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Abstract: The distributed selection problem is to select 
the k-th smallest element of a set N of elements 
distributed among nodes of a point -to -point asynchro- 
nous communication network. Efficient algorithms 
have been found for networks with simple topologies 
such as stars, meshes and complete binary trees but not 
for general trees. In this paper, we present an improved 
selection algorithm for general tree networks. Base on 
the conventional reduction strategy, we introduce a 
tree partition technique to localize the message passing 
and therefore to reduce the total message complexity. 
Key words: Distributed algorithms, selections, 
medians, tree partitions, message complexity. 

1. Introduction 
The classical problem of selecting the k-th smallest 

element of a set drawn from a totally ordered set has 
been studied by many researchers in serial and parallel 
models. But in a distributed model, it has different 
formulations and complexity measures and in this 
paper we will confine ourself to a point-to-point 
asynchronous communication network. 

A point-to-point asynchronous communication 
network can be modeled by an undirected graph G = 
(V,  E) ,  where the nodes of Vrepresent processors of the 
network and the edges of E represent bidirectional 
non -interfering communication links. There is no 
central controller, neither common clock for network 
synchronization and there is no global memory for 
interprocessor communications. Instead, they are done 
through various messages. Therefore the distributed 
algorithms considered in this paper are primarily 
message driven. All the messages have a fmed length, 
and may carry only a limited amount of information. 
Furthermore, we assume the network is sufficiently 
reliable that the messages sent in a link is received error 
free by the receiver node in First -1n-First -Out (FIFO) 
order with finite but totally unpredictable delays. It is 
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usually assumed that the local 
negligible when compared to the CO 

therefore the performance of the algorithm is custo 
arily measured by the amount of communicatio 
activity, that is, the message complexity, rather tha 
the amount of processing activity. This type of comp 
tation model has been used by several authors [13, 5, 

The distributed selection problem is to find the k-th 
7981. 

smallest element of a set Nof elements w 
distributively among nodes of a c 
network. For a general point -to-point network, Shrira 
et a1 [8] assumed there is a rooted spanning tree on the 
network and proposed three algorithms to solve this 
problem. The first one is a probabilistic algorithm with 
expected O( I VI log I NI ) messages while in the worst 
case it needs O( I VI I N I )  messages. The other two 
algorithm are deterministic algorithms with the same 

message complexity O( I VI 1 NI 0*9114) and different 
storage requirements. In this paper, lese 

improved algorithm with message complexity O( 

4m I VI log I NI ) where h is the height of the tree. 
This result significantly improves the existing solution 
proposed by Shrira et al [8). In [7], Santoro and Suen 
proposed an open problem to find an efficient selection 
algorithm for arbitrary tree networks. Since the 
message complexity of our algorithm is bounded by 

O(h' I VI log I N I )  for any small E > 0 and 
Frederickson [5] has shown Q( I VI log(2 [ NI / 1 VI )) is 
the message lower bound for the selection problem of 
complete binary trees, we think our algorithm gives an 
asymptotically efficient solution to that open problem. 
Finally we note that if the topology of a network is 
a tree, a spanning tree of the network can 
constructed first [l-31 and then the k-th smalles 
element can be found by using the proposed algorithm. 
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There are other algorithms which solve the k-th 
smallest element problem but all are for networks with 
different models or special topologies. Santoro and 
Suen [7] proposed a reduction technique for shout -echo 
networks and point-to-point networks whose topology 
have a spanning star graph. Frederickson [5]  presented 
algorithms for rings, meshes and complete binary trees. 

The rest of the paper is arranged in the following 
manner. A basic distributed selection algorithm is 
given in Section 2. Section 3 presents a tree partition. 
The reduction technique based on tree partitions is 
discussed in Section 4.  Section 5 gives an application of 
selection algorithm - distributed convex hull 
algorithm. Section 6 contains our conclusions. 

