loeske ex Nitardy 

collected from 100 m to the east of the British Antarctic Survey’s research station on Signy Island (60º 

42’ 34” S, 45º 35’ 36” W) in austral summer 2001. The moss was frozen at -20 ºC shortly after 

collection and was transported to the UK. Small (c. 5 g fresh weight) pieces of frozen moss were placed 
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onto muslin resting on a 2 mm rigid mesh in the mouth of a plastic funnel held by a retort stand. A 

plastic tube attached to the funnel’s spout was blocked with a clip and spring water was added to the 

funnel until a thin layer covered the moss. Nematodes that passed through the muslin were collected 

after 24 h by releasing the clip. They were sorted under a dissecting microscope (6-50 x magnification) 

into G. villosa, Plectus spp. (typically P. antarcticus de Man) and Teratocephalus spp. (typically T. 

tilbrooki Maslen) and were stored in spring water at 4 ºC for a maximum of 3 d until required for 

experiments.  

 

2.2. Isolation of microbes from soil 

Microbes were isolated from soil under S. uncinata taken from the same location at which moss was 

collected for nematode extraction. Microalgae were isolated on Bold’s Basal (BB) medium (Sigma-

Aldrich, St Louis, MO, U.S.A.). Dilution series of 1 g (fresh weight) of soil were prepared in sterile 10 

mM phosphate buffer, 100 μl aliquots of the 10-4 dilution were spread onto BB medium in 90 mm 

single vented Petri dishes and the dishes were incubated in the light at c. 4 ºC. A single colony of the 

alga Stichococcus bacillaris Nag., and two separate colonies of the alga Chlorella cf. minutissima, were 

isolated onto BB medium after 28 d and were kept in the light at 4 ºC until required for experiments. 

Algal isolates were free of bacteria. The shapes and dimensions of each alga are shown in Table 1. 

Microfungi were isolated by a modification of the Warcup soil plate method [24]. Briefly, 

small volumes of soil (c. 5 mg fresh weight) were placed into non-vented 90 mm Petri dishes, cooled 

broad-spectrum Czapek-Dox agar medium was placed onto the soil and the dishes were incubated at 4 

ºC for 21 d. Single colonies of the three commonest fungi, Mortierella hyalina (Harz) W. Gams, 

Penicillium aurantiogriseum Dierckx. and Trichoderma viride Pers.: Fr., were isolated onto potato 

dextrose agar medium and kept at 4 ºC until required for experiments. The shapes and dimensions of 

the conidia of each fungus are shown in Table 1. 

Bacteria were isolated on R2A (Oxoid Ltd., Basingstoke, U.K.), a broad spectrum 

bacteriological agar medium. Dilution series of soil were prepared as for algae, and 100 μl aliquots of 

the 10-4 dilution were spread onto the medium in 90 mm single vented Petri dishes. The dishes were 

incubated in the dark at 4 ºC and individual colonies of the commonest six morphotypes of bacteria 

were isolated onto R2A medium after 28 d. 
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2.3. Taxonomic placement of bacteria 

Bacteria were taxonomically placed by comparing 16S rRNA sequences with those in a public access 

database. A single colony of each isolate was placed in 50 μl of sterile water. Cells were then vortexed 

and subjected to five freeze-thaw cycles (-80 ºC and 80 ºC, each for 2 min).  The resulting supernatant 

was cleaned for polymerase chain reaction (PCR) amplification with GFX DNA purification columns 

(Amersham Biosciences U.K. Ltd., Chalfont St Giles, U.K.). 

PCR amplification was performed using 43 μl of ABgene 1.1x ReddyMix PCR Master Mix 

(ABgene, Epsom, U.K.) with 20 pmole of each primer and c. 10 ng of template DNA in a final volume 

of 50 μl.  The amplification program consisted of one cycle of 95 ºC for 5 min, 30 cycles of 94 ºC for 1 

min, 56 ºC for 1 min, 72 ºC for 70 sec and a final extension step of 72 ºC for 10 min. Bacterial rDNA 

was targeted with the primers 8F (5’-AGAGTTTGATCCTGGCTCAG-3’) [6] and 1500R (5’-

AGAAAGGAGGTGATCCAGCC-3’) [4].  PCR products were purified using GFX DNA purification 

columns and sequenced. Sequence reactions were run on a Megabace 500 sequencer (Amersham 

