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Abstract 
Consider a fuzzy relation equation xoA=b where x and b 
are input and output vectors and A is a state matrix with 
max-min operator "0". This study is an extension of our 
previous work by relaxing the condition that the elements 
in vector b are strictly distinct and allows us to have same 
values of membership in b. In this paper we propose a 
solution procedure from the defined quasi-characteristic 
matrix that not only determines the solution set but also 
defines the types of solution set before the solution set is 
determined. Therefore, it provides an insight of the 
structure of fuzzy relation equations. Also by means of the 
quasi-characteristic matrix, we do sensitivity analysis on 
the state matrix A to determine the set of state-matrices 
which has the same solution set with respect to the given 
output-vector. 

Introduction 
If m,n,c EN, and I={l,.., i ,.., m}, J={l,.., j ,.., n}, K={l,.., k, 

k ..,c} and assume that an n-dimensional vector b=[b .] 
J 

called output-vector of which each k-class contains the 
1 k same b values and l > b  >...>b >...>bC>O, c<n, and a 

matrix A=[aijImn k called state-matrix, with a .  k .~[0,1], 

b.~[O,1] for all i d  and j€J are given, the problem of the 

resolution of a fuzzy relation equation is to determine an 
m-dimensional vector XEX of solution space such that 

where lloll denotes max-min composition with 

1J  
k 
J 

x o  A= b (1) 

(2) 
max min(xiAa. k k  .)=b. for VjEJ, 
i €1 'J  J 

and X = { X = [ X ~ ] ~ ~ ~ ~ ~ ~ E [ O , ~ ] } .  The solution set of (1) is 

defined by X(A,b). 

Due to our previous studies [4,5], we know that the 

proposed quasi-characteristic matrix C of A represents the 
possible positions in determining the solutions. Thus, the 
solution set are characterized and the tolerance intervals of 
elements in A matrix with respect to the known solution 
set and output-vector are determined by this C-matrix. 
But in our previous studies, the elements in vector b are 
strictly distinct, it restricts the capability of applications. 
Therefore, in this paper, we relax this constraint. Then the 
extension allows us to have same values of membership in 
output-vector b so that the proposed method can be 
generalized. 

Section 2 of this paper describes basic definitions and 
properties of a fuzzy relation equation. Then in Section 3 
defines the quasi-characteristic matrix from a state- 
matrix and derives its relationship with the types of 
solution sets. In Section 4, the methodology of sensitivity 
analysis on matrix A is proposed. Finally, in Section 5 we 
conclude the study and point out the relevant issues for 
further studies. 

Basic definitions and properties 
of a fuzzy relation equation 

The basic definitions below will be used through out the 
paper until otherwise stated. Also the supporting theorems 
are stated without proofs. 
Definition 2-1 [l]. For x ,x EX, let x <x , then < is 
partially ordering on X, (X,<) is a lattice with min and 
max as its meet, "A", and join, "V", respectively. If 
X(A,b)={xlxoA=b}, i.e., X(A,b) denotes the set of all 
solutions of equation ( l ) ,  when A and b are given, then 
(X(A,b),<) is a subposet of (X,<). 
Definition 2-2 [l]. We call %X(A,b) the maximum 
solution of X(A,b), if for all xcX(A,b) we have x<x. 
Definition 2-3 [l]. We call gX(A,b)  a minimal solution of 

X(A,b), if for all xeX(A,b), x<~implies x=x. The set of all 
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minimal solutions of X(A,b) is denoted by 1IIp,b). 

Definition 2-4 [2]. We define @ composition as 
" k  k A Q b-l=[ A (a i j  cr bj)] 

j= l  
(3) 

and -' denotes transpose. 
Lemma 2-1 [2]. If X(A,b)#$, then :=[A @ b-']-l is the 
maximum solution of X(A,b$.72Xb 
Theorem 2-1 [l]. If X(A,b)#$ then &(A,b)#@ and 

Lemma 2-2 [4]. X(A,b)#$ iff for each column j€J in 
kth-class of A there exists at least an i d  such that 

k k  k k  3xi~[0,1] satisfies (i) (xiAa. .)=b. and (ii) (xiAai j,)'b l 
1J J 

Vj'#j. 
From Lemma 2-2, we know that for each element a . .  of A 

two cases follow : (i) if a .  .<b.,  then no xie[O,l] can satisfy 

(x.Aak.)=bk;(ii) if a. .>b. and at row i there exists an 

element ak: k'>k such that a$>bk: then there is no J 
k k  k' k '  

