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Abstract 

High availability and elasticity are two the cloud computing services technical features. 
Elasticity is a key feature of cloud computing where provisioning of resources is closely 
tied to the runtime demand. High availability assures that cloud applications are resilient 
to failures. Existing cloud solutions focus on providing both features at the level of the 
virtual resource through virtual machines by managing their restart, addition, and 
removal as needed. These existing solutions map applications to a specific design, which 
is not suitable for many applications especially virtualized telecommunication 
applications that are required to meet carrier grade standards. Carrier grade applications 
typically rely on the underlying platform to manage their availability by monitoring 
heartbeats, executing recoveries, and attempting repairs to bring the system back to 
normal. Migrating such applications to the cloud can be particularly challenging, 
especially if the elasticity policies target the application only, without considering the 
underlying platform contributing to its high availability (HA). In this thesis, a Network 
Function Virtualization (NFV) framework is introduced; the challenges and requirements 
of its use in mobile networks are discussed. In particular, an architecture for NFV 
framework entities in the virtual environment is proposed. In order to reduce signaling 
traffic congestion and achieve better performance, a criterion to bundle multiple functions 
of virtualized evolved packet-core in a single physical device or a group of adjacent 
devices is proposed. The analysis shows that the proposed grouping can reduce the 
network control traffic by 70 percent. Moreover, a comprehensive framework for the 
elasticity of highly available applications that considers the elastic deployment of the 
platform and the HA placement of the application’s components is proposed. The 
approach is applied to an internet protocol multimedia subsystem (IMS) application and 
demonstrate how, within a matter of seconds, the IMS application can be scaled up while 
maintaining its HA status. 

 

 

Keywords: mobile networking, network function virtualization, mobile core 
network, virtualized evolved packet core, cloud computing, high availability, cloud 
application elasticity, highly available cloud application, telecommunication cloud. 

  



ii 

Co-authorship statement 

This thesis contains the following manuscripts that have been accepted and published. 

1) H. Hawilo, A. Kanso, A. Shami, “Towards an Elasticity Framework for Legacy 

Highly Available Applications in the Cloud” 10th IEEE SERVICES 2015. 

 

2) H. Hawilo, A. Shami, M. Mirahmadi, R. Asal, "NFV: state of the art, challenges, 

and implementation in next generation mobile networks (vEPC)," Network, IEEE 

, vol. 28, no.6, pp.18,26, Nov.-Dec. 2014. 

 

The following coauthors provided experimental and technical support for the studies 

listed above: 

A. Shami provided technical expertise, opinion and perspective, based on his 

expertise and experience as a professor. He contributed to the work done in 

Chapter 2 and 3. 

 

A. Kanso provided technical expertise, opinion and perspective, based on his 

expertise and experience as a researcher at Ericsson Company. He contributed to 

the work done in Chapter 3. 

M. Mirahmadi provided technical expertise, opinion and perspective, based on his 

expertise and experience as a researcher at IBM Company. He contributed to the 

work done in Chapter 2. 

R. Asal provided technical expertise, opinion and perspective, based on his expertise 

and experience as a researcher at British Telecom Company. He contributed to the 

work done in Chapter 2. 

 



iii 

Acknowledgments 

This thesis is the result of a hard work and very busy research program, which would not 

have been possible without the support of a many of people. 

I am very thankful to Prof. A. Shami, who provided thorough and helpful support 

with a close guidance throughout my masters’ research program. He has been my 

supervisor and friend. 

I am very thankful to Dr. A. Kanso for providing his expertise that was essential for 

the success of this work. He always made sure to have a close consultation and support 

throughout my masters’ research program. 

Many thanks to my friends and colleagues for the words of support and help during 

my masters’ research program. 

To my family, particularly my parents, thank you for your love, support, and 

unwavering belief in me. Without you, I would not be the person I am today. 

Above all, I would like to thank my wife Manar Jammal for her love and constant 

support, for all the late nights and early mornings, and for keeping me sane over the past 

few months (years) . Thank you for being my muse, editor, proofreader, and sounding 

board, but most of all, thank you for being my best friend. 

 

This work is partially supported by the Natural Sciences and Engineering Research 

Council of Canada (NSERC-STPGP 447230) and Ericsson Research. 

 	



iv 

Table	of	Contents	

Abstract ............................................................................................................................... i 

Co-authorship statement .................................................................................................. ii 

Acknowledgments ............................................................................................................ iii 

List of Figures ................................................................................................................. viii 

List of Tables ..................................................................................................................... x 

List of Abbreviations ....................................................................................................... xi 

Chapter 1 ........................................................................................................................... 1 

1.  Introduction .................................................................................................................... 1 

1.1  High Availability .................................................................................................... 1 

1.1.1  Mean Time to Failure (MTTF) ................................................................... 2 

1.1.2  Mean Time to Repair (MTTR) ................................................................... 3 

1.1.3  Mean Time Between Failures (MTBF) ....................................................... 3 

1.2  Achieving High Availability ................................................................................... 4 

1.2.1  Fault Tolerance ........................................................................................... 4 

1.2.2  Redundancy................................................................................................. 5 

1.2.3  Logical Entities of Highly Available System ............................................. 6 

1.2.4  Redundancy Models by SAForum: ............................................................. 7 

1.2.4.1  2N Redundancy Model ................................................................. 7 

1.2.4.2  N+M Redundancy Model ............................................................. 8 

1.2.4.3  N-way Redundancy Model ........................................................... 9 

1.2.4.4  N-Way Active Redundancy Model ............................................ 10 

1.2.4.5  No-Redundancy Redundancy Model ......................................... 10 

1.3  HA with Virtualization ......................................................................................... 11 

1.4  Elasticity in Cloud................................................................................................. 12 



v 

1.5  Problem Formulation ............................................................................................ 13 

1.6  Research Contributions ......................................................................................... 14 

Bibliography ................................................................................................................. 15 

Chapter 2 ......................................................................................................................... 18 

2.  NFV: State of the Art, Challenges and Implementation in Next Generation Mobile 
Networks (vEPC) ......................................................................................................... 18 

2.1  Introduction ........................................................................................................... 18 

2.2  Network Function Virtualization .......................................................................... 19 

2.2.1  Openness of Platforms .............................................................................. 20 

2.2.2  Scalability and Flexibility ......................................................................... 21 

2.2.3  Operation Performance Improvement ....................................................... 21 

2.2.4  Improve Development Cycle .................................................................... 22 

2.2.5  Reduced CAPEX and OPEX .................................................................... 22 

2.3  NFV and SDN ....................................................................................................... 23 

2.4  NFV Framework ................................................................................................... 24 

2.5  Proposed Placement of Framework Entities ......................................................... 27 

2.6  NFV Ecosystem .................................................................................................... 29 

2.7  NFV Challenges and Requirements ...................................................................... 29 

2.7.1  Security ..................................................................................................... 29 

2.7.2  Computing Performance ........................................................................... 30 

2.7.3  Interconnection of VNFs ........................................................................... 31 

2.7.4  Portability .................................................................................................. 32 

2.7.5  Operation and Management ...................................................................... 32 

2.7.6  Co-existence with Legacy Networks ........................................................ 33 

2.7.7  Carrier-Grade Service Assurance ............................................................. 33 

2.8  Use Cases and Services ......................................................................................... 35 



vi 

2.8.1  NFVI as a Service (NFVIaas) ................................................................... 35 

2.8.2  VNF as a Service (VNFaaS) ..................................................................... 35 

2.8.3  Virtual Network Platform as a Service (VNPaaS) .................................... 35 

2.8.4  Fixed Access Network Functions Virtualization ...................................... 36 

2.8.5  Content Delivery Networks Virtualization ............................................... 36 

2.8.6  Home Environment Virtualization ............................................................ 37 

2.8.7  Mobile Network Virtualization ................................................................. 37 

2.9  Virtualization of the Evolved Packet Core (EPC) ................................................ 38 

2.10 Grouping EPC Entities in the NFV Environment ................................................ 39 

2.10.1  Segment One ............................................................................................. 40 

2.10.2  Segment Two ............................................................................................ 41 

2.10.3  Segment Three .......................................................................................... 42 

2.10.4  Segment Four ............................................................................................ 42 

2.11  Quantitative Analysis ........................................................................................... 44 

2.12  Chapter Contribution ............................................................................................ 47 

Bibliography ................................................................................................................. 47 

Chapter 3 ......................................................................................................................... 51 

3.  Towards an Elasticity Framework for Legacy Highly Available Applications in the 
Cloud ............................................................................................................................ 51 

3.1  Introduction ........................................................................................................... 51 

3.2  High Availability Middleware and Scheduling .................................................... 54 

3.2.1  OpenSAF Cluster ...................................................................................... 56 

3.2.2  High Availability Scheduling ................................................................... 58 

3.3  Elasticity Framework ............................................................................................ 58 

3.3.1  Application Design and Elasticity Requirement Specification ................. 59 

3.3.2  Elastic HA-Scheduling.............................................................................. 60 



vii 

3.3.2.1  Identifying the Constraints ......................................................... 61 

3.3.2.2  Maximizing the Availability of the Application ........................ 63 

3.3.2.3  Optimizing the Placement for Performance and Other Factors .. 63 

3.3.3  Automated Elastic Multi-Level Deployment ............................................ 65 

3.3.3.1  Infrastructure Elasticity .............................................................. 65 

3.3.3.2  Platform Elasticity ...................................................................... 66 

3.3.3.3  Application Elasticity ................................................................. 67 

3.4  Framework Workflow and Implementation .......................................................... 68 

3.5  Test-bed and Case Study ....................................................................................... 69 

3.6  Literature Review.................................................................................................. 72 

3.7  Chapter Contribution ............................................................................................ 74 

Bibliography ................................................................................................................. 74 

Chapter 4 ........................................................................................................................... 79 

4.  Conclusion and Future Work ....................................................................................... 79 

4.1  Conclusion ............................................................................................................ 79 

4.2  Future Work .......................................................................................................... 80 

Curriculum Vitae ............................................................................................................ 82 

 

 
  



viii 

List of Figures 

Fig. 1.1 Maximum allowable downtime for different availability levels [1]. ..................... 2 

Fig. 1.2 Availability in terms of MTTF, MTTR, and MTBF ............................................. 2 

Fig. 1.3 MTTR, MTTF, MTBF [1]. .................................................................................... 3 

Fig. 1.4 2N redundancy model [6]. ..................................................................................... 7 

Fig. 1.5 N+1 Redundancy Model [6]. ................................................................................. 8 

Fig. 1.6 N-way redundancy model [6]. ............................................................................... 9 

Fig. 1.7 N-way active redundancy model [6]. .................................................................. 10 

Fig. 1.8 Vertical Scaling vs Horizontal Scaling. ............................................................... 13 

Fig. 2.1 Network function virtualization concept. ............................................................ 20 

Fig. 2.2 Service provider revenues vs traffic [2]. ............................................................. 23 

Fig. 2.3 NFV differs from SDN. ....................................................................................... 24 

Fig. 2.4 Virtualization Layout ........................................................................................... 25 

Fig. 2.5 The cloud services ............................................................................................... 26 

Fig. 2.6 NFV framework ................................................................................................... 27 

Fig. 2.7 NFV Framework Entities Proposed Placements. ................................................ 28 

Fig. 2.8 Networking in virtualization environment. ......................................................... 31 

Fig. 2.9 Base station virtualization evolution. .................................................................. 38 

Fig. 2.10 vEPC Entities Grouping. ................................................................................... 41 

Fig. 2.11 Sequence diagram for user equipment attachment process to LTE network. ... 45 



ix 

Fig. 3.1 The different perspectives of the cloud levels. .................................................... 52 

Fig. 3.2 Application components deployed in different datacenters. ............................... 53 

Fig. 3.3 Overview of the elasticity framework. ................................................................ 59 

Fig. 3.4 Snapshot of the application description interface. ............................................... 60 

Fig. 3.5 The cloud infrastructure hierarchical overview. .................................................. 61 

Fig. 3.6 The orbital distance of a given component. ......................................................... 62 

Fig. 3.7 HA elastic scheduling algorithm. ........................................................................ 64 

Fig. 3.8 Elasticity framework workflow. .......................................................................... 68 

Fig. 3.9 Installation duration results. ................................................................................ 71 

Fig. 3.10 Configuration duration results. .......................................................................... 71 

 



x 

List of Tables 

Table 2.1 NFV challenges and solutions. ......................................................................... 34 

Table 2.2 Grouping of EPC entities in NFV environment. ............................................... 44 

Table 2.3 Signaling traffic before and after grouping. ...................................................... 46 

Table 2.4 Traffic profile and planning parameters [25]. ................................................... 46 

  



xi 

List of Abbreviations 

 