2. Basic distributed selection algorithm 
For sequential selection problem, Blum et a1 [4 ]  

introduced the idea of median of medians and obtained 
an optimal sequential selection algorithm with O(n) 
time complexity. For a set of elements, a median of 
medians drawn from the set has the property that there 
are at least 1/4 of elements which are greater than and 
at  least 1/4 elements which are smaller than the 
median of medians. Therefore Blum et a1 pick a median 
of medians as the pivoting element, recursively prune 
at least 1/4 elements which can not be the k-th 
smallest element each time. Shrira et a1 [8] transferred 
the idea into distributed environment and derived a 
distributed selection algorithm with message 

complexity O( I VI l N l o ' g 1 1 4 ) .  In Shrira et al's 
algorithm, major amount of messages are due to 
finding a median of medians. On the other hand, a 
similar idea of median of medians, the weighted 
median, is introduced by Johnson and Mizoguchi [ 6 ] :  

+ Definition 1 [6 ] .  Let w :  A - + R  be a weight function 
m 

defined on A. An element a satisfying C w(a.) 2 
i= l  a 

m 

n m-1 n 
C w ( a . )  and C ~ ( a . )  5 C w ( a . )  is called a 

i=m+1 a i = l  i=m ' 
weighted median ofA with respect tow. 

If the element a .  is a median of a set of elements A .  

and the weight function U(..) = I A I , then it can be 

shown that for the set of elements A = U A ., there are 

at least 1/4 of elements in A which are greater than and 
at least 1/4 elements in A which are smaller than the 

i=l a 

weighted median a By using weighted median 

instead of median of medians as pivoting element, 
Marberg and Gafni [ 9 ] ,  Santoro and Suen [7] proposed 
several optimal distributed selection algorithm in 
shout -echo networks. 

It is not necessary to find a pivoting element which 
can prune a t  least 1/4 elements still under 
consideration. In fact, we may find a pivoting element 
which just can prune at least 1 / 8 ,  1 / 1 6 ,  or fewer 
elements. It also costs fewer messages to find such a 
pivoting element and therefore reduces the total 
message complexity of the distributed selection 
algorithm. In the following, we will formalize this idea. 

First we generalize the notion of median of medians 
and weighted median to the p-th order median for p 2 
1. A constructive method for finding a p-th order 
median distributively will be given in Theorem 1 .  

n}  be a set of elements with the 

total order "I". Without loss of generality we may 
assume a . <  a 

m' 

Let A = ( a .  I 1 5 i 

for 1 5  i <  n. 
a -  i+l 

Definition 2. A subset of A is said to be the p-th order 
median set for p 2 1 if the subset contains all elements 

which are greater than or equal to at least 1 I A I /2'1 
elements in A and are less than or equal to a t  least 

[ I  A I / Z p l  elements in A. Any element in a p-th order 
median set is called a p-th order median. 

Let Ai,  1 5 i 5 n, be sets of elements and let A = 

n 
U A.. The following theorem provides a method for 

finding a ( p  + 1)-th order median of A if a p-th order 
median of each A .is available. 

i=l a 

Theorem 1. Let A ., 1 5 i 5 n, be sets of elements and m .  

be a p-th order median of A .. If m is a weighted median 

of the set { m .  I 1 5 i 5 n} with respect to the weight 

function w ( m . )  = I A.1 , then m is a ( p +  1)-th order 

medianofA= U A.. 

Proof. Without loss of generality, we may assume m .  5 
m for 1 5  i <  nand m =  m.for some j, 1 5  j <  n. We 

can prove m is greater than or equal to at least 

n 

i=l a 

i+ 1 3 

j 
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[ I  A 1 /Zp+l1 elements in A .  Similarly, we can prove 

that m is less than or equal to at least [ I  A I /Zp+ll  
elements in A .  Therefore, m is a ( p +  1)-th order 
median of A .  0 

Now we will introduce a basic algorithm to solve the 
distributed selection problem based on the conven- 
tional reduction strategy, which iteratively selects a 
pivoting element to reduce the problem size until it 
reaches a comfortable size or the k-th smallest element 
is found. 

Intuitively, this algorithm starts from the root to ask 
for a first order median and the number of elements of 
each node. After collecting all these information, the 
root finds a second order median m according to 
Theorem 1 and sends m back to each node as the 
pivoting element for the first reduction. By comparing 
the rank of m in N with k, either we find m is the k-th 
smallest element or we can remove at  least 1/4 of the 
elements. For the latter case, since some elements have 
been removed from consideration, we may adjust k and 
N and call the same procedure recursively until the 
k-th smallest element is found. We will discuss the 
details in the following. 