Biosciences U.K. Ltd.) using the 8F primer. Nucleotide sequences obtained from the bacteria have been 

deposited in the EMBL Nucleotide Sequence database (http://www.ebi.ac.uk/embl). The accession 

numbers of the deposited sequences are AJ557831, AJ557832, AJ557833, AJ557834, AJ557835 and 

AJ557836. The bacteria from which these sequences were obtained are hereafter referred to as B1, B3, 

B6, B7, B9 and B16, respectively. The closest phylogenetic affiliations of the bacteria to named species 

or genera in the EMBL database are shown in Table 1, along with cell shapes and dimensions.  

 

2.4. Preference experiment 

Nematodes were offered a choice of microbes in a ‘cafeteria’ design [23] on lake water agar (LWA) 

medium. The medium consisted of 0.2 μm-filtered water from an oligotrophic lake at Signy Island, 

0.5% technical agar (agar no.3, Oxoid Ltd., Basingstoke, U.K.) and 50 μg ml-1 of the bacteriostatin 

ampicillin (Sigma-Aldrich, Gillingham, U.K.). Preliminary experiments indicated that ampicillin added 

to the LWA medium reduced bacterial growth on its surface and improved attraction of nematodes to 

microbial prey offered within the cafeteria design, relative to LWA medium without ampicillin. These 

experiments also indicated that the inclusion of ampicillin in the medium was more effective at 

reducing bacterial growth than rinsing nematodes in bacteriostatin solution prior to preference 

experiments [12]. With the regular addition of bacteria to cultures, nematodes could be kept for at least 
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four weeks on LWA medium to which ampicillin had been added without showing altered behaviour, 

reproduction or mortality. The LWA medium was poured to a depth of 1.5 mm into 48 single-vented 

90 mm Petri dishes. After the layer of LWA medium had solidified, six sterile plastic cylinders of 12 

mm diameter and 15 mm length were placed vertically and equidistantly onto the medium under a 

sterile hood. The centre of each disk was 30 mm from the centre of the Petri dish. A second layer of 

LWA medium was then gently poured to a depth of 5 mm. After this layer of medium had solidified the 

plastic cylinders were removed, leaving six wells of 12 mm diameter and 5 mm depth in the LWA 

medium (Fig. 1 a). 

Three alternate wells in each Petri dish were plugged with 12 mm diameter and c. 4.5 mm 

thick discs of R2A medium. These wells are hereafter referred to as control wells. The remaining three 

wells were plugged with discs of R2A medium (Fig. 1 b), of the same dimensions as those in control 

wells, on which microbes had been grown for 7 d in the light at 15 ºC. Twelve Petri dishes received 

alternate plugs inoculated with C. minutissima strains 1 and 2 and S. bacillaris, 12 dishes received 

alternate plugs inoculated with M. hyalina, P. aurantiogriseum and T. viride, 12 dishes received 

alternate plugs inoculated with B1, B3 and B6, and a further 12 dishes received alternate plugs 

inoculated with B7, B9 and B16. Hyphae and conidia were present on the plugs of medium on which 

fungi were grown. The total volumes of cells offered to nematodes, estimated from the product of the 

mean volume of each cell (calculated from standard geometric formulae, assuming right circular 

cylinders for rods and spheres for cocci) and the mean number of cells per unit area of medium from 

which plugs were cut, did not differ within each of the three groups of microbes (all P>0.05). There 

was also no difference between the total cell volumes ± s.e.m. of algae and bacteria in each well (29.5 

 107 ± 1.8 x 107 μm3 and 21.2 x 107 ± 1.8  107 μm3, respectively; P>0.05). However, the mean 

volume ± s.e.m. of fungal hyphae and conidia (c. 7.4 x 107 ± 1.2 x 107 μm3) in each well was 

significantly lower than the volumes of algal and bacterial cells presented to nematodes (P<0.01). 