AIS Application Interface Specification 

AMF Availability Management Framework 

API Application Program Interface 

ATCA Advanced Telecommunications Computing Architecture 

CAPEX Capital Expenditure 

CDN Content Distribution Network 

CMS Configuration Management System 

COTS Commercial-of-the-Shelf  

CPU Central Processing Unit 

CSCF Call Session Control Function 

CSI Component Service Instance 

DC Data Center 

DevOps Development and Operations 

DPDK Data Plane Development Kit 

DPI Deep Packet Investigation 

EMS Element management System 

ETSI European Telecommunications Standards Institute 

GPRS General Packet Radio Service 

GSM Global System for Mobile Communications 

GTP GPRS Tunneling Protocol 

HA High Availability 

HLR Home Location Register 



xii 

HSS Home Subscriber Server 

IaaS Infrastructure as a Service 

ICT Information and Communication Technology 

IMM Information Model Management 

IMS IP multi-media Subsystem 

Inc. Incorporation 

IPSec Internet Protocol Security 

IPTV Internet Protocol Television 

IT Information Technology 

LAN Local Area Network 

LDAP Lightweight Directory Access Protocol 

LTE Long-Term Evolution 

M2M Machine-to-Machine 

MAC Media Access Control 

MDS Message Distribution system 

MME Mobility Management Entity 

MTBF Mean Time Between Failure 

MTTF Mean Time to Fail 

MTTR Mean Time to Repair 

NaaS Network as a Service 

NFV Network Function Virtualization 

NFVI Network Function Virtualization Infrastructure 

NIC Network Interface Controller 

OCS Online Charging System 

OFCS Offline Charging System 



xiii 

OPEX Operational Expenditure 

OS Operating System 

PaaS Platform as a Service 

PCRF Policy and Charging Rules Function 

PDCP Packet Data Convergence Protocol 

PGW Packet Gateway 

QoE Quality of Experience 

QoS Quality of Service 

RLC Radio Link Control 

SaaS Software as a Service 

SAForum Service Availability Forum 

SCTP Stream Control Transmission Protocol 

SDN Software Defined Networking 

SG Service Group 

SGSN Serving GPRS Support Node 

SGW Serving Gateway 

SI Service Instance 

SMF Software Management Framework 

SR-IoV Single Root I/O Virtualization 

SU Service Unit 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

UDR Unified Data Repository 

UE User Equipment 

UML Unified Modeling Language 



xiv 

vEPC Virtualized Evolved Packet Core 

VM Virtual Machine 

VNF Virtualized Network Function 

 



1 

Chapter 1 

1. Introduction 

With the rapid increase in the number of smart connected devices such as smart phone, 

tablets and wireless sensors, our society is greatly dependent on computer-based systems. 

These systems provide services that shaped our communities and how we interact in 

different field such as healthcare, financial services, and social networks. The need for 

providing these services continuously to the users is very critical in today’s society. 

Moreover, users are expecting and eager to have these service accessible anytime and 

anywhere. In order to provide such services upon which people can rely, application 

service designers must have a clear view of all the potential causes that may bring down a 

system and the possible solutions to address these challenges. In particular, the costs of 

such solutions in terms of computing resources requirements must be known. Users 

Dependability on a service defines its quality of service attributes such as reliability and 

availability. For instance, reliability is defined as time to fail from an initial referenced 

instant, whereas availability is the probability of obtaining a service at an instance of 

time. Such services require complex computer systems with high level of availability, 

typically 99.999% (five nines) of the time, which amounts to slightly over five minutes of 

downtime over a year time interval of continuous operation. This poses a significant 

challenges on service provides that need to minimize the capital and operational 

investment expenditures in order to increase their return-on investments. 

1.1 High Availability 

The availability is a measure presenting the percentage of time in which the system is 

able to provide its services successfully during a time interval. For instance, an 

availability of 100% indicates that a system was healthy with no downtime in a specific 

time interval. System availability depends on how frequent it fails and how quick it 

recovers from failure. Conventionally highly available (HA) systems must sustain at least 

99.999% (five-nines) of availability [1]. Five-nine systems allow a maximum 5 minutes 

and 15 seconds of downtime caused by planned and unplanned outages in a 1 year of 
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continuous operation. Fig.1.1. illustrates the maximum allowable downtime of a system 

against of availability nines. 

 

Fig. 1.1 Maximum allowable downtime for different availability levels [1]. 

Availability is expressed as a probability representing the portion of which the system is 

healthy and can deliver its services as intended. Availability can be expressed by the 

mean time to failure (MTTF) and mean time to repair (MTTR) as shown in Fig.1.2. 

 

 

Fig. 1.2 Availability in terms of MTTF, MTTR, and MTBF 

 

1.1.1 Mean Time to Failure (MTTF) 

MTTF attribute is defined as the expected time for the system to encounter a service 

failure. It is also referred to as the uptime of a system in which it is operating and 

providing successful service. 
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1.1.2 Mean Time to Repair (MTTR) 

MTTR attribute is defined as the expected time for the system to recover from a failure 

and return to a healthy state. It is also referred to as the downtime of a system in which it 

is neither operating nor providing a service. 

1.1.3 Mean Time Between Failures (MTBF) 

MTBF attribute is defined as the expected time for the system to have two consecutive 

failures. It is only defined in repairable systems. 

Fig.1.3 illustrates MTTF, MTTR, and MTBF. 

 

Fig. 1.3 MTTR, MTTF, MTBF [1]. 

In order to relate availability to the service time of a service, it can be expressed in terms 

of service uptime and service outage as follows: 

Service availability = service uptime / (service uptime + service outage). 
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1.2 Achieving High Availability 

High availability of an application can be achieved by a set of fault tolerance practices 

and protective redundancy of application components. HA is not about preventing 

failures of application component from happening but minimizing recovery time of 

component failures to assure overall service continuity [2]. 

1.2.1 Fault Tolerance 

Fault tolerance is a failure avoidance approach aiming to mediate and wrap faults from 

causing service failure. Despite all the fault prevention methods employed by the 

application developer, there still a probability that a fault can cause a system failure. The 

main objective of fault tolerance is to ensure that a system can tolerate the possibility of 

fault occurrence by applying error detection and system component recovery. It can 

detect and handle faults before causing application service failure. Fault tolerance is 

considered to manage recovery of unplanned events and outages of the underlying 

system. The four major faults tolerance phases for achieving service availability [3] are: 

1) Error Detection: to successfully sustain a highly available system, the fault 

occurrence must be first identified. 

2) Damage Confinement and Assessment: the failure damage level is evaluated and 

restrained as much as possible. System state information is communicated 

between components to limit the scope and propagation of the error. 

3) Error Recovery: is the process of eliminating the system failure cause and 

transforming the system to a healthy state. 

4) Fault Treatment and Service Continuation: The key concern in this process is the 

perception to users that the intended service continues to be functioning as if 

nothing has happened. 

In ideal case, the highly available application should provide its services regardless of 

what faults it encounters. Application requirements and resource constraints defined the 

necessity level for implementing multiple fault tolerance phases. This poses a trade-off 

between application availability and resources needed to offer the protection. The system 
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failure response shapes how it reacts when a failure is encountered. The system failure 

response can be defined as follow: 

1) Fail-Operational: The service operates normally in the presence of faults with no 

degradation of service functionality and performance. This type of failure 

response assures the highest level of service availability but on the expense of 

additional system resources to cover all the conceivable failures. 

2) Fail-Soft (graceful degradation): The service operates in a degraded functionality 

and performance. The main objective of this system failure response type is 

keeping the mission critical functionality of the system functioning normally. 

3) Fail-Safe: The service maintains it functionalities for the current operation and 

halts its intended operation. This type of system failure response mainly used to 

secure safe condition for the users being served. 

4) Fail-Stop: The service is immediately stop when an error is detected. This type of 

system failure response also known as Fail-Fast response. It used in situation 

where error propagation is suspected. 

1.2.2 Redundancy 

The major fault tolerance approach is to have a redundancy system components 

protection. Redundant system components translate into additional resources held at idle 

state in a normal operation of the system. The replicated system components protect the 

service from potential failures, giving the feel of uninterrupted service even when there 

are failures in the underlying system. The main two aspect related to redundancy that 

system designers and administrator must consider are (1) what should be replicated; and 

(2) in what state these replica stand to achieve the desired service availability. 

 Resources replication can be defined in different forms such as hardware, 

software, communication, and information. Hardware replication is the most common 

form of redundancy used in most current HA systems. Running multiple replicated copies 

of software on different hardware can tolerate hardware faults but if the fault lies in the 

software, which is a design faults, a replica of the same software and data would 

propagate the same fault all over the system. For instance, this kind of incident occurred 
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recently with one of the pioneer information technology (IT) companies; Apple 

incorporated (Inc.). March 11, 2015, Apple store experienced a complete outage for 

eleven hours [4]. This outage was caused by a release of faulty update that propagated 

along all their system components [5]. The best practice of redundant system components 

protection is applying a redundancy model based on the functionality of the system 

component. It is necessary to differentiate the role that each system component entitles. A 

component is considered to have an active role if it is serving current users. The 

redundant component takes the standby role if it is capable to take over the active role 

and sustains the service provided by the system. The active and standby components must 

communicate health conditions to successfully failover the workload up on fault 

occurrence. Service availability forum defined five types of redundancy models in the 

SAForum specifications [6]. 

1.2.3 Logical Entities of Highly Available System 

Service availability forum (SAForum) defined the availability management framework 

(AMF) logical entities as follow [6]: 

1) AMF Node: is also a logical entity where the HA middleware and HA application 

component are executed. The AMF manages its different states and defines its 

operations. 

2) Component: is the logical entity that represents a set of resources to the AMF. It 

encapsulates specific application functionality. The resources can be a set of 

hardware resources, software resources, or a combination of the two. In addition, 

it presents the smallest logical entity on which the AMF performs error detection 

and isolation, recovery, and repair. 

3) Component Service Instance (CSI): represents the workload that the AMF can 

dynamically assign to a component. High availability (HA) states are assigned to 

a component on behalf of its component service instances. 

4) Service Unit (SU): is a logical entity that combines a set of components to provide 

a higher-level service. Most AMF administrative operations are applied to service 

units and not the components. A service unit can contain different components, 

but a particular component can only belong to one service unit. The service units 
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present the unit of redundancy from the AMF perspective. It is the smallest 

logical entity that can be instantiated in a redundancy manner. 

5) Service Instances (SI): is aggregated CSIs in one logical entity. AMF assigns the 

SIs as workload to the SUs. 

6) Service Group (SG): is a logical entity combining one or more SUs to form a 

protective group for a specific service. 

1.2.4 Redundancy Models by SAForum: 

The redundancy models defined the layout of the components states such as active and 

standby. 

1.2.4.1 2N Redundancy Model 

In a 2N redundancy model, at most one SU has the active HA state for all the workloads 

assigned as SIs. In addition, only one SU has the standby HA state for all the workloads 

assigned as SIs. Other SUs in the SG are configured to be spare units. 

 

Fig. 1.4 2N redundancy model [6]. 
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1.2.4.2 N+M Redundancy Model 

The N+M redundancy model is an extension to the 2N redundancy model by permitting 

two or more SUs to have active and standby HA states. N presents the number of SUs 

having the active HA state. M presents the number of SUs having the standby HA state. 

This redundancy model mandates that the SU can have a strict HA state. For instance if 

one SU is assigned active HA state for a particular SI, it cannot be assigned standby HA 

state for another SI. The most common N+M redundancy model is N+1. Fig. 1.5 

illustrates the N+1 redundancy model. 

 

 

Fig. 1.5 N+1 Redundancy Model [6]. 
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1.2.4.3 N-way Redundancy Model 

The N-way redundancy model slightly differs from the N+M redundancy Model. It 

allows the SUs to have simultaneously active and standby assignments for different SIs. 

The advantage of this redundancy model is that all SUs can have active HA state while 

providing protection standby HA state. 

 

 

Fig. 1.6 N-way redundancy model [6]. 
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1.2.4.4 N-Way Active Redundancy Model 

The N-way active redundancy model differs from the previous redundancy models, as it 

does not support standby HA state. It allows the SI to have a several active SUs. 

 

Fig. 1.7 N-way active redundancy model [6]. 

1.2.4.5 No-Redundancy Redundancy Model 

The no-redundancy redundancy model is the simplest redundancy model. It only allows 

the SI to have at most one active HA state service unit and vice versa. This redundancy 

model is typically used for non-critical components with no severe impact on the overall 

system. 
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1.3 HA with Virtualization 

Could computing is the paradigm of providing data, software and hardware services on-

demand through different means of connectivity [7]. Mainly cloud computing utilizes 

various virtualization technologies to provide its services. Datacenters packing large 

number of servers, are the core engines of cloud computing that provide the main 

resource pools for many information and communication technology (ICT) companies. 