Let the given communication tree network be T = 
(V ,  E) with height h. We denote the set of elements 
stored on the node v as N(v) and L(v; m) = {a I a E 
N(v) and a < m). Furthermore, we assume all elements 
in Nare distinct for simplicity. 

The following two procedures are called by the 
selection algorithms. The first procedure is the 
Procedure Median which is executed by the root node 
to find a second order median of N. The second 
procedure is the Procedure Reduce-and-Find which is 
also executed by the root node to check whether an 
element m is the k-th smallest element. If it is, then the 
root node will terminate the selection algorithm by 
broadcasting a stopping message to each node. If it is 
not the case, then the root node will use the element m 
as a pivoting element to reduce the problem size. 

Procedure Median. 
Step 1. The root node broadcasts an initial message 
to each node. 
Step 2. After receiving the initial message sent from 
the root node, every node v. E Vsends the median m .  2 of 

N ( v  .) and I N(v .) 1 to the root node. 

Step 3. The root node finds a weighted median m of 
{mi I 1 5 i 5 I VI } with respect to the weight function 

w(mJ = I N(v.JI. Now the weighted median m is a 

second order median of N. 

Procedure Reduce-and-Find. 
Input: An element m. 
Step 1. The root node finds the overall rank r of m 
in N. This can be done by broadcasting m to each node 
and then accumulate I L(v; m) I from all leaf nodes up 
to the root node for all v E V. 
Step 2. The root node determines whether or not 
is the k-th smallest element of N. If r = k then m is t 
k-th smallest element of N and the root nod 
terminates the algorithm by broadcasting a stoppin 
message to  each node. If r > k then the root nod 
broadcasts a message Too-Large to each node. If r < 
then the root node sets k = k-r and broadcasts a 
message Too-Smallto each node. 
Step 3. If node v receives the message Too-Large, v 
sets N(v) = L(v; m). If v receives the message 
Too-Small, vsets N(v)= N(v)-L(v; m)-{m}. 

Now we give the basic distributed selection 
algorithm as follows. 

Algorithm Selection-I. 
Step 1. The root node fin 
m of Nby executing the Proce 
Step2. Execute the Proc 

not, the problem size is reduced. 
Step 3. 
then it stops. When the root node 
algorithm is terminated and the k-th sm 
of Nis m. If not, go to Step 1. 

If a node has received the s 

It can be easily seen that the messa 
the Procedure Median and the Proced 
O(h I VI) and O( 1 V I )  re 
iteration of the Algorithm Selection-I we use a secon 

in N a n d  there are at most 
message complexity of Algorithm Selection -I 
therefore O(h I VI log I NI).  

3. Tree Partitiona 
In the Algorithm Selection-I, we notice that t 

every median all the way up to  the root is the 
cost. In order to avoid this process, w 
partition the tree properly into subtrees wit 
height. Then each node on1 
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root of the subtrees can compute a second order median 
of elements in its own subtree. Then the root of the tree 
collects these second order medians to find a third order 
median as the pivoting element. We can show that with 
the help of tree partitions, the improved algorithm runs 

with message complexity O( h1’2 I VI log I NI ). In fact 
we may partition the tree recursively several times, and 
obtain a selection algorithm with more better message 
complexity. In the following, we give some notations of 
tree partitions and a distributed tree partition 
algorithm. 

Definition 3. Let s 2 1 be an integer. A tree is said to be 
a height and weight constrained tree (HW tree for 
short) with respect to  s if the number of nodes of the 
tree is a t  least sand  the height of the tree is a t  most s. A 
tree is said to be an underweight tree with respect to s if 
the number of nodes of the tree is less than s. 

Definition 4. Let T be a tree and s 2 1 be an integer. A 
height and weight constrained partition (HW partition 
for short) of T respect t o  s, denoted by P ( s ) ,  is a 
partition of T such that T is partitioned into HW 
subtrees except at most one underweight subtree with 
respect to s. Therefore an  H W  partition is an almost 
uniform partition as far as the tree height is concerned. 