1J' 

x.~[O,l] that can satisfy (xiha. .)=b. and (xiAaijl)5bjl 
1J J 

Vj'#j, simultaneously. 
Quasi-characteristic matrix for solution 

In this section, we defined a quasi+haracteristic matrix 
from a state-matrix to identify the corresponding position 
and properties of a solution. Then by quasi-characteristic 
matrix the properties of each type of solution sets are 
investigated. 
Definition 3-1. Given A and b, a quasi-characteristic 
matrix C, [ce],,, of a matrix A in a fuzzy relation 

equation (1) is called C-matrix and defined as follows: 
for each row i d ,  

k 
1J 

k k  
1J J 

k k  
1 1 J  J 13- J 

1 if k=k(i) and 

E if k>k( i )  and aFj=bk 
0 otherwise. 

where 

{ max{k}, if {k I a .  k k  .>b. for a given i}#@ 
k(i)= 1 J  J ( 5 )  

~' ( 0  otherwise. 
From Definition 3-1, we know that each row of matrix C 
has at most one class that contains "1" elements and has 

zero values if k<k(i). The different of the "class" from the 
"column" of our previous study [4] is resultant from the 
relaxation of different b values and allow b elements 
having same values in the same class. This can be done 
easily by grouping b elements into c strictly different b 
values with l>b  1 2  >b > . . .>b  k >...>bC>O and swapping 

the corresponding column of A (or C ) matrix. In this way, 
our previous results [4,5] can be extended to specify the 
between-class relationship directly. Then the remaining 
problem is to identify the relation of elements within the 
same class that has the same b values. In other words, we 
need to prove that the results of our previous studies still 
hold within the class. 
Lemma 3-1. At each column j in class k of C-matrix if 
3icI such that c..  k is E or 1 then for the column j the 

possible position for determining the solution xi is at row i. 

That is, for column j, xi~[bk,bk(')] satisfies conditions (i) 
J 

and (ii) of Lemma2-2 when b 0 1  = l>b  >">b k >..>bC>O. 
Proof. Suppose at column j in class k, c. k .=l or E then 

(a)if ck.=l, from the definition of the C-matrix we have 

k=k(i) and the corresponding ak.>bk-bk('), then if 
xi=b k j ,  (xiha. k k  .)=b. holds. 

At row i, Vj'j'cclass k, we have (xiAai jl)<b =b 

(b)if cij=E k from the definition of the C-matrix, we have 
k>k(i) and the corresponding a. k k  .=b.. If xi~[b5,bk(')] then 

(xiAa. .)=b .. At row i, Vj'cclass k, if k>k(i) then a i  jl'b 

we have (xiAar.,)5ak '<bk-  if k=k(i) then we have 

1J 

1J 

1J 

1~ j- 

1J J 
k k k  

j I' 

IJ J 
k k  k k  
1J  J j " 

i j  - j "  
(+ak ij '  )<xi=bk(d=bk - J I. 0 

Theorem 3-1. X(A,b)=$ 
c. .=O Vid. 

Proof. It is trivial. 
Now according to Theorem 3-1, we can detect whether 
there exist solutions. If there is a column with zero values 
in C-matrix we call the matrix "degenerate" and the 
corresponding solution set is empty. If C-matrix is not 
degenerate, from Theorem 3-1 there is at least a solution 
and this leads us to investigate the solution set. First, we 
discuss the maximum solution. 
Corollary 3-1. If C is not degenerate, then the maximum 
solution F=FJ where Fi=bk(i). 

Therefore, from Corollary 3-1, the value of maximum 

iff 3jcJ in class k such that 
k 
1J  
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solution can be identified by checking the position of 
element with value 1 at each row of C-matrix and given 
the proper values. 
Corollary 3-2. Let xoA=b and x'oA'=b, if V kA(i)=kAl(i) 

ic1 
then: -x A- A'' 

Now we proceed to investigate the minimal solution set 
X(A,b). First we decompose c=[cl,...,cj,...,c:] 1 k  as 

column matrices with c<n and define I C .  I as index set of 

nonzero elements at column j in class k of C-matrix. 
That is, for a given column j in class k,  
I C .  I=(il if c. .=l or E ViEI} VjEJ and kEK. 