ICT companies rent cloud resources to provide their own distinct services ranging from 

business-critical processes and scientific computing [8], to social networking [9] and 

online gaming [10][11]. With large scale datacenters infrastructure composed from wide 

range of devices, resource failures are expected to happen [12][13]. Failures occurring 

during peak service periods, such as flashcrowds [14][15], and just before the outcome of 

specific application results are generated, leads to a significant low quality of experience 

(QoE). This low QoE results in revenue losses or customer departure [16]. 

 Cloud service providers have contended many HA techniques for masking any 

infrastructure resource failure, but these techniques proven to be costly and difficult to 

manage when implemented on a large scale. Furthermore, current cloud service providers 

provide a limited exposure of HA management techniques to the users. Virtualization-

based HA techniques Active/Active and Active/Standby are the most adopted technique 

in large datacenters and commercial datacenter products [17]. The adoption of these 

techniques is shown adequate to achieve HA of 99.99% (1 hour downtime per year) 

[17][18], and it is reflected in various cloud service providers service level agreements 

such as Microsoft Azure, Amazon web services, and google cloud [18][19][20]. HA of 

99.99% significantly affect the revenue of service providers. For instance, a few seconds 

delay in generating the webpage response to a customer can lead to fewer sales. One-

second delay in generating Amazon page response had a huge cost on amazon sales with 

1.6 billion dollar losses [21]. As for companies built over advertisement eco-systems, 

one-second delay shows a devastating reduction in site traffic up to 20% [21]. All the HA 

techniques provided by the cloud service providers are at the level of the virtual machines 

(VMs) which also suffer from the same problem as replicating the hardware with a 

replicated copy of the software problem, discussed in previous section. 
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1.4 Elasticity in Cloud 

Elasticity is one of the core attributes of cloud computing paradigm. The elasticity term is 

heavily used by the cloud providers’ advertisements as a functionality to enhance cloud 

hosted application workload response. 

Elasticity is the ability of a system to adapt its resources according to changes in 

the workload in an autonomic manner, such that the available resources are provisioned 

and released to match the current demand in real-time. Elasticity differs from scalability 

of the system where resources have the ability to be increased but not meant to match the 

workload [22]. To achieve elasticity in cloud different aspects have to be considered. 

1) Automated Up and Down Scaling Configuration: 

Elasticity of resource is meant to match the workload in real-time. To provide the 

real-time aspect of elasticity the scaling process must assure no manual 

configuration is involved in the process. 

2) Elasticity Dimensions: 

Application service consists of various tiers (1) application software tier (2) 

application middleware tier (3) system resources tier. Scaling of an application 

should be defined according which tiers it should scale. For instance, an 

application can be scaled on the resources tier while maintaining the same number 

of software instance. This kind of scaling is known as vertical resource scaling 

3) Scalability Bounds: 

In a multi-tier application such as web-application, scaling should be considered 

at the component level. Moreover resource bounds should be well defined to 

make accurate decision about when (number of requests) and how much (vertical 

or horizontal scaling) resources should be allocated. 
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Fig. 1.8 Vertical Scaling vs Horizontal Scaling. 

1.5 Problem Formulation 

Virtualization has become the de-facto in the information technology industry. With the 

evolution and success of the modern data centers hosting various private and public cloud 

applications, virtualization has attracted other industries especially the 

telecommunication industry. As a leading step towards virtualization in the 

telecommunication field, a group of leading telecommunication service providers has 

introduced the network function virtualization (NFV) technology. NFV aims to waive the 

telecommunication applications’ dependency on proprietary hardware and introduce them 

using commercial off-the-shelf (COTS) equipment. This shift in the telecommunication 

paradigm introduces various challenges to the cloud-computing era since carrier grade 

applications have very strict requirements in terms of performance, reliability, and 

availability. NFV applications require HA to be more than 99.999% (5 nines); achieving 

this kind of availability with the current provided cloud services is not applicable. 

Moreover, using the aged HA approaches such as pre-allocated redundant resources will 

not migrate the benefits of cloud computing to the telecommunication industry. 

Telecommunication service providers are looking for reducing their capital and operation 

investments while enhancing their quality of service (QoS) and experience by using the 

cloud computing features such as elastic scaling of application, resource consolidation, 
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and pay-as-you-go services. Therefore, in order to prepare the cloud to meet the 

requirements of carrier grade applications, we conducted a research to investigate and 

provide a solution that satisfies these requirements without sacrificing the advantages of 

the cloud-computing era. 

1.6 Research Contributions 

The work described in the subsequent chapters introduces several research contributions. 

In particular: 

1) Chapter 2 defines various challenges that encounter the NFV application 

development and deployment along with a set of practices and solutions for these 

challenges. 

2) Chapter 2 proposes a placement for the ETSI NFV framework’s entities in the 

current cloud computing stack. 

3) Chapter 2 defines a grouping criterion for the virtualized evolved packet core 

(vEPC) entities. The entities’ grouping criterion is conducted to suit vEPC for 

cloud deployment while maximizing performance and minimizing the signaling 

traffic between its entities. 

4) Chapter 3 defines an elasticity framework for highly available application in 

cloud. This framework migrates the SAForum specification to the cloud 

environment to satisfy the carrier grade requirements. 

5) Chapter 3 presents the implemented prototype of the framework using various 

technologies such as DevOps tools and proprietary developed software. 

6) Chapter 3 defines the constraints and an algorithm for elastic placement of HA 

application components to achieve the desired availability while satisfying the 

functional and non-functional requirements. 
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Chapter 2 

2. NFV: State of the Art, Challenges and Implementation in 
Next Generation Mobile Networks (vEPC) 

As mobile network users look forward to the connectivity speeds of 5G networks, 

network providers are facing challenges in complying with projected demands without 

substantial financial investments. Network function virtualization (NFV) is introduced as 

a new methodology that offers a way out of these bottlenecks. NFV is poised to change 

the core structure of telecommunications infrastructure to be more cost-efficient. In this 

chapter, Network Function Virtualization (NFV) is introduced with a discussion about the 

challenges and requirements of its use in mobile networks. In particular, an architecture 

for NFV framework entities in the virtual environment is proposed. Moreover, in order to 

reduce signaling traffic congestion and obtain better performance, this chapter proposes 

to bundle multiple functions of virtualized evolved packet-core in a single physical 

device or a group of adjacent devices. 

2.1 Introduction 

The demand for reducing capital expenditures (CAPEX) and operating expenditures 

(OPEX) has pushed information technology (IT) specialists toward contemplating 

designs to achieve more effective capital investments with higher return on capital. 

Toward this goal, the virtualization technology has emerged as a way to decouple 

software applications from the underlying hardware and enable software to run in a 

virtualized environment. In a virtual environment, hardware is emulated, and the 

operating system (OS) runs over the emulated hardware as if it is running on its own 

bare-metal resources. Using this procedure, multiple virtual machines can share available 

resources and run simultaneously on a single physical machine [1].  

The demand for broadband network connectivity has been increasing dramatically in 

the last decade. It gains additional momentum with the increase in the number of 

Internet-connected mobile devices, ranging from smartphones, tablets, and laptops to 

sensor networks, and machine-to-machine (M2M) connectivity. This increasing demand 
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is pushing network service providers to invest in their infrastructure to keep up with the 

demand, although studies show that the return on such investments is minimal [2]. 

Network expenditures depend highly on the infrastructure on which the network relies. 

The high cost of any network-improvement upgrade or new service release narrows the 

revenue margin of the service provider. Network operating challenges are not limited to 

the cost of expensive hardware devices, but also include increasing energy costs and the 

competitive market for highly qualified personnel with the skills necessary to design, 

integrate, and operate an increasingly complex hardware-based infrastructure. In addition, 

managing network infrastructure is another major concern of service providers. These 

issues do not affect revenue only, but they also increase time-to-market and limit 

innovation in the telecommunications industry. Therefore, network operators seek to 

minimize or even eliminate their dependency on proprietary hardware.  

To achieve these targets successfully, a group of seven telecom operators has formed 

an industry specifications group for Network Function Virtualization (NFV) under the 

European Telecommunications Standards Institute (ETSI). They revealed their solution in 

October 2012 [3]. More recently, several telecom-equipment providers and IT specialists 

joined the group.  

2.2 Network Function Virtualization 

The substantial dependence of networks on their underlying hardware and the existence 

of various specialized hardware appliances, for example firewalls, deep packet inspection 

(DPI) equipment, and routers, in the network infrastructure have escalated the challenges 

facing network service providers. Furthermore, the reduced life cycles of these types of 

hardware, due to fast pace of innovation tends to multiply CAPEX and OPEX 

investments [3]. Network function virtualization technology was developed to take 

advantage of the evolution of IT virtualization. It separates network functions from the 

underlying proprietary hardware appliances. NFV is the concept of transferring network 

functions from dedicated hardware appliances to software-based applications running on 

commercial off-the-shelf (COTS) equipment. 
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These applications are executed and consolidated on standard IT platforms like high-

volume servers, switches, and storage. Through NFV, network functions can be 

instantiated in various locations such as datacenters, network nodes, and end-user 

premises as the network requires [3]. Fig 2.1 illustrates the migration of network 

proprietary hardware to a software-based application on COTS equipment. 

Router

Deep packet inspection

Serving Gateway

Network Proprietary 
Hardware

VNF

VNF

VNF

Virtualized Network 
Functions

Orchestrator

Standard High Volume 
IT Infrastructure

 

Fig. 2.1 Network function virtualization concept. 

NFV is poised revolutionize the telecommunication era from research to industrial 

implementations. Telecommunication equipment vendors have to reform their doctrine to 

compete in the new software based telecommunication area. NFV has been foreseen to 

lead the future of telecommunication. As NFV decouple the network functions from 

underlying hardware, it offers many benefits to the telecommunication systems. Some of 

these benefits are listed below. 

2.2.1 Openness of Platforms 

As network functions are virtualized to be executed on standard IT infrastructure in a 

software manner, this will grant the telecommunication industry an opportunity to 
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embrace a standardized form for the interfaces and the network functions themselves. By 

such act, service providers could avoid the vendor lock-in in their network equipment that 

have sustained for years. Vendor Locked-in has overwhelmed their budgets, and 

degraded their network performance. Adopting openness concept assures that service 

providers benefit from multi-vendor network functions that serve their needs [4]. They 

merge all the expertise from different vendors since there is no single vendor who 

masters all the network functionalities. Furthermore, openness of the platforms would 

facilitate new revenue trends and opportunities for better contribution and innovation 

from IT and software designing companies, startup companies and academia. Also open 

source projects could be initiated to improve network functions performance [3]. 

2.2.2 Scalability and Flexibility 

Telecommunication service providers design their networks infrastructure according to 

network traffic demand in the peak hours to be able to handle that traffic and maintain 

their targeted quality of service (QoS). Most of the time these equipment would not be 

efficiently utilized and yet they have to be managed and maintained functional 24/7 to 

provide the services. Furthermore, proprietary telecommunication equipment occupies 

space and consumes energy to operate and maintain the functional terms, e.g., 

temperature of the equipment. NFV addresses these concerns and allow service providers 

to easily scale their infrastructure in real-time since they are deployed in virtualized 

environment [5]. Virtualized network functions (VNFs) are dynamically scaled to fulfill 

the traffic demands. VNFs resources could be scaled up in specific locations where 

higher demands are needed. NFV also allows resources sharing between lightly utilized 

VNF and higher demanded VNFs. However, service providers will benefit from 

downscaling their VNF resources during off peak hours. This down scaling allows 

service providers to benefit from assigning these resources to serve other tasks or can be 

easily switched off [3]. 

2.2.3 Operation Performance Improvement 

Virtualization in the IT era has made a great progress and advanced orchestration 

mechanisms from which NFV will benefit. VFNs are installed and initiated automatically 
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by the orchestrator of the environment, which senses the network traffic on real-time 

basis. Intelligent automated resource allocations or instantiation of new VNFs can be 

used to improve the network service performance in a real-time basis. These 

orchestration mechanisms can be also used to improve network resiliency and limit 

service interruption by automatic network failure and fault recovery. 

2.2.4 Improve Development Cycle 

Any upgrade from developing to releasing new services has been an ordeal in 

telecommunication industry. It requires lengthy time to develop the software then porting 

it to specific hardware, besides the required procedures for testing and quality assurance. 

In addition, the newly introduced service should assure compatibility with the legacy 

equipment. NFV waives all of these concerns and provide the possibility of having the 

production, testing and development environment running on the same infrastructure. 

This reduces the development cycle since the hardware development and porting part is 

eliminated from the cycle. This elimination leads to reduced time to market and lower 

CAPEX and OPEX investments during development cycle. 

2.2.5 Reduced CAPEX and OPEX 

Service providers are implementing and investing in their network infrastructures to 

satisfy the network traffic demands as connectivity devices like smartphone, tablets, and 

laptops are increasing dramatically. Although, they are supporting high network traffic 

but their revenues are steady over time with slight increment. NFV implementation 

reduces the CAPEX and OPEX; therefore revenue will increases. CAPEX is reduced by 

decoupling the network functions from proprietary hardware and consolidating on 

commercial off-the-shelf (COST) hardware which lead to lower hardware footprint. 