Let us consider { T .  = (Vi ,  E> I 1 < i < n} ,  the 

collection of all second level subtrees obtained by an 
HWpartition P(s ) on a tree T. If we identify each T. 

as a node, then the original tree can be regarded as a 
tree of subtrees, denoted by q s  1. If we construct an 

HWpartition P(s ) on the tree q s  1, then we obtain a 2 1 
set of HWsubtrees with respect to s and each of them 

contains a t  least s subtrees, and therefore s x s 2 1 2  
nodes of T. This is a multi-level partition of T and a 
recursive definition based on top -down principle is 
given in the following. 

1 

1 

2 

Definition 5. Let T b e  a tree and I =  ( s l ,  s2, . . ., s ) be 

a p-tuple of integers where s. 2 1 for 1 < i < p. A p- th  

level height and weight constrained partition (p- th  level 
HW partition for short) of T with respect to s, denoted 
by P(slJ s2’ . . ., s ), is a partition of Tsuch that if p = 

1’ 1 then P(sl) is a H W  partition with respect to s 

otherwise T i s  partitioned into H W  subtrees except a t  

P 

P 

most one underweight subtree w i t h  respect t o  

P 
11 s and each subtree has a (p-1)-th level HW 
i=l 
partition with respect to  the (p- 1)-tuple ( s l ,  s2’ . . ., 

i’ 

In the following, we introduce an  integer representa- 
tion based on given U =  ( s l ,  s2, . . ., s ) to represent the 

height of multi -level subtrees. 
P 

Definition 6. Let n be a positive integer and I=  (s s 1’ 2’ 
. . ., s ) be a p-tuple of integers where s. > 1 for 1 < i < 
p. The partition representation of n with respect to I is 

P 2 -  

P 

2 1 
+ n  II s . + n  II s . + n  wheren >OandO< 

P -  I 1 .  I o 
i=l F 1  

n . < s  forO<i<p.  
t i+l 

For example, let I = ( 3 ,  2) and n = 5 .  The partition 
height of n with respect to sis (012) since 5 = 0 x 6 + 1 
x 3 + 2 .  

Definition 7. Let T be a tree with a p-th level HW 
partition P ( s l ,  s2, . . ., s ). The partition height of a 

node v is 1 if the node is a leaf node. Otherwise the 
partition height of v is ( n  n - * n n n ) + 1 

where n . =  max { n .  .) and ( n  - n .  

n ) is the partition height of v .  with respect to s 

s2, . . ., s and nodes vlI  v2, . . ., v P m 

P 

P P l  2 1 0  

3 I <  i s m  *J i , p n i , p l  t ,2  

1’ i,lni,O 
are sons of v. 

The following algorithm describes a labeling method 
which will correspond to a p-th level HW partition 
discussed above. 

Algorithm Label. 
Input: pintegers sl, s2, . . ., s 
Step 1. The root node broadcasts a message P and p 
integers slI s2, . . ., s to all nodes. 

Step 2. 
slI s2’ . . ., s 

P’ 

P 
After receiving the message P and integers 

if node v is a leaf node, then v sets its 
P’ 
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partition height 6 to be 1, otherwiseit sets 6= (n n 

- - n n n )with respect to 5, 32,.. ., 3 
2 1 0  P‘ 

Step 3. For each node v E V, v is labeled A + 1 if the 
n is the first digit not equal to zero, that is, n > 0 and A x 
n .=OforO<i<A.  

Step 4. 

P P-1 

The root node is labeled p + 2. 

Since Step 1 broadcasts p integers to all nodes, the 
message complexity of Algorithm Label is O(p I VI ). If 
all inputs s. are equal to the same integer 3 for 1 < i < p, 

we can just send two integers: p and 3. So the message 
sent in the first step is reduced to O( I VI) and the 
message complexity of the algorithm is also reduced to 
O( I VI 1. 
4. Selection Algorithm 

Now we introduce the main idea of our improved 
selection algorithm. Let Ube a subset of Vand N( U) = 
U N(v) be the set of elements in U. Let { T .  = (V.  , 

vE U 
EJ 1 1 5 t 5 n} be the collection of all subtrees after an  

HW partition. Suppose the root node of subtree T. 

finds a second order median m . of N( VJ first, and then 

sends it to the root node of the tree T to compete for the 
pivoting element - a third order median of N. Then 
we can avoid every node sending its candidate to the 
root. We note that our labeling method implicitly 
implies this idea. For example, a node labeled 2 can be 
regard as the root of two subtrees, namely, the subtree 
containing itself and a subtree T therefore it has to 

compute its own median first and then a second order 
median of N( V.). In general, the node with label A will 

compute a p-th order median for every 1 5 p < A. 
The notion of multi-level subtrees induced by our 

labeling method is formally described in the following 
definition. 