After the plugs of medium had been added to each of the 48 dishes, the LWA medium was 

gently flooded with a c. 1 mm deep layer of 0.2 μm-filtered lake water to ensure that less motile 

nematodes could move across the agar medium surface. The tops of the R2A medium plugs were c. 0.5 

mm lower than the level of LWA medium in each Petri dish, ensuring that excess microbial cells did 

not distribute across the surface of the medium when the layer of lake water was added. Groups of 50 

adult G. villosa, Plectus spp. or Teratocephalus spp. of similar size, each of which had been washed in 
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three changes of sterile lake water, were pipetted into the water at the centre of each of four Petri dishes 

containing plugs of R2A agar medium inoculated with either algae, fungi or one of the two 

combinations of bacteria. The dishes were incubated in the dark at 15 ºC to ensure rapid movement of 

nematodes towards microbial prey [12]. Nematodes in each well were counted at 24 and 48 h with a 

stereomicroscope (6-50 x magnification). The dishes were handled carefully to avoid displacement of 

nematodes from the wells. 

 

2.5. Ingestion of fluorescent beads 

When the preference experiment indicated significant attraction of nematodes to microbes, experiments 

using fluorescent beads were performed to test for increased ingestion by nematodes in the presence of 

prey. Spring water (0.2 μm-filtered) was added to a depth of 1 mm to colonies of the appropriate 

microbes growing on R2A medium and the surfaces of the colonies were gently rubbed with a sterile 

glass spreader. Aliquots (0.5 ml) of the water, containing c. 2.5 x 106 algal and bacterial cells and c. 1.2 

x 106 fungal conidia, were dispensed into tissue culture plate wells and 2 μl of a suspension of 

Tetraspeck fluorescent beads (0.5 μm diameter; Molecular Probes Inc., Eugene, OR, U.S.A.), with 

respective excitation and emission maxima at 505 and 515 nm, was added to each well. Controls 

consisted of 0.5 ml of 0.2 μm-filtered spring water, taken from the surface of uninoculated R2A 

medium, with 2 μl of fluorescent beads suspension. Treatment and control wells each received c. 3 x 

106 beads. Individual nematodes were introduced into each of 10 control and treatment wells and the 

tissue culture plates were incubated in the dark at 15 ºC. The number of fluorescent beads ingested by 

each nematode was counted after 24 h using epifluorescence at 1000 x magnification. 

 

2.6. Statistical analyses 

One way ANOVA was used to compare (i) the numbers of nematodes remaining on the agar medium 

surface with those accumulated in control wells and wells containing microbial prey and (ii) the 

numbers of nematodes accumulated in control wells with those accumulated in wells containing 

microbial prey. Control values entered into the latter analyses were the mean numbers of nematodes in 

the two control wells either side of each replicate well containing the appropriate microbial prey. 

Repeated measures ANOVA was used to determine the main effects of time, and the main and 

interactive effects of prey type and nematode genus or species, on nematode accumulation in wells. 
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Control values were eliminated from these analyses. One way ANOVA was also used to compare the 

numbers of fluorescent beads accumulated in the guts of nematodes in the presence of microbial prey 

with the numbers accumulated in the guts of nematodes in water controls. 

             

3. Results 

3.1. Responses to time 

No main effect of time was found on the numbers of nematodes accumulated in wells containing 

microbial prey (Table 2): numbers of nematodes in the wells remained the same at 24 and 48 h.  

 

3.2. Responses to algae 

Significantly more nematodes remained on the LWA medium surface than accumulated in control 

wells and wells containing algae (mean numbers per dish = 35.4 and 14.6, respectively; P<0.001). 

However, there was a strong main effect of algae on nematode accumulation in wells (Table 2): more 

nematodes accumulated in wells containing C. minutissima strain 2 than in wells containing C. 

minutissima strain 1 or S. bacillaris (mean numbers per well ± s.e.m. = 4.5 ± 0.7, 1.5 ± 0.2 and 2.6 ± 

0.4, respectively). There was also a highly significant main effect of nematode genus on the numbers of 

nematodes accumulated in wells containing algae (Table 2): G. villosa was more frequently recorded in 

algal wells than Plectus spp. or Teratocephalus spp. (mean numbers per well ± s.e.m. = 4.8 ± 0.7, 2.5 ± 

0.3 and 1.3 ± 0.3, respectively). Furthermore, there was a significant interactive effect of alga and 

nematode genus on the numbers of nematodes accumulated in wells (Table 2): there were significant 

differences between nematode genera in the isolates of algae that they were attracted to. 