Furthermore, OPEX is reduced by implementing the automated robust orchestrators. In 

addition, the consolidation of VNFs on COST servers reduce the power and maintenance 

cost. NFV allows faster and flexible releases of new services and support multi-tenancy 

therefore new revenue trends can be introduced to the market. 
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2.3 NFV and SDN 

Software defined network (SDN) and NFV are two different independent technologies; 

however, they are complementary to each other. SDN technology started as a project 

targeting the network functionalities at Stanford University in 2007. SDN decouples the 

control plane from the data plane in the network. The control plane is responsible for 

network management such as path computation. It is centralized and implemented in the 

SDN controller, which provides the necessary computational power to achieve the goal 

[6]. Data plane is responsible for transporting the traffic. It is implemented in open flow 

switches. They are programmable switches that provide application programming 

interface (API) to be managed and controlled by the SDN controller. SDN will serve 

NFV by providing the programmable connectivity between VNFs; these programmable 

connections can be managed by the orchestrator of the VNFs that mimic the role of the 

SDN controller [6]. On the other hand, NFV can serve SDN by implementing its network 

functions as software application on COSTs servers. It can virtualize the SDN controller 

Fig. 2.2 Service provider revenues vs traffic [2]. 
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to run on cloud, which could be migrated to the best-fit location based on to the network 

needs. Fig.2.3. lists how NFV and SDN differ and complement each other. 

NFV SDN

Software‐Defined Networking (SDN) and NFV are two different independent 
technologies; however, they are complementary to each other.
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between  VNFs;  these 
connections can be managed by 
the  orchestrator  of  the  VNFs 
which will mimic the  role of the 
SDN controller [6]. 
2)  NFV  serve  SDN  by 
implementing  its  network 
functions  in a  software manner 
on  a  COTSs  servers.  It  can 
virtualize  the  SDN  Controller  to 
run  on  cloud,  which  could  be 
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Fig. 2.3 NFV differs from SDN. 

2.4 NFV Framework 

The basic components of virtualized platforms where NFV is deployed, are listed below: 

1) Physical server: The physical server is the bare-metal machine that has all the 

physical resources such as CPU, storage, and random access memory (RAM). 

2) Hypervisor: The hypervisor, or virtual machine monitor, is the software that runs 

and manages the physical resources. It provides the virtual environment where the 

guest virtual machines are executed. 
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3) The guest virtual machine: A piece of software that emulates the architecture and 

functionalities of a physical platform on which the desired application is executed. 

Virtual machines (VMs) are deployed on high-volume servers that can be located in 

datacenters, at network nodes, or in end-user facilities. Moreover, most VMs provide on-

demand computing resources using cloud enviroments. Cloud-computing services may be 

offered in various formats [4]; as shown in Fig. 2.5: 

1) Infrastructure as a service (IaaS) is referred to as hardware as a service (HaaS). 

The service provider offers the computing resources (CPU, storage and RAM) to 

the user without any specific operating system or application preinstalled on the 

resources by the service. 

2) Platform as a service (PaaS) is a computing environment that enables the 

development and implementation of applications without the hassle of managing 

the underlying software and hardware. 

3) Software as a service (SaaS), referred to as software on demand is a service of 

providing a specific application (like office, management, or CAD software) to 

the end-user over the web. 

Fig. 2.4 Virtualization Layout. 
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4) Network as a service (NaaS): There is no standard definition NaaS. NaaS is often 

considered to be provided under IaaS or as a standalone service that provides the 

connectivity between network nodes, datacenters, virtual machines, and end-user 

premises. 

 

Fig. 2.5 The cloud services. 

The NFV technology takes advantage of the infrastructure and networking services (IaaS 

and NaaS) to form the network function virtualization infrastructure (NFVI) [5]. 

To achieve the objectives promised by NFV such as flexibility in assigning virtual 

network functions (VNFs) to hardware, rapid service innovation, enhanced operational 

efficiency, reduced power usage, and open standard interfaces between VNFs, each VNF 

should run on a framework that includes dynamic initiation and orchestration of VNF 

instances. In addition, the framework should also manage the NFVI hosting environment 

on IT virtualization technologies to meet all VNF requirements regarding data, resource 

allocation, dependencies, availability, and other attributes. The ETSI NFV group [3] has 

defined the NFV architectural framework at the functional level using functional entities 

and reference points, without any indication of a specific implementation. The proposed 

framework is shown in Fig.2.6. 
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Fig. 2.6 NFV framework [5]. 

2.5 Proposed Placement of Framework Entities 

The proposed placement is based on mapping the NFV framework entities to best fit into 

the virtual environment. The virtual resources manager, the VNF manager, and the 

orchestrator have been grouped at the hypervisor level. Since the virtual environment will 

not only host VNFs, but also other IT applications, this grouping leads to a centralized 

controller. The infrastructure that provides NFVI as a service provide cloud services 

simultaneously on the same hardware resources. Essentially, the hypervisor manages and 

orchestrates the physical and logical resources of the virtualized environment. It is aware 

of the virtual machines that are using the underlying hardware and manages resource 

scheduling and decisions such as migration, resource scaling, and fault and failure 



28 

recovery, more efficiently to meet the specified quality-of-service requirements of VMs 

(VNFs and APPs) [5]. 

The virtualization layer consists of a cross-platform virtual resource manager that 

runs on top of the hypervisor to ensure the portability and flexibility of VNF 

independently of the hypervisor. OpenStack, Eucalyptus, oVirt, OpenNebula, and 

Nimbula are examples of cross-platform virtual layers [7]. The virtual machine hosts 

VNF and its element-management system (EMS). Each VNF instance has its private 

EMS to reduce complexity when migrating an existing VNF or initiating a new one. 

Operations and business support systems with VNF infrastructure description entities are 

deployed in a centralized form which provides uniformity of VNF software images and 

minimize database fragmentation. The proposed placements are illustrated in Fig.2.7. 

Fig. 2.7 NFV Framework Entities Proposed Placements. 
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2.6 NFV Ecosystem 

Service providers have shown keen interest in NFV. Observing this interest, telecom 

equipment vendors and IT companies have started to investigate different aspects of NFV 

realization. Leading telecommunication equipment vendors like Ericsson, Nokia, Alcatel-

Lucent, and Huawei have already started to adopt and upgrade their equipment to support 

NFV [8]. Moreover, leading IT companies that provide carrier grade software like Wind 

River, 6wind, Qosmos, and HP have been working closely with Intel to optimize their 

software on Intel processors in order to achieve higher packet processing computations 

that enable NFV and SDN on COTS platforms [9]. Intel has released the Data Plane 

Development Kit (DPDK) and has scheduled the release of signal processing 

development kit in its software development roadmap to extend and speed up NFV and 

SDN adoption [10]. Service providers started experimenting with these NFV products 

and put the devices under heavy testing to ensure that they will meet the expectations as 

carrier-grade products [11]. 

2.7 NFV Challenges and Requirements 

Although NFV is a promising solution for telecommunications service providers, it faces 

certain challenges that could degrade its performance and hinder its implementation in 

the telecommunications industry. In this section, some of the NFV requirements and 

challenges, and proposed solutions are discussed. Table 2.1 summarizes this section. 

2.7.1 Security 

Security is an important aspect of the telecommunications industry. NFV should obtain a 

security level close to that of a proprietary hosting environment for network functions. 

The best way to achieve this security level is by dividing it according to functional 

domains. Security in general can be defined according to the following functional 

domains: 

1) Virtualization environment domain (hypervisor) 

2) Computing domain 

3) Infrastructure domain (networking) 
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4) Application domain. 

Security attacks are expected to increase when implementing network functions in 

a virtualization environment. A protected hypervisor should be used to prevent any 

unauthorized access or data leakage. Moreover, other processes such as data 

communication and VM migration should run in a secure environment [12]. NFV uses 

APIs to provide programmable orchestration and interaction with its infrastructure. These 

APIs introduce a higher security threat on VNFs [13]. 

2.7.2 Computing Performance 

The virtual environment underlying hardware server characteristics such as processor 

architecture, clock rate, cache memory size, memory bandwidth, and speed has a 

profound impact on VNF performance. VNF software design also plays a major role in 

VNF performance. VNF software can achieve high performance using the following 

techniques: 

1) A high-demand VNF should be implemented using multi-threading techniques and 

in a distributed and scalable fashion, in order to execute it on multiple cores or 

different hosts. 

2) Software instances should have independent memory structures to avoid operating-

system deadlocks. 

3) VNF should implement its own network stack and avoid networking stacks 

implementation in the operating system, which consume large amounts of 

computing resources. 

4) Direct access to input/output interfaces should be used whenever possible to reduce 

latency and increase data throughput. 

5) Processor affinity techniques should be used to take advantage of cache memories.  

Implementing these techniques in VNF software may require a different approach 

from the automated resource allocation within a given pool of servers, which is currently 

used in IT environments. 
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2.7.3 Interconnection of VNFs 

Unlike the classical approach of interconnecting network functions by a direct connection 

or through Layer 2 (L2) switches, a virtualized environment uses different approaches. In 

a virtualized environment, virtual machines can be connected in different scenarios [14]: 

1) If two VNFs are on the same physical server and on the same local-access network 

(LAN), they are connected through the same Vswitch. 

2) If two VNFs are on the same physical server but on different LANs, the connection 

passes through the first Vswitch to the network interface controller (NIC), then to 

the external switch, and back again to the same NIC. This NIC forwards the 

connection to the Vswitch of the second LAN and then to the VNF. 

3) If two VNFs are on different servers, the connection passes through the first 

Vswitch to the NIC and then to an external switch. This switch forwards the 

connection to the NIC of the desired server. Finally, this NIC forwards it to its 

internal Vswitch and then to the destination VNF. 

Some NICs provide direct access from the virtual machine. These NICs are 

single-root I/O virtualization (SR-IOV) compliant. They offer faster and higher 

throughput to virtual machines. Each connectivity technique has its own advantages in 

terms of performance, flexibility, and isolation. Virtual interfaces managed by the 

Fig. 2.8 Networking in virtualization environment. 
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hypervisor have lower performance compared to virtual interfaces offered by SR-IOV-

compliant NICs. However, virtual interfaces provided by the hypervisor are simpler to 

configure, and support VM live migration in a simpler way. The correct choice depends 

on the VNF workloads. Fig.2.8. illustrates the VNF interconnection cases. 

2.7.4 Portability 

Virtualized network functions can be deployed in different ways. Each way has its own 

advantages and drawbacks. Virtualized network functions that are executed directly on 

bare-metal ensure predictable performance because mappings of software instances to 

hardware are predictable. This kind of deployment sacrifices resource isolation and 

makes software-instance security difficult to achieve because multiple software 

appliances are executed as processes on the same operating system. In addition, the 

designed software would be OS-dependent. 

Deploying virtual network functions through a virtual environment improves 

portability and ensures that hardware resources are viewed uniformly by the VNF. This 

deployment also enables each VNF to be executed on its specific operating system while 

remaining unaware of the underlying operating system. In addition, VNF resource 

isolation is ensured because VNFs are executed on independent VMs managed by the 

hypervisor layer, which guarantees no unexpected interactions between them. Strict 

mapping of resources should be used to guarantee resource isolation. 

2.7.5 Operation and Management 

Virtual network functions should be implemented as simple drag-and-drop operations in 

the orchestration management system. To make this a reality, both VNFs and computing 

infrastructure should be described using standard templates that enable automated 

management. 

The orchestration management system is responsible for providing and managing the 

NFV environment through north- and south-bound interactions. Northbound interactions 

are used to manage and provide access to the VNFs. Moreover, VNFs could use them for 

information or request queries such as asking for more computing resources. Southbound 
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interactions are used to interact with the NFVI and request information from other 

framework entities. In addition, they are used to request information about policies, VNF 

software images, VNF descriptions, or network forwarding graphs. 

2.7.6 Co-existence with Legacy Networks 

Virtual network functions should be able to coexist with legacy network equipment. It 

means that a) it should be able to interact with legacy management systems with minimal 

effects on existing networks, b) the network forwarding graph should not be affected by 

the existence of one or more VNFs, and c) a secured transition should be ensured 

between VNF instances and physical functions, without any service interruption or 

performance impacts [15]. 

2.7.7 Carrier-Grade Service Assurance 

Carrier-grade service is a service in which hardware, software, and system components 

ensure high availability and reliability. For NFV to meet carrier-grade service 

requirements, it should provide resilience to failure, service continuity, and service 

assurance. Resilience to failure is provided by implementing an automated on-demand 

mechanism in the NFV framework to reconstitute the VNF after a failure. VNF 

reconstitution should not have any impact on the system to ensure stable service. Service 

assurance is provided by the NFV orchestrator, which is monitoring network-function 

performance and scale resources almost in real time [16]. 
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Challenge  Description Solutions and Requirements 

Security 

Virtualization security risks according to 
functional domains: 
 

1) Virtualization environment domain 
(Hypervisor): 
 Unauthorized access or data leakage. 