2 

D e f i t i o n  8. Let T = (V, E) be a tree and )(U) be the 
label of v according to the Algorithm Label. Then for 
each 1 5 p < A(v), the p-th level subtree rooted at node v 
is a subtree T’ of Tsuch that a node U E T‘ if and only 
if U =  vor A(u) < pand the father of uisin T’ . 

In the following, we will partition the tree and use a 
p-th order median instead of a second order median to 
remove a certain amount of elements. We will 
investigate how much further we can keep on 
partitioning as far as the communication efficiency is 

concerned. First we will analyze the messag 
complexity for the selection algorithm based on 
reduction strategy by partitioning the tree p- 1 t’ 
recursively, and then derive an optimal value p su 
that the message complexity is minimized. 

A (p+2)- th  order median of a tree can b 
when a p-th level H W  partition has been cons 
Let v be the root of a -th level subtree T = ( 

Then v finds a A -th order median m and sen 
1 N( V J  I to  the nearest ancestor node with la 

for 1 < A < p + 2. Then the root node find a (p + 2) -th 
order median. 

Let M(sl, s2, . . ., s ) be the number of messages sent 
P 

during the computation of a (p + 2) -th order media 
Non a tree with a p-th level HWpartition P( 
3 ). The following theorem gives an  estimation of M(3 1’ P 

P 

i=l 
..., sp) = O(l VI E 3; + 1’ s2’ Theorem 2. M(3 

P P 

i= 1 i=l 
Since E s i + h /  II st 2 (p+  1) h 

Msll s21 P ) = O((P + 1)h 

choosing si = [hl’(*’)l for 1 5 i < 
bound M(sl, 32,.. ., sp) = O((p+ 1) h l /(P+l) 1 VI). 

Since a p-th order median of Nwill remove at least 

l / Z P  of the elements in N, we will obtain the k-th 
smallest element of N after some finite number of 
iterations. Let n be the number of iterations. It is clear 
that there always exists at least one element. Thus 

(1-1/2P)n I NI 2 1. This implies 1 n 5 
/log(2P/(2P-1)) = log I NI /(log2P - log(2P 

the Mean Value Theorem, we obtain log I NI /(log2 - 
log(2P- 1)) = (2’- E )  log I N I  for some o < E < 

Combine the upper bound of the number of i 
and the number of messages required in each iteration, 
we can construct a (p- 1) -th level HWpartition on the 
tree and using a (p + 1) -th order median to obtai 
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distributed selection algorithm with message 

complexity 0 ( p 2 p + ~  hl/p I V I  log I N I  or ~ ( p  2’ 

h1lP I VI log I NI ). By computing the minimum of the 

convex function f(p) = p 2’ hl/’, we choose p = 
as a good approximation and obtain the following 
theorem. 

Theorem 3. The distributed selection problem can be 

solved with message complexity O ( m  2 m 

Since the functions and 4’Ogh are both 

bounded by O(h‘) for any small E > 0, so the message 

complexity O ( m 4 m  I VI log I N I )  is bounded 

by O(h‘ I VI log I N I )  for any small 6 > 0. The 
distributed selection algorithm using a ( p  + 1) -th order 
median is listed as follows. 

Algorithm Selection-II. 
Step 1. 

= 14%- 11 and si = [hl/(p+l)l , 1 5 i 5 p .  

Step 2. Every root node of A -th level subtree T. = 
( V., E .) finds a A -th order median m . and send m . and 

t a  

1 Vil to the root of the (A + 1)-th level subtrees 

recursively for 2 5 ,A 5 p .  
Step 3. The root node of the tree finds a ( p  + 1) -th 
order median m of N. 
Step 4. Execute the Procedure Reduce -and -Find 
with input m. If m is the k-th smallest element of N 
then every node will receive the stopping message. If 
not, the problem size is reduced. 
Step 5. If a node has received the stopping message, 
then it stops. When the root node has stopped, the 
algorithm is terminated and the k-th smallest element 
of Nis m. If the root node has not stopped, go to Step 2. 