A comparison of the mean numbers of nematodes accumulated in wells containing individual 

algae with those in adjacent control wells indicated significant attraction to two algal isolates. G. 

villosa was significantly attracted to C. minutissima strain 2 and Plectus spp. were attracted to S. 

bacillaris (Fig. 2 a, b). However only G. villosa ingested a significantly greater number of fluorescent 

beads in the presence of algal cells compared with water controls (Fig. 2 a, inset): Plectus spp. did not 

ingest more beads when presented with S. bacillaris (Fig. 2 b, inset). 
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3.3. Responses to fungi 

Significantly more nematodes remained on the LWA medium surface than accumulated in control 

wells and wells containing fungi (mean numbers per dish = 38.3 and 11.7, respectively; P<0.001). 

There was also no main effect of different fungi on nematode accumulation in wells (Table 2). 

However there was a strong main effect of nematode genus on the numbers of nematodes accumulated 

in wells containing fungi (Table 2): more G. villosa individuals were attracted to wells containing fungi 

than either Plectus spp. or Teratocephalus spp. (mean numbers per well ± s.e.m. = 4.0 ± 0.6, 2.4 ± 0.3 

and 1.0 ± 0.2, respectively). There was no interactive effect of fungus and nematode genus on the 

numbers of nematodes accumulated in wells containing fungi (Table 2). Only one significant trophic 

link between nematodes and fungi was recorded: G. villosa was significantly attracted to M. hyalina 

(Fig. 2 c) and ingested a greater number of fluorescent beads compared with controls when presented 

with conidia of the fungus (Fig. 2 c, inset). 

 

3.4. Responses to bacteria 

There was no difference between the numbers of nematodes remaining on the LWA medium surface 

and those accumulated in control wells and wells containing bacteria (mean numbers per dish = 28.0 

and 22.0, respectively, P>0.05). There were no significant main effects of bacterium or nematode 

genus on the accumulation of nematodes in wells (Table 2). However, there was a strong interactive 

effect of bacteria and nematode genus on nematode accumulation in wells (Table 2): there were 

significant differences between nematode genera in the isolates of bacteria that they were attracted to. 

 A comparison of the numbers of nematodes accumulated in wells containing individual 

bacteria with those accumulated in adjacent control wells indicated that both G. villosa and 

Teratocephalus spp. were attracted to B16 (Fig. 2 d, e). Both of these nematodes ingested more 

fluorescent beads in the presence of B16 than in their absence (Fig. 2 d, e insets). Higher numbers of 

Plectus spp. accumulated in wells containing B3, B7 and B9 than accumulated in control wells (Fig. 2 

f-h) and more fluorescent beads were ingested by Plectus spp. in the presence of these bacteria than in 

their absence (Fig. 2 f-h, insets). 
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4. Discussion 

Our experiments indicated significant differences between nematodes in the algal and bacterial prey 

that they were attracted to. The finding that Antarctic soil nematodes exhibited differing preferences for 

microbial prey is an important observation because it suggests that they are apparently not generalist 

feeders, as has been previously assumed [21]. Selective, rather than generalist, feeding by nematodes 

on microbial prey may have important implications for analysing the flow of energy through soil food 

webs, particularly if microbivorous nematodes do not specifically feed on bacteria or fungi, as has been 

assumed in previous work [14]. Furthermore, selective feeding by nematodes on microbial prey may 

alter the outcome of interspecific competition between microbes and potentially has implications for 

determining microbial distribution in soil. Differing preferences for microbial prey have similarly been 

shown in marine ecosystems, in which different nematode species have been shown to exhibit selective 

preferences for distinct diatoms and bacteria [12,23]. These differences in the attraction of nematodes 

to distinct microbial species, and, in the case of Geomonhystera in the current study, to specific strains 

of microbes, are likely to be owing to chemotaxis towards different types or concentrations of water-

soluble compounds produced by microbes, such as cyclic nucleotides or ammonia [3,25].  

The laboratory-based approach taken in this study was necessary to determine trophic 

interactions between members of a soil microbial food web. However the artificial nature of the 

experiments probably influenced nematode response to microbial prey. For example, the use of a two-

dimensional agar medium surface on which to offer prey to nematodes may have influenced their 

behaviour, relative to the three dimensional matrix in which they locate prey in the natural environment 

[1]. The growth of prey on a relatively nutrient-rich medium is also likely to have altered their 

attractiveness to nematodes, relative to prey growing in nutrient-limited conditions in soil. 