2) Computing domain: 
 Shared computing resources: CPU, 

memory…etc. 
3) Infrastructure domain (networking): 
 Shared logical-networking layer 

(Vswitches). 
 Shared physical NICs. 

Security implementations according to 
functional domains: 
 
1) Virtualization environment domain 

(Hypervisor): 
 Isolation of the served virtual-machine 

space, with access provided only with 
authentication controls. 

2) Computing domain: 
 Secured threads. 
 Private and shared memory allocations 

should be erased before their re-
allocation. 

 Data should be used and stored in an 
encrypted manner by which exclusive 
access is provided only to the VNF. 

3) Infrastructure domain (networking): 
 Usage of secured networking techniques 

(TLS, IPSec, or SSH). 
 

Computing 
performance 

The virtualized network function should 
provide comparable performance to 
network functions running on proprietary 
hardware equipment. 

VNF software could achieve high performance 
using the following techniques: 
 Multithreading to be executed over multiple 

cores, or could be scaled over different 
hosts. 

 Independent memory structures to avoid 
operating-system deadlocks. 

 VNF should implement its own network 
stack. 

 Direct access to input/output interfaces. 
 Processor affinity techniques should be 

implemented. 

VNF 
interconnection 

Virtualized environment has different 
approaches from classical network function 
interconnection. 

VNFs should take advantage of accelerated 
Vswitches and use NICs that are single-root 
I/O virtualization (SR-IOV) compliant. 

Portability 

VNFs should be decoupled from any 
underlying hardware and software. VNFs 
should be deployable on different virtual 
environments to take advantage of 
virtualization techniques like live 
migrations. 

The VNF development should be based on a 
cross-platform virtual resource manager that 
ensure its portability. 

Operation and 
management 

Existence with 
legacy networks 

Carrier-grade 
service assurance 

VNFs should be easy to manage and 
migrate with existing legacy systems 
without losing the specification of a carrier-
grade service. 

To achieve the desired operation and 
management performance, a standard template 
of NFV framework entities should be well-
defined. It should be able to interact with 
legacy management systems with minimal 
effects on existing networks. The NFV 
orchestrator must monitor network function 
performance almost in real time. 

Table 2.1 NFV challenges and solutions. 
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2.8 Use Cases and Services 

The Network Function Virtualization technology in principle considers all network 

functions for virtualization through well-defined standards. Most likely, NFV services 

will be provided in a similar way to IT virtualization service models. NFV service models 

include NFVI as a Service (NFVIaaS), VNF as a Service (VNFaaS), and Virtual Network 

Platform as a Service (VNPaaS). Service providers will choose between these service 

models to serve their network-connectivity needs and use cases. Some of the use cases 

will include, for example, fixed-access network function virtualization, content-delivery 

network virtualization, and home environment virtualization [17]. 

2.8.1 NFVI as a Service (NFVIaas) 

The NFV Infrastructure can be considered as providing the required infrastructure 

for an environment in which virtualized network functions can be executed. The 

NFVIaaS should provide computing and networking capabilities comparable to IaaS and 

NaaS in cloud computing services. Compatible is assured with any IT application since it 

provides a standard IT computing resources. 

2.8.2 VNF as a Service (VNFaaS) 

In VNFaaS the VNF is an application provided by the service provider to the service 

consumer. The consumer will not be in charge of managing, controlling the NFVI, and 

VNF instances. Consumers of the VNFaaS do not have to develop or own the VNF 

application rather they can obtain them on an expense basis from the Service Provider as 

needed. The Service Provider allocates resources of NFVI and manages the VNF in order 

to deliver the desired network functionality with the required QoS. 

2.8.3 Virtual Network Platform as a Service (VNPaaS) 

A Platform as a Service provides a development environment tool for the consumers to 

develop their own specific VNFs. VNPaaS is the service where the consumer will not 

worry about the infrastructure and compatibility of the development environment. The 

consumer will use his developed VNF and the provided VNF to build his own virtual 

networks. 



36 

2.8.4 Fixed Access Network Functions Virtualization 

The Virtualization in the fixed access network will mainly target the network functions in 

the fiber-to-distribution nodes. They are deployed in street cabinets, customer premises, 

or underground. The hardware footprint of these network functions should be in compact 

form. Furthermore, the hardware should run with a very low power consumption and 

assure durability with minimum failure. Implementing the fix access network function 

with NFV technology will expunge the challenges. NFV offers lower hardware 

complexity, footprint, and energy consumption. Moreover, NFV will permit rapid service 

upgrades and deployment to meet all technology revolutions that fix access network is 

sighting. 

VNFs are implemented mainly in Layer 2 (L2) and Layer 3 (L3) network 

functions in the fixed access network. As for layer 1 functions will be considered for 

virtualization later. Layer 1 has the signal processing computations that need to be 

delivered in real-time manner to avoid latency issues. VNFs most probably will be seen 

at first in L2 and L3 network functions of Multiple Dwelling Units, digital subscriber line 

access multiplexer, and cable modem termination system. 

2.8.5 Content Delivery Networks Virtualization 

Content delivery networks (CDNs) are systems used by service providers to deliver 

diverse of data contents to the end user. They have been deployed in various geographic 

areas to assure fast and reliable data content delivery. CDNs have been used for various 

applications for example web caching, data storage and download, live streaming media, 

and on-demand media services. Video data traffic has been increasing dramatically with 

the increase of mobile devices and streaming media services like Internet protocol 

television (IPTV) and on-demand video streaming. This increase in Video traffic had 

forced service providers to initiate multiple CDNs to serve their customers with the 

desired quality of service. This multiple deployment of CDNs has led to a complex 

management of the distributed sites and inefficient utilization of resources during off-

peak hours. Virtualization will target all CDN functions and will bring all the advantages 

of NFV to the service provider. Multiple CDNs management will be easier with NFV 
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automated management and orchestration. Efficient resource utilization and lower 

footprint is achieved through NFV automated resource allocations. In addition, Service 

resilience is achieved through NFV automated VNF deployment. 

2.8.6 Home Environment Virtualization 

As the home environment services like internet, VoIP, and on-demand video streaming 

are increasing ,more client equipment are needed to be installed at the customer home. 

Service providers have to install a residential gateway to provide all these services to the 

customer. Furthermore, when a new service is going to be released the customers have to 

upgrade their home equipment to have access to these services. Virtualizing the home 

environment network functions such as the residential gateway and digital box will 

provide a great deal for the service providers and customers. Virtualizing the home 

environment function and implementing these functions on the cloud introduces a 

network bandwidth challenge. Higher bandwidth connection should be provided between 

the customer home and the service provider network. With video streaming in high-

definition, VoIP, and internet access the network bandwidth should be almost 1 Gigabit 

per second with low latency to assure the service quality. This requirement would be 

achieved in the near future since some service providers have started offering these kind 

of high-speed connections. 

2.8.7 Mobile Network Virtualization 

Mobile network connectivity demand is rapidly increasing with the growing number of 

mobile devices and applications that need to be always connected. Service operators must 

continually upgrade and enhance their infrastructure, for example by providing enough 

mobile base stations and network cores to achieve the desired data throughput, latency, 

and quality of service. Virtualization of mobile networks targets the mobile-network base 

station and mobile core network. Service providers have been showing interest in 

virtualizing mobile base stations so that they can consolidate as many network functions 

as possible in a standard hardware as needed to serve different mobile network 

technologies with a single virtualized mobile base station. Virtualizing the mobile base 

station is a challenging process because it hosts signal-processing functions in its physical 
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layer. Therefore, virtualization first is considered for implementation in the higher 

network stack layers. Considering eNodeB, which is the fourth-generation network (LTE) 

base station, virtualization will be implemented in layer 3 and then in layer 2 [17]. Layer 

3 hosts the functionalities of the control and data plane that connects to the mobile core 

network. Layer 2 hosts the packet data convergence protocol (PDCP), radio link control 

(RLC), and media access control (MAC) network functions. Virtualizing layer 2 and 3 of 

the base station provide the opportunity to offer a centralized computing infrastructure for 

multiple base stations, which lead to lower-cost base stations because only baseband 

signal processing should be implemented on-site. Furthermore, service providers will 

benefit from sharing their remote base-station infrastructure to achieve better area 

coverage with minimum CAPEX and OPEX investment. There are also some efforts to 

centralize the L1 functionalities of several base stations [18]. They will be able to 

upgrade VNFs to support multiple telecommunications technologies and adapt them for 

new releases. 

 

Fig. 2.9 Base station virtualization evolution. 

2.9 Virtualization of the Evolved Packet Core (EPC) 

The mobile core network is the most important part of the network in many access 

technologies. Virtualizing the functionalities within the core is the main target for NFV. 

The most recent core network is the evolved packet core (EPC) network. EPC has been 
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introduced in release 8 as a simplified all-IP core network architecture. It is designed to 

permit mobile broadband services by combining leading-edge IP infrastructure and 

mobility. Moreover, EPC is designed to support a variety of access technologies [19]. 

The rapid increase in connectivity demand has led service providers to undertake more 

CAPEX and OPEX investments beyond financial sense in their mobile core network 

infrastructure. From this point onward, it is becoming essential to have a flexible, robust, 

and easily manageable network; a network that could be scaled on-demand in real time 

and would be easily manageable. Virtualizing EPC offers all these benefits to service 

providers. 

The basic EPC entities to support IP connectivity in LTE are the following: 

1) The mobility management entity (MME) is the main control-plane entity in the 

LTE network.  

2) The serving gateway (SGW) is responsible for routing and forwarding user data 

packets from and to the base station. 

3) The packet data network gateway (PDN-GW) (PGW) ensures connectivity 

between the user data plane and external networks.  

4) The Home Subscriber Server (HSS) is the central user information database. 

5) The policy and charging rules function (PCRF) is responsible for passing and 

deciding the policies and charging in real time for each service and user. 

2.10 Grouping EPC Entities in the NFV Environment 

Implementing a virtualized EPC (vEPC) is the prime objective of the telecommunication 

equipment vendors. Since EPC encompasses multiple functionalities, instantiation of 

VNF in cloud has a tremendous effect on the performance and hence, VNFs are grouped 

together based on their interactions and workload. Generally, it is beneficial to instantiate 

each group in one physical server, or one local network depending on the workload. 

A vEPC entity grouping approach that can improve performance is proposed. The 

approach is based on analyzing the interconnections and functionalities of vEPC entities 

to achieve less control-signaling traffic and less congestion in the data plane. The 
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proposed approach maintains the two EPC principles of flat architecture and decoupling 

of the control and data planes. The grouping approach divides the entities into four 

segments. These are listed below and summarized in Table 2.2 and illustrated in Fig.2.10. 

Since understanding the LTE framework is necessary to truly grasp the benefit of 

the proposed grouping. Please refer to [19] for a comprehensive study of the LTE 

architecture. 

2.10.1 Segment One 

In the proposed grouping, MME is migrated with the HSS front-end (HSS FE). The HSS 

front-end is an application that implements all the logical functionality of HSS but does 

not contain the user information database. By implementing the HSS FE with the MME, 

authentication and authorization processes are carried out internally, without any data 

transactions through the network. The HSS FE ensures that all the interactions with MME 

happen as if the MME was accessing the complete HSS database. The HSS FE issues a 

query for user information data from the user data repository (UDR), which is the central 

user information database and stores these data temporarily in cache memory. After 

querying for user information, the HSS FE act as a complete user database and performs 

all authentication and authorization processes with the MME entity. Fig.2.11 shows the 

process for attaching user equipment to the LTE network. This grouping minimizes the 

number of network transactions that must be performed to authenticate a user because the 

HSS FE obtains all the required information in one query [20]. Furthermore, 

communication between the UDR and the HSS FE occurs through the lightweight 

directory access protocol (LDAP), not the diameter signalling protocol. LDAP is an 

application protocol used to exchange and manage distributed directory information 

services over IP networks. LDAP is a more efficient protocol than the diameter protocol 

for database information querying [20]. It is also faster and requires fewer resources than 

the diameter protocol [20-21]. It uses Transport Layer Security (TLS) or Secure Sockets 

Layer (SSL) to secure information exchanges, while diameter signaling uses an Internet 

Protocol Security (IPsec) connection for information exchanges. TLS/SSL requires fewer 

computational resources than IPsec and needs less initiation and resumption time. 
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Furthermore, TLS and SSL are application-layer security protocols that provide better 

flexibility on a virtualized platform [22]. 

 

Fig. 2.10 vEPC Entities Grouping. 

2.10.2 Segment Two 

In the proposed grouping, the serving general packet radio service (GPRS) support node 

(SGSN) is migrated with the home location register front end (HLR FE). The SGSN is a 

serving entity, which has almost the same functionality as a combined MME and SGW. 