If C is not degenerate, then IC. I#$ VjcJ and kEK. From 

our previous studies, we know that there are columns that 
have no influence on determining the minimal solution. So 
we classify the columns into critical columns and 
non-critical column. 
Definition 3-2. Column ck in C-matrix is called a 

non-critical column in class k, if there exists a column jo 
in class ko such that any of the following cases holds: (i) if 
ko<k, then I C . ~ ~ C ~ C . I ;  (ii) if ko=k and jo<j then 

I C . ~ ~ C ~ C . I .  k k  (iii) if ko=k and jo>j, then I C . ~ ~ C ~ C . I  k k  and 

- 
k 
J 

(6) 
k k 
J 'J  

k 
J 

j 

k k  
J o -  J 

J o  - J J O  J 

For both simplicity of computation and consistency with 
our previous studies [4,5], we rearrange the columns of 
C-matrix by setting the critical column of each class as 
the leading column. Then column 1 of C-matrix is always 
a critical column. 

Now if we define the set of path as 
1 k k  P={plp=(il ,..., ik ,..., i i )  Vi.Elc. 1,  jcJ and kEK}, 

j J J  
then its subset PO is defined as follows: 
Definition 3-3. For any j, 2<j<n, if there is a path PEP of 
which {il,..ij-l}nlcj I#@ and assume that it; is the first 

1 k'  k k .h. element of {il,...,ij-l} to appear in I C .  I then we set i j= id ,  

otherwise i.E I C .  I. We call the set of these path PO and 

(7) 

1 k' k 

J 
k k  
J J  

P&P. 

Now, we intend to derive a subset P* of P and to prove 
that P* is one to one corresponding to X(A,b). Before the 

definition of P*, we first define p and p .  as follows: k k  
J 

for a given k€K, 
k . k  l . k  c k k  p ={I Ip=(il ,.., I .,.., in),i =i .  V jcclass k} 

1 J 
and for a given j in class k the subset p . of p is 
k 1 k c .  .k p.= {i. Ip=(il ,.., i ,.., i ),I.=] . (  Vj'<j and j'eclass k}. (9) J J  j n J J  

Definition 36. A subset P* of PO is defined as follows: 
P*={pl p=(il 1 ,.., i j  .k ,.., i:)EPo there is no other 

p'=(i '~,.. ,i 'k,. . ,i '~)EPo such that there exist a j o  in class ko 

satisfied (i)  i .=i ' .  Vk<ko and jcclass k,and (ii) p'kocpk0 }. 

From the definition of P, PO and P* we know that 
P*cPocP. Now we shall prove that P* is one to one 

corresponding to &(A,b). 

Definition 3-5. For each path p=(il ,..., ik ,..., i:)EP* we 

define a corresponding K=[K1 ,..., Ki ,... ,Xm] such that 

(8) 
k k  
J 

J 
k k  
J J  J o  J o  

1 
J 

V 
and X(P*) is the set of K. 
Lemma 3-2. If p, P'EP* with p#p', p and p' correspond to 
2 and %I, respectively, then 2 #E'. 
Proof. Let p and ~ ' E P * ,  p=(il ,..., ik ,..., i:) and 

p'=(iIl ,..., ilk ,..., i") correspond to K=[Kl ,..., Xi ,..., Km] and 

X'=[Xi ,..., Xi ,..., K '1, respectively. If there exists a joeJ in 

class ko that is the first element with i k # i ' k  , then we 

have U p = U p' . By Definition 3 4  we know that 

pko4plko and pk0~ptko.  So there exists an i d  such that 

icpko, i$pIko and i$ p . By Definition 3-5, we have 

Xi=bko and X;<bko, then K # 3'. 

Lemma 3-3. Each fcX(P*) is a minimal solution of 

1 
J 

1 
J n  

m 

ko-1 k ko-1 k 

k=1 k=l 

ko-1 k 
U 

k=l 
U 

- X(A,b). 