Furthermore, a relatively high temperature (15 ºC) was used in our experiments to ensure rapid 

movement of nematodes towards microbial prey. This temperature is regularly experienced by 

organisms inhabiting the upper layers of Antarctic soils during cloudless periods in summer, but does 

not persist for more than a few hours each day [9]. A previous study has, however, found that 

temperature does not influence nematode preference for different microbial prey [23].  

Another artificial aspect of our study was the inclusion of a bacteriostatin in the agar medium 

used in the preference experiment. It was necessary to use the bacteriostatin because bacterial 

contaminants present on the surfaces of nematodes, which had been extracted directly from field-
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collected material, grew on the agar medium and reduced the attraction of nematodes to microbes in 

wells. Previous studies [12,23] have not adopted this approach, probably because nematodes were 

extracted from long-term gnotobiotic cultures fed on specific strains of bacteria or diatoms, reducing 

the numbers of contaminants present on nematodes. However, we were unable to adopt this approach 

in our experiments: although we have developed cultures of Plectus spp. from Signy Island soil, we 

have failed to develop either G. villosa or Teratocephalus spp. cultures, despite repeated attempts to do 

so.  

Despite the artificial experimental conditions used in our study, common elements of the 

microbial food web present in Signy Island soil were used in the experiments. Previous work has found 

70% of nematodes extracted from moss at the island to consist of G. villosa and species of Plectus and 

Teratocephalus [11]. Furthermore, the microbial prey presented to nematodes in our study are 

commonly present in the natural environment. For example, S. bacillaris, Arthrobacter, Bacillus, 

Chlorella and Mortierella spp. are all frequently isolated from Signy Island soils [5,8]. S. bacillaris, 

Chlorella and Mortierella spp. are also common representatives of eukaryotic rDNA clone libraries 

constructed from Signy Island soil (B. Lawley, pers. comm.). In addition, the numbers of microbial 

cells offered to nematodes in our study were similar to those encountered in the field: algal and 

bacterial cell counts at soil surfaces range from 1 x 103 to 8.5 x 106 cm-2 and 4 x 109 to 3 x 1010 cm-2, 

respectively [5,20], which broadly correspond to the mean numbers of cells of these microbes 

presented to nematodes in our study (1.1 x 107 and 7.0 x 108 cm-2, respectively). 

Our data in part confirm current views on the feeding habits of Antarctic nematodes. Plectus 

spp. and Teratocephalus spp. are typically classified as bacterial feeders [27] and our study suggested 

that these nematodes only feed upon bacteria, and not on algae and fungi. However, Geomonhystera 

spp. are classified as bacterial feeders and substrate ingesters [27] and our data indicate that G. villosa 

should now also be classed as a unicellular eukaryote feeder in the scheme presented by Yeates et al. 

[27]. Given that G. villosa has wider mouthparts than Plectus spp. or Teratocephalus spp. (mean stoma 

widths of the nematodes are c. 7, 5 and 3 μm, respectively [2,10]), it is not surprising that it was more 

attracted to algae and fungi than the other two nematodes: with the exception of the bacterium B1, algal 

and fungal cells were larger than the bacteria offered to nematodes.  

Previous studies have recorded heterogeneous spatial distributions of nematodes in Antarctic 

soils [11,18]. The primary factors responsible for these clumped distributions are thought to be 
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increased temperature and water availability, which lead to the development of favourable 

microhabitats for nematodes in soil [11,18]. However, discrete microhabitats in soils also favour the 

development of distinct microbial populations, for example by affinities for different organic substrates 

[21]. In agreement with previous studies [11,16,18,19], our data therefore suggest that attraction to 

different populations of microbial prey present in discrete microhabitats may be a potentially important 

factor governing the heterogeneous distribution of nematodes in Antarctic soils.  