The SGSN is a network function entity existing in the GPRS core network, which permits 

mobile networks (2G, 3G) to transmit IP packets to external networks. It takes charge of 

delivering data packets to and from mobile base stations. The SGSN has user data-plane 

functions such as managing packet routing and transfers. Furthermore, it has control 

plane functions such as mobility management, logical link management, and 
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authentication and charging functions. The SGSN is assumed in the proposed approach as 

almost all service providers support 2G and 3G networks besides their 4G networks. The 

SGSN is not combined with any EPC entities because the SGSN has a control and data 

plane, which contradicts the EPC architectural decoupling principle. The HLR is the 

database that conserves the user information in a Global System for Mobile (GSM) core 

network. The HLR FE is combined with the SGSN for almost the same reasons that 

combine the MME with the HSS FE. Moreover, this combination enables a unified 

database and supports the combination of the existing SGSN with the Gn interface to the 

EPC system. Gn is an interface that is based on the GPRS tunneling protocol (GTP). 

2.10.3 Segment Three 

In the proposed grouping, the PGW is migrated with the SGW. This merging of the two 

data-plane entities follows the flat architecture principle to minimize the number of data-

plane processing nodes. Implementing the two entities in one VM or VNF will benefit 

from centralized processing in the data plane and helps to overcom the processing and 

network bottlenecks. In this segment, user data are not routed or transferred to the PGW 

after being served by the SGW. Instead, the segment has direct access to the PGW, which 

routes it to external networks. Centralized processing in the virtualized environment 

enables applications to apply the CPU affinity procedure, leading to an efficient use of 

CPU cache memory. In addition, this merge avoids unnecessary routing through 

Vswitches, which are a major bottleneck in virtual environments. Higher VNF data 

throughput could also be achieved using direct network interface access, in order to meet 

the required latencies and quality of service of the PGW and the SGW. This migration 

leads to a better data monitoring and charging in addition to the elimination of signaling-

transaction traffic between the SGW and the PGW. All signaling transactions are carried 

out internally. 

2.10.4 Segment Four 

In the proposed grouping, the UDR, the PCRF, the on-line charging system (OCS), and 

the off-line charging system (OFCS) are migrated. Having the UDR migrated with the 

PCRF leads to an efficient way of generating the policy function from user information 
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because the PCRF requests user information to generate the required policies for each 

established bearer. This approach prevents information exchange from overwhelming the 

network node, minimizes the latency of policy-function generation, and speeds policy 

enforcement to the PGW. As for the OCS and OFCS, the OCS is used to charge network 

users in a real-time manner, as in a pre-paid credit system, whereas the OFCS is used to 

charge users after the session is ended, as in billing services known as “pay as you go”. 

The OCS and the OFCS interact with the PCRF and the PCEF to gather information 

about the session and enforce charging policies to the PGW, such as terminating the 

communication session when the credit limit has been exceeded. In addition, this segment 

groups all the entities that need to interact with the OSS/BSS. Limiting fragmentation of 

OSS/BSS interactions leads to more efficient control over network services. 

In this grouping approach, all segments are connected almost entirely through the 

GPRS Tunneling Protocol (GTP), not through diameter protocol interfaces. Even though 

the diameter protocol is an enhanced signaling protocol in the control plane of the EPC 

entities, it relies on the Stream Control Transmission Protocol (SCTP) and the 

Transmission Control Protocol (TCP) in its transport layer. SCTP and TCP are known to 

downgrade network performance when small amounts of data are being exchanged [23]. 

These network downgrades are due to the control packets, such as acknowledgment 

packets, which are sent to set up the connection. When the packets are small, in general, 

they require more computational resources to transfer the same amount of data when they 

are larger. The GTP relies on the User Datagram Protocol (UDP) in its transport layer, 

which has satisfactory performance on small-packet data-exchange connections [23]. 

Because control-signaling packets are small, using an approach that maintains interfaces 

on GTP leads to better computing performance and use of network resources. Although 

the proposed grouping introduces benefits in terms of minimizing control signaling traffic 

to avoid congestion on the networking infrastructure, it requires much computational 

power because most transactions are carried out internally. 
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2.11 Quantitative Analysis 

The main intent of the proposed grouping is reducing control-signaling traffic in the EPC, 

which is expected to increase exponentially by 2015 [24]. To illustrate the proposed 

grouping benefits, the signaling traffic generated in [25] were applied, and the reduction 

in the required bandwidth is estimated. In [25], the signaling traffic was generated for 15 

eNBs connected to the EPC entities where traffic profile and planning parameters are 

shown in Table 2.3. However, the total signaling transaction traffic between the MME 

and the HSS in [25] was 1,039,430 transactions, and the average number of transactions 

Groups Entities Benefits 

Segment one 
 

 HSS front-end (HSS FE) 
 Mobility Management Entity (MME) 

 Interactions between HSS and 
MME occur locally. 

 Fewer networking transactions 
through Vswitches. 

 Network transactions use the LDAP 
protocol, which is an efficient 

protocol for database information 
querying. 

Segment two 

 Home location register front end 
(HLR FE) 

 Serving general packet radio service 
support node (SGSN) 

 Supports combining existing SGSN 
with the Gn interface to the EPC 

system 
 Interactions between HLR and 

SGSN occur locally. 
 Fewer networking transactions 

through Vswitches. 
 Network transactions use the LDAP 

protocol, which is an efficient 
protocol for database information 

querying. 

Segment Three 

 Packet data network gateway (PGW) 
 Policy and charging enforcement 

function (PCEF) 
 Serving gateway (SGW) 

 Minimizes the number of data-
plane processing nodes (flat 

architecture principle) 
 Helps to overcome data-forwarding 

and network bottlenecks 
 better data monitoring and charging 

Segment Four 

 User data repository (UDR). 
 On-line charging system (OCS). 
 Off-line charging system (OFCS). 
 Policy and charging rules function 

(PCRF) 

 Unified user database; less 
fragmentation. 

 PCRF interacts locally with UDR to 
generate policies. 

 Local interaction between OCS and 
PCRF 

 Central interaction point for 
OSS/BSS 

 Fewer networking transactions 
through Vswitches. 

Table 2.2 Grouping of EPC entities in NFV environment. 
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per second between the MME and the HSS was 6.2 transactions per subscriber. Using the 

proposed grouping of MME and HSS FE, the number of transactions decreased from 6.2 

to one transaction(s) per subscriber. 

The reason behind this reduction in the number of transactions is the combination of all 

the user information in one query from the UDR [25]. Consequently, total transaction 

traffic was reduced to 173,239 transactions per second. In [25], signaling transaction 

traffic between the SGW and the PGW was 56,559 transactions. Using the proposed 

grouping of the SGW and the PGW, signaling transactions over the network were 

eliminated. Moreover, total signaling-transaction traffic for PCRF was 37,706, with an 

average of two transactions per bearer in [25]. As a result, the number of PCRF and UDR 

signaling transactions was 18,853. Because 80 percent of users had pre-paid accounts, 

30,164 transactions between the PCRF and the OCS were generated. Using the proposed 

grouping, these transactions were eliminated because the PCRF, OCS, and UDR are 

 

Fig. 2.11 Sequence diagram for user equipment attachment process to LTE 
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implemented in the same segment. Signaling traffic takes place between these entities 

and the PCEF, which is implemented with the PGW in a different segment. These results 

are illustrated in Table 2.4. 

Traffic Profile 

Registered Subscribers 167,650 

Subscribers Attached to The Network 150,878 

Busy Hour Session Attempts 64,940,898 

Simultaneous Evolved Packet System Bearers (EPSB) 18,853 

Planning Parameters 

Mean Session Time 180 sec 

Handover Ratio 0.4 

Dense Area Attached Subscriber Ratio 0.9 

Average EPSB session duration 900 sec 

Busy Hour Traffic Ratio 0.15 

Retransmission factor 0.25 

Pre-paid Accounts 80% 

 

Transactions between Core 
Elements 

Signaling (transactions per sec) [25] After Grouping 

MME, eNBs , and S-GW 175,332 175,332 

S-GW and P-GW 56,559 0 (Internal transactions) 

MME and HSS 1,039,430 173,239 to UDR 

PCRF and P-GW 37,706 37,706 

PCRF and UDR 18853 0 (Internal transactions) 

PCRF and OCS 30164 0 (Internal transactions) 

Total Traffic 1358044 386277 

 

Table 2.4 Traffic profile and planning parameters [25]. 

Table 2.3 Signaling traffic before and after grouping. 
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2.12 Chapter Contribution 

In this chapter, network function virtualization is introduced with a discussion about the 

challenges and requirements of its use in mobile networks. In particular, an architecture 

for NFV framework entities in the virtual environment is proposed. Moreover, a grouping 

criterion is defined to bundle multiple functions of the virtualized evolved packet-core in 

purpose of reducing the signaling traffic between the vEPC entities. The analysis shows 

that the proposed grouping can reduce the network control signaling traffic by 70 percent. 
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Chapter 3 

3. Towards an Elasticity Framework for Legacy Highly 
Available Applications in the Cloud 

Elasticity is a key characteristic of cloud computing where provisioning of resources can 

be directly proportional to the runtime demand. Legacy highly available applications 

typically rely on the underlying platform to manage their availability by monitoring 

heartbeats, executing recoveries, and attempting repairs to bring the system back to 

normal. Migrating such applications to the cloud can be particularly challenging, 

especially if the elasticity policies target the application only, without considering the 

underlying platform contributing to its high availability (HA). A comprehensive 

framework for the elasticity of highly available applications that considers the elastic 

deployment of the platform and the HA placement of the application’s components is 

discussed in this chapter. 

3.1 Introduction 

The promise of having simplified information technology (IT) infrastructure and an on-

demand provisioning model is a key feature that enabled the wide spread adoption of 

cloud computing by the enterprise [1]. From the perspective of the cloud provider 

offering infrastructure as a service (IaaS), elasticity is both a cloud feature and a service. 

It is a cloud feature that allows the infrastructure to absorb the addition or removal of 

physical resources in an intuitive manner. It is a cloud service offered to the cloud 

tenants, allowing the virtual resources allocated to their applications to grow and shrink 

in proportion to the runtime demand. On the other hand, from a cloud tenant perspective 

the elasticity service instituted by the provider becomes a feature of their cloud deployed 

application(s). 

Elasticity spans across multiple layers of the cloud, as shown in Fig. 3.1. Hence, a 

comprehensive elasticity solution must consider all the cloud layers. The proposed 

solution is oriented toward achieving elasticity for the revenue generating and business 

critical applications hosted in the cloud. Such applications require high availability (HA) 
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to the magnitude of five nines (99.999%) [2], undergoing less than six minutes of 

downtime per year, including maintenance and upgrades. However, major cloud 

providers (e.g., Amazon AWS) offer a service level agreement that guarantees a lower 

HA level (99.95%), which leaves room for several hours of outage per year. Such outages 

can entail millions of dollars in direct monetary losses, in addition to the reputation 

damage [3]. 

 

Fig. 3.1 The different perspectives of the cloud levels. 

In fact, the cloud tenants that thrive at maintaining the high availability of their 

applications [4] are the ones that leverage the HA enabling features of the cloud provider 

(e.g., elastic load balancing). In addition, they add their own application specific 

components [5] that complement the HA solution. Such applications are cloud-fitted 

applications composed of stateless components that can be deployed behind redundant 

load balancers while the system state is maintained in a replicated and distributed storage. 

Another approach garnering attention revolves around the construction of applications in 

a platform as a service (PaaS) environment, which can in turn manage scaling and data 

replication. Nevertheless, a large number of business critical applications are neither 

conceived for the cloud nor cloud-fitted [6]. In that sense, they are considered legacy 

applications for the cloud. Such applications have typically been deployed in a datacenter 

(DC) and their high availability is maintained by specialized HA clustering solutions 
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(henceforth, referred to as HA middleware [7, 8]). This middleware is responsible for 

monitoring the application’s components and reacting to their failures. Such solutions can 

ensure an availability level of fives nines of the applications due to the fast recovery and 

frequent heartbeat monitoring. However, because HA middleware is not conceived for 

the cloud but rather for static deployments within the datacenter, efficiency comes at a 

hefty price of rigidity and complexity. When deployed in a virtual DC of interconnected 

VMs that can grow and shrink on demand, a static middleware deployment cannot cope 

with such dynamic changes, which destabilizes the HA status of the application. Another 

important factor, and often neglected in elastic deployments is the dynamic HA-aware 

scheduling for the addition and removal of the VMs hosting the application’s 

components. The scheduling solution should consider the non-functional requirements 

such as HA by ensuring that the added components are not placed in the same failure 

domain, yet the functional requirements of the application’s components must not be 

violated, such as delay tolerance of inter-component communications. For instance, 

deploying in different servers, racks and datacenters, the replicated components can 

certainly protect against larger catastrophe scopes, as shown in Fig.3.2.  