Execute the Algorithm Label with input p 

Since Step 1 takes only O( 1 VI ) messages, so the 
message complexity of Algorithm Selection -11 is 

This section will give an  application of the selection 
algorithm -the distributed convex hull problem. The 
convex hull of a finite point set S in the plane, denoted 
by CH(S), is the smallest convex polygon containing 
the set. The vertices of this polygon must be points in 
the set. The convex hull problem is to construct the 
ordered sequence of vertices of CH(S). The problem has 
been studied extensively in sequential and parallel 
environments but not for distributed environments. In 
this section we show the distributed selection algorithm 
can be applied to solve the convex hull problem distri- 
butively. The distributed convex hull problem is to 
identify the vertices of the hull where the points are 
stored among nodes of a network. For a tree network, 
by transforming the sequential convex hull algorithm 
[lo] to  a distributed algorithm and applying the 
distributed selection algorithm, we get a distributed 
convex hull algorithm. The message complexity of the 

algorithm is O ( m  4m I VI H log (2 I NI /@), 
where his  the height of the tree, Vis the set of nodes in 
the tree, H i s  the number of vertices found to be on the 
hull and N i s  the set of planar points. If all points in N 
are allowed to be sent to a particular node, then the 
convex hull can be trivially constructed in the node. 
Therefore, there is a trivial distributed convex hull 
algorithm with message complexity O(h I N I ) .  But in 
general, the nodes’ storage and channels’ capacities are 
limited. So all points in Ncan not be sent to and stored 
in one node when 1 NI is large enough. In that case, our 

algorithm is suitable since only O( I VI / ( h / 2  &a)) 
extra storage are need for each node during the 
execution of the algorithm. When H < 1 NI and 1 VI d: 
I NI , our algorithm is better than the trivial algorithm. 
For example, if points are chosen independently from a 
2 -dimensional normal distribution, then the expected 

message complexity of our algorithm is O ( m  

4m 1 VI (log I 
To solve the distributed convex hull problem, we 

translate the sequential convex hull algorithm [lo] into 
a distributed algorithm step by step. There are two 
steps in the sequential algorithm which require finding 
the median. We replace the sequential selection 
algorithm by the proposed distributed selection 
algorithm. If N is the set of planar points stored 
distributively in the tree network, then these two 

selection steps will cost o ( m 4 m  I V I  log I N I  
messages. 

[ll, p. 1451. 

5. Distributed convex hull problem 
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Theorem 4. The distributed convex hull problem can 

be solved with O ( m  4m 1 VI Hlog (2 I NI /H)) 
message complexity. 
Proof. The total message complexity of the distributed 
convex hull algorithm can be derived by the following 
equation: 

I i:L'f!?l21; 1 NI 
i f H > 2 , C l o g  N + m a x  { f ( I N ( / 2 , H l ) +  

Hl+Hr=H 

f ( I NI /21 H,)h 

where C= c m 4 m  I VI for some constant c.  

f( I NI , H) = C(H1og I NI -Hlog H+ 2 H- 
It follows that 

1% \NI -2) 

6. Conclusions 
In this paper we have discussed the network 

partition and the distributed selection problem for a 
general tree network T = (V,  E>. We propose a tree 
partition algorithm with message complexity O( 1 VI ) 
and an improved selection algorithm with message 

complexity O ( m 4 m  I VI log 1 NI ), which is 

bounded by O(h' I VI log I NI ) for any small 6 > 0, 
where Vis the set of nodes in the tree, h is the height of 
the tree and Nis  the set of elements distributed among 
nodes of V. Santoro and Suen [7] has proposed an open 
problem to find an efficient selection algorithm for 
general tree networks. Since the message lower bound 
for the selection problem of complete binary trees is 
n( I VI log(2 I NI / I VI )) [5], the proposed algorithm 
gives an asymptotically efficient solution to that open 
problem. We also propose a distributed convex hull 
algorithm which is based on the tree partition and 
selection algorithms. Finally, we remark that the 
Set-Up Procedure introduced in [7) can be 
incorporated into our algorithm to remove a certain 
amount of elements in advance. 
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