Proof. Let K=[K1 ,..., Ki ,...,%,I, by Lemma 3-1 and 

Definitions 3 4  and 3-5, we know that %X(A,b). We shall 
prove that K E ~ (  A,b). Suppose x=[xl ,.., xi,.. . ,xm]6X(A,b) 

where xil<Xil and xi=Xi Vi#i'. Then by Definition 3-5 we 
have {k Ii k . =i'}#@ (otherwise,xi<Xil=O.). Define 

ko=min{kli k .  -i'}, then Kil=b k O>xiI. Because of 

(xilha!?j)<xil<bko Vjcclass ko, if i'Epko, by Definitions 3 4  

J 

j -  
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and 3-5, then 3jcclass ko with iko=i' such that 

(xiharoj)<bko Vid. Hence x$X(A,b), it contradicts 
J 

xeX(A,b). Therefore KCi(A,b). 0 

Lemma 3-4. For each g&(A,b) there exists a PEP* 

corresponding to it. 
Proof. Let x=kl ,.., zi ,..,, ~ r , ] ~ z ( A , b ) ,  we know that there 

exist some PEPO corresponding to 5 [4]. From Definition 

3 4 ,  we know that each PEPO corresponds to a path of P*. 
Then by Lemma 3-3, we obtain that there is a PEP* 
corresponding to 5 0 

From Definitions 34,3-5 and Lemmas 3-2, 3-3, 3 4  we 
can conclude that each path in P* is one to one 
corresponding to &(A,b), and we can obtain &(A,b) by 

means of P*. 
Example 3-1. Let us consider equation (1) with 

0.9 0.8 0.7 0.3 0.7 0.5 - 
0.8 0.7 0.9 0.7 0.1 0.3 

A= 0.9 0.9 0.6 0.7 0.3 0.1 
1.0 1.0 0.3 0.3 0.9 0.6 
1.0 0.9 0.5 0.8 0.7 0.7 

and b=[0.9 0.9 0.7 0.7 0.7 0.61 

C= 

From Corollary 3-1, we get the maximum solution 
X=Fl, ..&I as follows: k(l)=O then Xi=l; k(2)=2 then 
&=0.7; k(3)=0 then &=l; k(4)=2 then x4=0.7; k(5)=3 
then &=O.6, that is, ?=[1,0.7,1,0.7,0.6]. 
By Definition 3-2, we know that column j=2,3,5,6 are 
critical columns. We rearrange the columns of C-matrix 
by setting the critical column of each class as the leading 

- E  0 E 0 E 0- 
O O l E O O  
E E O E O O  
O O O O l E  
0 0 0 0 0 1 .  

column. Then we have 
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By Definition 3 4 ,  we get P*={(3,3,1,1,3,4); (3,3,1,1,3,5); 
(3,3,2,4,3,4)}. The procedure to obtain P* is shown as tree 
graph as follows: 

k=l, j= l  l3 
j=2 1 3  _ _  - - +  ---- 

k=2, j=3 

j=5 
_ -  +-+- 4 5  

k=3, j=6 /\ J4 

Then by Lemmas 3-2,3-3 and 3 4 ,  we get 
- X( A,b) = { [O. 7,O ,0.9,0.6,0]; [O. 7,O ,0.9,0,0.6]; [0,0.7,0.9,0.7,0]} 

k 
J 

Lemma 3-5. If C is not degenerate and cardlc. I=1 Vj€Cf 

in class k then card(&(A,b))=l. 

Lemma 3-6. If card(&(A,b))=l and k(i)=l ViEI then 

card(X(A,b))=l. 
Sensitivity Analysis on a statmatrix A. 

The state matrix in a system represented by a relation 
equation plays an important role, the pre-estimated values 
given to A matrix strongly affect the resulting solution. 
Therefore, for the purpose of control and management, it 
would be beneficial to know the tolerance intervals of the 
elements in A matrix with respect to the known solution 
set and output-vector. If the intervals are wide, then there 
is a great flexibility in defining the corresponding relations. 
If, on the contrary, the intervals are narrow, then one 
should pay more attention on controlling those elements, 
otherwise the original solution set can not be insured. 

From our previous studies, we know that a solution set is 
characterized by the C-matrix of a state-matrix. So if we 
define a set of C-matrix of a state-matrix , denoted by 
C(A,b), which has the same characteristics with respect to 
X(A,b) then, by Corollary 3-2, each C-matrix has the 
same k(i) Vi'iEI and the same P* for determining the same 
maximum and minimal solutions respectively. From the 
Definition 3 4 ,  we know that P* is completely determined 
by Cf and the order of column within a class has no 
influence On P*. So we shall consider only the pattern of 
each column regardless the effect from their permutations. 