 

Fig. 3.2 Application components deployed in different datacenters. 
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Nonetheless, it should take into consideration the functional (e.g., collocation 

dependencies for shared libraries, delay tolerance among dependent components, etc.) 

and non-functional requirements such as HA. 

A comprehensive elasticity solution should address the HA-aware scheduling of 

the added/removed VMs, the dynamic deployment of the middleware managing the 

availability of the applications, and the runtime addition/removal of the application 

instances without service interruption. This ought to be handled in an intuitive and user-

friendly manner to leverage the simplicity model affiliated with the cloud. This chapter 

proposes a framework that considers all three aspects while retaining a higher level of 

abstraction by delineating a domain specific language for the HA and elasticity 

requirement specification. 

3.2 High Availability Middleware and Scheduling 

With the wide variety of smart devices like smart mobile phones, tablets and laptops 

information technology (IT) has become a necessity in our daily activities such as social 

connectivity, medical services, and other uses. Furthermore, IT has become an essential 

asset in the enterprises business models after shifting from legacy to online service 

delivery paradigm. Consequently, the high availability of IT system becomes a crucial 

aspect to maintain always-on and always-available services for all users. Most of 

software and system engineers have used proprietary platforms during their development 

and implementation phases to achieve the desired high availability level. These systems 

have suffered from vendor lock-in and platform dependency. In order to provide HA 

systems with reduced lock-in to a specific vendor different parties have agreed on the 

need for standards that define HA system interfaces. 

A group of telecommunication and IT leading companies formed a consortium 

called “Service Availability Forum” (SAForum) in order to create standards for high 

availability systems. The SAForum has defined standards to leverage HA systems on 

commercial off-the-shelf (COTS) equipment. The SAForum standards enables HA 

systems deployment on standard IT platforms of different architectures, such as x86, 

ARM, and ATCA, which leads to facilitating the portability and interoperability of the 
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HA application across various standard compliant platforms [7]. More specifically, the 

SAForum delineates standards and guidelines for the design of an HA middleware that 

manages the availability of the services provided by an application. It attains the desired 

application’s availability through the management of the redundant components, and by 

seamlessly swapping the faulty component workload to a redundant and healthy one upon 

detecting a failure. The SAForum middleware offers several essential application 

interface specification (AIS) services including: (1) the availability management 

framework (AMF) responsible for monitoring the application’s components and 

orchestrating their recoveries [9], and (2) the software management framework (SMF) 

that is responsible for carrying software upgrades supporting the automated rolling 

upgrade that allows the incremental upgrade of the applications components. Moreover, it 

minimizes the downtime by synchronizing with the AMF [10]. In turn, the AMF 

leverages the redundant replicas of a given component by dynamically switching over the 

workloads to the upgraded replicas while the older-version replica is upgraded 

simultaneously. The applications that integrate with the SAForum middleware can also 

benefit from other services such as distributed messaging, check pointing, log and other 

essential for distributed HA applications. 

The SAForum specification has succeeded to find its way in different industries, 

with various implementations appearing in the market. One of the well-matured and 

highly adopted implementation is the OpenSAF project. It is an open source HA 

middleware project launched in 2007 by Motorola. Then a multi-industry consortium was 

formed to maintain and manage further development of the project. Leading companies 

such as Ericsson, Emerson Network Power, and Nokia Siemens Networks have enunciate 

support for this initiative as founding members of OpenSAF. OpenSAF is a SAForum 

compliant project devoted to implement the SAForum application interface specification 

standards. With openness and standard AIS, OpenSAF has prevented any vendor-lock 

and has established a fast pace adoption as HA operating environment to be utilized by 

multi-industry demanding HA solution. The OpenSAF project is considered the de facto 

implementation of the SAForum standards [8]. 
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3.2.1 OpenSAF Cluster 

OpenSAF system architecture defines two node types in the HA cluster; the System 

controller and the payload nodes [8]. The system controller node hosts different 

OpenSAF services centralized functions and acts as a management entry point for the 

whole cluster [8]. The payload node hosts the OpenSAF services node purview functions 

conjointly with HA application’s components, which intended to it. Despite that, HA 

application’s components are mainly entitled to run on the payload nodes, they also could 

be configured to run on the controller nodes. 

OpenSAF mainly is developed with C language, and it is persistent with linux 

standard base APIs usage. With this practice in OpenSAF development, it supports 

portability across various linux distributions. Consequently, various hardware 

architecture hosting these operating systems are supported such as IT standard servers 

and advanced telecommunications computing architecture (ATCA) equipment. OpenSAF 

deployment process consists of several steps that must be followed for a successful 

admission of a newly added node to the OpenSAF cluster. The OpenSAF installation and 

configuration are analyzed and grouped in six steps allowing concurrent execution. 

 Step One: OpenSAF code version is selected and downloaded by cloning the 

project from mercurial repository, distributed version control system. 

 Step Two: Defines the configuration of the installations and code compilation. In 

this step, system admin should install all the prerequisites packages and copy the 

OpenSAF files to the designated location on the system. 

 Step Three: The system administrator defines the services of OpenSAF to be 

installed and the procedure of their configuration. For instance, the administrator 

defines the protocol (TCP/IP or TIPC) to be used for the message distribution 

service (MDS). MDS is a nonstandard service that provides the inter-process 

communication infrastructure within different OpenSAF nodes and services. 

 Step Four: The system administrator manages the system users and files 

permissions configurations. In this step, the appropriate privileges are granted by 

modifying the sudoers file. 



57 

 Step Five: The node specific configuration should be applied, such as specifying 

the node slot ID and IP address, which should be used during communication 

between the nodes. 

 Step Six: The information model management (IMM) configurations should be 

configured and modified to reflect the desired OpenSAF cluster architecture. 

Finally, the nodes are rebooted to apply the permanent configuration and start the 

OpenSAF Services. 

Applying all these steps on each node is a challenging process. The system 

integrator deploying OpenSAF has to synchronize the configuration files between the 

cluster nodes and assign a unique name, slot ID, and so forth, for each node while 

verifying that conflicts have been nullified. Reducing the time and the complexity of 

deploying OpenSAF, and eliminating human error is essential in a dynamic cloud setting. 

The SMF framework, while it is efficient for the upgrade of the applications, but it cannot 

upgrade the middleware itself [10].  

Development and operation (DevOps) tools have existed in the market to ease and 

facilitate the automated deployment and configuration of software applications. Puppet 

labs [11] and Chef [12] are examples of highly adopted IT configuration management 

systems (CMSs). They are used to distribute and apply configuration resources to the 

computing nodes (servers or VMs). The configuration resources define what packages 

and software needed to be installed on the system. Furthermore, they define the 

configuration attributes of the installed software and manage the users’ access rights on 

the system. These configuration resources highly depend on the package management 

system used by the operating system of the computing node. Deploying OpenSAF 

through the CMS is a challenging process. Such CMS tools apply the system changes 

based on static manifests or cookbooks that are not meant for dynamic deployments, 

particularly where the configuration attributes such as IP address and node names/IDs are 

assigned at runtime. Furthermore, OpenSAF does not follow any package management 

system standards. It is provided as a source code and part of its configurations are applied 

during code compilation process. To facilitate the automated deployment of OpenSAF 

using CMSs, an additional module or plug-in should be developed. However, the 
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development of additional module or plug-in does not eliminated the human factor of the 

process since the CMSs lack the domain specific intelligence for automated dynamic 

configuration generation. This issue hinders the elastic deployment of OpenSAF HA 

cluster and requires additional system components to facilitate it. 

3.2.2 High Availability Scheduling 

Cloud applications typically have a multi-tier architecture serving a broad range of users. 

The placement of the application’s components may have an enormous impact on its 

availability; for example, the redundant instances of a database must be placed as far 

apart as possible in different availability zones to avoid losing multiple instances in a 

single zone failure. Nevertheless, in terms of delay tolerance those databases would be 

serving requests from dependent components with a constrained latency. Hence, situating 

the database in such a way to maximize the availability irrespective of its dependent 

components may yield suboptimal results. In previous work, HA-aware scheduling for 

cloud applications [13] has been proposed to resolve this issue. Jammal et al. [13] present 

various patterns used by the scheduler to place the redundant deployments. These 

practices target the elimination of single point of failure caused at the level of VM, 

cluster, or datacenter by utilizing geographically distributed datacenters to deploy new 

components. Yet a similar issue is experienced when implementing the elasticity 

framework whereby not only the added components, but also those removed (when 

scaling down) need to be cautiously selected, as these choices impact the availability of 

the application. Moreover, the solution space is more constrained in this environment 

because, rather than being an initial deployment, it is a variation of an existing 

deployment. Therefore, a need exists for an elastic HA-aware scheduler that is defined 

and integrated with the proposed elasticity framework. 

3.3 Elasticity Framework 

The proposed approach targets elasticity from the cloud tenant perspective. In order to 

achieve elasticity for the tenants’ highly available applications, all three levels (1) the 

infrastructure, (2) the platform, and (3) the application software have to be elastic in 

response to the variation of the runtime workload. In reality, the visibility and control 
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associated with each of these are decoupled. Therefore, the proposed elasticity 

framework relies on different entities to define a comprehensive elastic HA solution. The 

framework requires visibility of the cloud infrastructure in terms of the different 

availability zone, and the communication latency between zones, as well as the ability to 

monitor the runtime workload. Hence, it can be managed either by the cloud provider or 

by the tenant if the cloud provider exposes this information. An overview of the proposed 

elasticity framework ecosystem is illustrated in Fig3.3. 

 

Fig. 3.3 Overview of the elasticity framework. 

3.3.1 Application Design and Elasticity Requirement Specification 

In an application centric approach, users should embed the elasticity and HA 

requirements at the application specifications. Therefore, a domain specific language is 

derived based on the unified modelling language (UML) component diagram, which 

allows the description of the application in terms of components and interfaces. A 

component can provide or require an interface from another component. In order to 

express the deployment and HA requirements of the application, the component diagram 

is extended to include more interfaces (e.g., the proxy interface) and dependencies (e.g., 

the colocation dependencies) [14]. In addition, the specifications of HA-oriented 

requirements such as the redundancy models and the number of replicas of a given 

component are allowed. 
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This high-level information will later be transformed into a middleware specific language 

(based on the extensible markup language) known as the IMM configuration and serve as 

guidelines for the HA middleware to instantiate, monitor, and react to failures. 

Furthermore, the UML based language is extended to enable the specifications of 

elasticity attributes at the interface level (as shown in Fig. 3.4.). The values of these 

attributes are extracted by the elasticity framework, and aid configuration of the 

monitoring and telemetry components in order to trigger the proper elasticity action. 

Moreover, the collocation and other forms of dependencies dictate which components are 

installed in the same VMs, and the number of needed VMs. The next step would be 

scheduling the VMs for placement. 

 

Fig. 3.4 Snapshot of the application description interface. 

3.3.2 Elastic HA-Scheduling 

The cloud infrastructure can be viewed from a hierarchical perspective as an aggregation 

of several datacenters (DCs), each hosting a set of racks composed of servers where the 

VMs are placed (as illustrated in Fig. 3.5). In previous work [13], an HA-aware 

scheduling that can place the VMs hosting interdependent components of an application 

in an HA optimized manner is persented. The scheduling approach only targeted the 

initial HA placement and not the subsequent runtime changes induced by a fluctuating 

workload. Hence, the previous approach is extended to include the concept of elastic 
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scheduling. The elastic scheduling concept is based on three main steps, its algorithm 

pseudo code presented in Fig.3.7. 

 

 

Fig. 3.5 The cloud infrastructure hierarchical overview. 

3.3.2.1 Identifying the Constraints 

This step includes three sub-steps: 

1) Identifying the minimum number of instances of a given component type that 

needs to be added or removed in response to the workload changes. This 

calculation is based on the information provided by the application design phase 

presented in the previous section. 

2) Identifying the anchors for the components to be added or removed. The anchors 

are defined by a functional dependency that exists between components; 

dependencies may introduce distance limitations between the component and its 

anchor. For example, if an extra instance of a database is needed, then it will be 
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anchored by (1) the other instances of the database that require synchronization, 

and by (2) the dependent components on the database. 

3) Identifying the orbital area that is defined by the region where the newly added 

component can be placed. This area is bounded by the delay tolerance between 

the components. For example, when adding a new instance of the database it 

cannot be placed too far apart from its peers nor its dependents. The same applies 

when removing an instance, where the scheduler should make sure that the 

dependents connected to that instance can reestablish the connection to the 

sponsor without violating any delay constraints. Fig. 3.6 illustrates the 

conceptualization of the anchors in relation to the orbital area. A component can 

have multiple peers and multiple dependents; hence, the orbital distance must be 

carefully calculated. Distance unit depends on the cloud specifications: it can be 

the number of hops (between switches/routers), or an availability zone that 

determines the delay incurred by firewalls and load balancing. 