 Our observation that nematodes exhibited differing preferences for microbial prey suggests 

that complex trophic interactions may exist in apparently simple Antarctic soil food webs. This 

observation has potentially important implications for predicting the responses of these food webs to 

imminent climate change. The simplicity of food webs in Antarctic soils, and particularly those of 

Continental Antarctica, is thought to increase their vulnerability to environmental change [7]. However, 

given the strong theoretical link between resilience to perturbation and food web complexity, and in 

particular connectance [17], the finding that these food webs may exhibit reduced connectance is likely 

to influence their response to environmental change. At present it is not possible to accurately predict 

whether low connectance within Antarctic soil food webs increases or decreases their resilience to 

perturbation. This question, and the influence of other aspects of food web architecture on the response 

of model Antarctic food webs to environmental change, is a focus for ongoing research in our 

laboratory. 
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Table 1  

Taxonomic placement and morphology of microbial prey 

prey type name shape length of rod / 

diameter of 

coccus (μm) a 

width of rod 

(μm) a 

 

 

alga 

 

 

 

fungus 

 

 

 

bacterium 

 

Chlorella cf. minutissima strain 1 

Chlorella cf. minutissima strain 2 

Stichococcus bacillaris 

 

Mortierella hyalina 

Penicillium aurantiogriseum 

Trichoderma viride 

 

B1 (Bacillus macroides, 95%, 180) c  

B3 (Arthrobacter, 99%, 720) c 

B6 (Frateuria, 95%, 754) c 

B7 (Pseudomonas, 98%, 684) c 

B9 (Polaromonas, 98%, 659) c 

B16 (Frigoribacter, 90%, 670) c 

coccus 

coccus 

rod 

 

coccus b 

coccus b 

coccus b 

 

rod 

rod 

rod 

rod 

rod 

rod 

3.0-(3.7)-8.0 

3.0-(4.0)-7.0 

3.0-(5.6)-10.0 

 

4.0-(4.7)-5.5 

2.8-(3.0)-3.5 

3.0-(3.1)-3.5 

 

6.0-(23.3)-80.0 

0.8-(1.0)-1.2 

1.0-(1.2)-1.8 

1.0-(1.5)-2.0 

1.0-(1.2)-1.5 

0.5-(0.6)-0.8 

 

 

2.0-(2.1)-3.0 

 

 

 

 

 

1.2 

0.5 

0.3 

0.4 

0.3 

0.2 

 

a n = 50, values are minimum-(mean)-maximum, except for widths of bacteria which are approximate 

values 

bconidia only 

c names, percentages and numbers in parentheses are the closest phylogenetic affiliations of bacteria to 

named species or genera, the similarities to these taxa and the sequence length in base pairs 
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Table 2  

Main effects of time, and main and interactive effects of prey type and nematode genus, on the 

numbers of nematodes accumulated in wells containing microbial prey in preference experiment. Data 

were analysed by repeated measures ANOVA. 

 

main and interactive effects      d.f. F    P   

time 

alga 

nematode  

alga x nematode  

 

time 

fungus 

nematode  

fungus x nematode  

 

time 

bacterium 

nematode  

bacterium x nematode  

1,27 

2,27 

2,27 

4,27 

 

1,27 

2,27 

2,27 

4,27 

 

1,60 

5,60 

2,60 

10,60 

2.16 

14.36 

19.74 

8.91 

 

2.17 

0.40 

5.95 

0.44 

 

1.51 

1.75 

0.55 

3.42 

0.154 

<0.001 

<0.001 

<0.001 

 

0.152 

0.676 

0.007 

0.776 

 

0.233 

0.138 

0.582 

<0.001 

 

*** 

*** 

*** 

 

 

 

** 

 

 

 

 

 

*** 
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Figure legends 

 

Fig. 1. (a) Transverse section through Petri dish used in the preference experiment (b) Plan view of dish 

showing positions of control wells (     ) and wells containing microbial prey  (     ). 

 

Fig. 2. Numbers of nematodes accumulated in control wells (      ) and wells containing microbial prey  

(      ) in the preference experiment. Nematode / prey combinations are shown above each Figure. 

Values are means of four replicates ± s.e.m. Data in (b), (d) and (f) were recorded at 24 h, data in other 

Figures were recorded at 48 h. Note that y-axes of all Figures are identically scaled. Insets: numbers of 

fluorescent beads ingested per nematode in the absence (      ) and presence (      ) of prey. Values are 

means of 10 replicates ± s.e.m. Differences between control and treatment means in Figures and insets 

are indicated by n.s. P>0.05; * P<0.05; ** P<0.01; *** P<0.001. 
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n.s.

***

*** *

(c)

***

*

***

***

*
*

(f)

**

*

**

*

**

**

 