From the discussions above and our previous study [5], we 
can derive the following algorithm for construction of 



S(A)={ A* IxoA*=b, VxEX(A,b)}. 
Step 1. Determine the tolerance intervals of A for 
maximum solution. 
For each C*EC(A,b) the k(i)  must be correspondingly 
equal to that of current C-matrix of A in order to have 
the same maximum solution. 

k k k  (i) c. .=l implies a. .E[b ,l]. But if at row i of class k 3j'fj 
'J 1J 

k with ak.,>b , then ak.€(bk,l] is defined for consistency. 
k (ii) c. .=O and k<k(i) then a!.~[O,l]. 
'J ' J  

Step 2. Determine the tolerance intervals for the minimal 
solutions. 
In order to retain the same minimal solution set, each 
C*EC(A,b) must have the same Cf that can be identified 

by applying Definition 3-2. Except those have been 
defined in Step 1, The value a . .  corresponding to the 

element c i j  of critical column j can be determine as 

follows: 
k k k  (i) cij=O implies a .  .E[O,b ). 

'J 
k k k  (ii) c. .=E and k(i)=k then a .  .E[b ,l]. 
'J  'J 

(iii) cij=E k and k(i)#k then arj=bk. 

Step 3. Determine the alternatives for non-ritical 
columns. 
From Definition 3-2, we can derive all alternatives of a 
non-critical column j of C-matrix by selecting a column 
k k c. with joECf and kosk and setting I $0 I c I c . 1 
30 J o -  J '  

For each alternative of column jo, the tolerance interval of 
each element other than those elements defined in Step 1 
can be determined as follows: 

k k  (i) ck.=E and k(i)=k implies a. .E[b ,1]. 
'J ' J  

k k  (ii) ck.=E and k(i)<k implies a i  j=b . 
'J 
k k (iii) cij=O and k(i)>k implies a. .~[0,1]. 

1J 
k k  (iV) ck.=O and k(i)<k implies a .  .E[O,b 1. 

'J ' J  

' J  'J 

k 
'J  

k 

1 [:$ja) - 

Example 4-1. For A and b as given in Example 3-1. 
By Definition 3-2, we have Cf={2,3,5,6} where column 

number is named before rearrangement in order to 
consistent with our original matrix A. 
The step below follow the proposed algorithm to obtain 

Step 1. 2 1 1  c23=1 implies a23~[0.7,1] and a21, a22 ~[0,1]. 
2 1 1  c44=1 implies a2 E 0.7,1] and "41, a42 E[0,11. 

S(A). 

44 [ 

2 
l 3  [c. ]= 

c56=l 3 implies a:, 3 E 0.6,1] and a51, 1 1 2  a52, a53, 6 (  
2 2  

a54, a55~[0,11. 

Step 2. Cf={2,3,5,6} 

- E  - 0.7 
l *  
0 implies 
0 
O* 

For i=2 

[c. 2 O  ]= ' 5  

- E  0.7 

0 implies 
1* 
O*  

*: as defined in Step 1. 
For i=3 

0 

I C i 2 ] =  1 0  E determines [cfl]= 
0 
0 

- 1; 1 that implies 

For i=5 

For i=6 
0 

E 
(0.6,1]* - .  

Step 3. J\Cf={1,4}. 
1 For j = l  then we have c2ECf with j0=2 and ko<l. 

For j=4 then we have J0=2,3,5Ecf with the corresponding 

class kos 2. 
Then for j0=2, 

r o  1 r o  1 
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The proposed method can also be applied to 
interval-valued fuzzy relation equations. By means of the 
quasi-characteristic matrix, we can improve the method 
proposed by Wang & Chang [3] and we shall present it in 
the near future. 

- 0.7 - 
0.7,l 

r 0.7 1 

2 Note that we must keep at least one of ai3 , a24 greater 
than b 2 =0.7 and at least one of a44 2 2  , a45 greater than 

2 b =0.7. 
Discussions and conclusions. 

This study solves a generalized fuzzy relation equation and 
analyzes its sensitivities on its state matrix A. Since this 
study is an extension of our previous work [4,5] by relaxing 
the condition that the entries in vector b are strictly 
distinct, so the proposed method is generalized. 
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