 

Fig. 3.6 The orbital distance of a given component. 
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3.3.2.2 Maximizing the Availability of the Application 

First, the scheduler filters out the cloud regions that cannot be used to host the added 

components. Next, it selects the placement that maximizes the availability of the 

application in general. This is based on two main criteria. 

1) Minimize the frequency of failure based on the mean time to failure (MTTF) of 

the software components, the VMs, the hypervisors, the computing servers, the 

racks, the datacenter facility, and the inter/intra-datacenter connectivity, the 

scheduler will select the placements that maximize the MTTF of the newly added 

components, and the average MTTF of the application. 

2) Minimize the impact of failure: decreasing the failure rate depends not only on 

maximizing the MTTF, but also on two other factors considered by the scheduler. 

(1) It should minimize the mean time to recover (MTTR) and (2) favor lightly 

saturated (e.g., datacenter, or availability zone) regions over higher ones. The 

MTTR is determined by the outages caused due to failures. 

3.3.2.3 Optimizing the Placement for Performance and Other 
Factors 

Optimizing the placement for performance implies that the scheduler must incorporate 

the intelligence to consider several other factors alongside HA. Such factors include: 

1) Assessing the workload proximity where the added components are placed in 

regions that are close to where the surge in the workload occurred (if the surge is 

regional). 

2) Considering data proximity where the added components would be placed next to 

the data in case the application is data-driven. In this latter case, the computing 

components often communicate with databases or storage agents. Finally, other 

factors, such as legal agreements forbidding the proximity of the tenants’ data in 

certain geographic regions, might influence the placement. In summary, it is not 

feasible to have an HA-centric scheduler that is agnostic to the other factors that 

could affect the placement of the components; instead, an HA-aware scheduler is 

more suitable. 
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Fig. 3.7 HA elastic scheduling algorithm. 
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3.3.3 Automated Elastic Multi-Level Deployment 

The deployment and removal of the VMs and their components necessitates changes in 

the infrastructure, platform, and application from the tenant’s perspective. 

3.3.3.1 Infrastructure Elasticity 

Elastic cloud environment offers the ability to dynamically scale actual amount of 

resources used by a user over time, without previous knowledge about the future 

resources demands. To achieve high performance of a cloud application with minimum 

cost, the application should utilize the on-demand resource allocation service provided by 

the cloud operating system. The resource allocation can be assigned in a vertical or 

horizontal scaling manner. The vertical scaling of resources is the process where more 

computation resources such as virtual central processing unit (vCPU), memory, and 

storage capacity are assigned for the same VM. This kind of scaling increases the 

performance of application’s component, but it is limited to the physical machine 

resources’ capacity. Moreover, this can increase the risk of service interruption when 

failure occurs on the machine. As to horizontal scaling, it is the process where a new 

instance of the application’s component is instantiated. This kind of scaling is the 

preferable solution in cloud environment because increasing the number of instantiated 

component instances maximizes the application reliability and performance. 

Infrastructure horizontal elasticity is achieved with the help of the cloud operating 

system. The cloud operating system processes the requests from the elasticity framework 

to add/remove VMs for a particular tenant based on the recommendation of HA 

scheduler. The cloud operating system will add/remove the VMs and facilitate their 

connectivity. The VMs are spawned from special images that yield HA-enabled VMs. 

These HA-enabled VMs are equipped with an installation of the HA middleware that is 

neither configured nor instantiated, and collaborate with an agent of the configuration 

management system (CMS). 
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3.3.3.2 Platform Elasticity 

Platform elasticity in the context of this work entails the elasticity of the HA middleware, 

which is the dynamic addition and removal of the middleware cluster nodes inside the 

tenants vDC. While the HA middleware namely OpenSAF, is capable of the 

deployment/removal of the applications throughout the HA cluster, it is unable to install 

and configure itself on the newly added VMs. Nevertheless, the tenant application’s 

components rely on the middleware to manage their HA and other aspects such as 

reliable messaging. Therefore, it is essential that the HA middleware cluster grows and 

shrink in a synchronized manner with the tenant’s vDC. To aid this function a CMS is 

used, namely Puppet, to perform this task. Nevertheless, the CMS handles the 

orchestration and deployment based on static manifests grouped into modules; the 

manifests include the classes’ definitions and declarations. A class declaration contains 

the puppet code that performs a given functionality. 

This code is defined in a declarative way, which makes the CMS versatile and 

enables the platform to manage itself independently. For instance, the manifest can 

include a class that ensures a given package is installed and instantiated. This information 

is read by the Puppet master and then pushed to the puppet agent as a set of instructions 

to be performed. The puppet agent will perform the required action according to the 

environment where it is deployed. For instance, according to a given Linux distribution it 

can figure out how to fetch and deploy the package. The manifest can retain its prior 

configuration if the Linux distribution changes. However, due to the static nature of this 

manifest, an extension to the CMS is proposed via the addition of more agents. These 

agents are obliged to dynamically change the content of the manifest to reflect the 

changes in the system (for example, the need to add or remove more instances of 

OpenSAF). Moreover, the OpenSAF cluster configuration is included in a specific 

OpenSAF IMM configuration file; when the HA cluster grows or shrinks, this 

configuration file must be regenerated or modified to reflect this change. In summary, a 

supplemental agent that acts as the OpenSAF configuration generator is required to assist 

modification. As soon as the new configuration files are generated, the CMS is 
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summoned to replace the old ones. As a result, several agents are defined that 

complement the CMS with the dynamic ability to scale up/down the HA middleware. 

1) Request listener agent: is an agent that listens to cluster node addition or removal 

requests. Once it receives the request, it analyzes whether the added node should 

be a controller or a payload. Then it forwards this information to the configuration 

generation agent. 

2) Configuration generation agent: receives instructions from the request listeners, 

and generates a new middleware configuration to reflect the needed change by 

either adding or removing the nodes description from the middleware 

configuration file. 

3) Change applier agent: will dynamically modify the puppet manifest files to 

reflect the changes in the system that puppet needs to enforce. 

4) Change enforcer agent: will make sure that the puppet agents apply the changes 

across the VMs in a consistent manner. 

3.3.3.3 Application Elasticity 

Application elasticity is achieved with the software management framework (SMF) [10] 

of the OpenSAF middleware. SMF is conceived for the runtime upgrade of HA 

applications. Nevertheless, it requires an upgrade campaign file that serves as a roadmap 

for the upgrade [15]. An upgrade can be performed in a single step, or in a rolling manner 

where nodes are upgraded sequentially. Once a request for an upgrade is issued, the 

upgrade campaign generator agent reads the information specified in the application 

design file, and accordingly generates an upgrade campaign that satisfies the requested 

change. This upgrade campaign is then forwarded to SMF to execute the upgrade. 
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Fig. 3.8 Elasticity framework workflow. 

3.4 Framework Workflow and Implementation 

The workflow in the elasticity ecosystem with the different interaction between the 

various elements is illustrated in Fig. 3.8. These interactions begin with the cloud tenant 

providing a description of the HA application. Subsequently, this description is 

interpreted by the elasticity framework, which analyzes the required number of VMs and 

their deployment constraints. Thereafter, this info is delivered to the HA-aware scheduler 

that determines the optimal HA placement. Next, the elasticity framework instructs the 

cloud operating system to spin the HA-enabled VMs according to the placement 

recommendation provided by the scheduler. Once completed, the elasticity framework 

agents create a middleware configuration, modify the manifests, and instruct the CMS to 

deploy OpenSAF on these VMs. Thereafter, the agents create an upgrade campaign and 
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send it to OpenSAF to install the tenant’s applications. Finally, the monitoring facility 

will be instructed to report on the events that can trigger an elasticity action. Once a 

threshold is violated e.g., the workload exceeds its limitation, requiring new components 

to be instantiated on new VMs, the whole process will be repeated with one exception: 

this time the scheduler will be constrained by the initial placement. Except for the change 

applier agent that is implemented using Ruby scripts, and the proposed elasticity 

framework agents are implemented mainly using Java. Third party tools are used for 

monitoring [16, 17] and load balancing [18, 19]. 

3.5 Test-bed and Case Study 

To evaluate the applicability and performance of the framework prototype, an IP 

multimedia subsystem (IMS) application is chosen as a case study. IMS has been defined 

by the third generation partnership project (3GPP) group as a service delivery platform of 

3G networks and later became the standard service delivery platform for 4G networks as 

LTE the 3GPP technology dominated the field. With the rise of the network function 

virtualization (NFV) technology, network operators intend to cloudify their core network 

entities such as the evolved packet core (EPC) and IMS in purpose of achieving low cost, 

robust and high performance network operations. In order to achieve a flourishing 

migration to the cloud, the virtualized network functions (VNFs) have to meet the carrier 

grade requirements. As a leading step, an open source project, ClearWater, attempts to 

adopt and migrate the IMS core to the cloud. ClearWater redesigned IMS with the cloud 

architecture in mind, which resulted in the modifying the standard entities of the IMS 

core. This modification of the IMS entities had violated the 3GPP control and data plane 

decoupling principle and limited IMS from exploiting the software defined networking 

(SDN) paradigm. In the test-bed, OpenIMSCore is evaluated for cloud deployment with 

the proposed framework. OpenIMSCore is an open source project developed by FOKUS. 

It implements the 3GPP standard specification of IMS basic entities and enables 

instantiation of each entity separately. The basic entities of IMS are analyed, which 

include the Call Session Control Functions (CSCFs) and Home Subscriber Server (HSS) 

[20]. The CSCF is comprised of three types: the proxy-CSCF (P-CSCF), the 

interrogating-CSCF (I-CSCF), and the serving-CSCF (S-CSCF). P-CSCF is the proxy 
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server for the outbound/inbound SIP traffic between the user equipment (UE) and IMS 

core. I-CSCF is the interrogator server that interacts with the HSS to obtain the user-

relevant S-CSCF to process the SIP initiation request. S-CSCF is the principal server that 

manages the session control service for the UEs. 

In the testing environment, eight virtual nodes are implemented with resources of two 

vCPU and two GB RAM. These nodes where hosted on physical servers of the following 

characteristics: 

1) 32 Giga Byte (GB) random access memory (RAM). 

2) 2 hard disk drives connected with RAID 0 configuration. 

3) I7-4700 CPU (4 Cores, 8 threads). 

4) Ethernet network card of 1Gbps bandwidth. 

5) Internet connectivity of 10 Mbps. 

Different testing scenarios were undertaken to evaluate the installation time in 

different stages. In the experiments, the installation phase and the configuration phase 

after the installation are distinguished. Fig. 3.9. illustrates how long it takes to scale up 

the OpenSAF cluster with the HSS component that uses the MySQL database [21]. 

Concurrent installation from 1 to 6 VMs were executed in parallel. Note that these 

durations exclude the VM creating time, since durations differ from one hypervisor to 

another (e.g., starting containers are much faster than starting VMs) and from one cloud 

OS to another. Fig. 3.10. shows the duration of the configuration phase. It is observed 

that the duration could be measured in seconds, which is significantly smaller than the 

installation phase results. 
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Fig. 3.9 Installation duration results. 

 

Fig. 3.10 Configuration duration results. 
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Hence, it can be concluded that using VM images that already include the installation of 

the software would considerably improve the responsiveness of the system to the 

increasing workload. Using this approach would require either: (1) preparing different 

VM images for each of the application components, and then selecting the proper image 

based on the component that needs to be scaled; or (2) preparing a larger VM image that 

contains all the components, while only instantiating the components to be scaled. 

Lighter images come with the price of managing a higher number of images in the image 

repository where, for instance, the upgrade of the common components would trigger the 

upgrade of all the images. On the other hand, having a heavier single image that can be 

used for the scalability of any component adds more runtime overhead. 

3.6 Literature Review 

Amazon and Google have addressed availability by providing the capability of deploying 

application’s components to distinct availability zones, thereby creating a multi-site 

solution. The anticipated goal is to create an autonomous copy of each application in 

multiple availability zones [22, 23] and establishing elastic load balancing that can stretch 

on demand. Microsoft’s Azure service, on the other hand, has not exposed the availability 

zones for the users; instead, it has defined availability sets. Each virtual machine hosting 

application belongs to an availability set, and each availability set is assigned an update 

domain (UD) and a fault domain (FD). UDs are assigned to indicate which VMs and 

physical machines can be rebooted simultaneously. FDs define the group of virtual 

machines that share a common power source and a network switch [24]. Nevertheless, 

these solutions do not target the monitoring and recovery of the application’s components 

inside the VMs, nor do they provide solutions for scaling up the HA middleware inside 

the tenant’s vDC. OpenStack proposes Heat [18] for the management and orchestration 

of the software. Heat can be considered as a potential replacement for Puppet in the 

solution, since using Heat would still require the same set of agents and the proposed 

elastic scheduling. However, using Heat would bind the proposed solution to OpenStack 

software, while Puppet can be used inter-changeably with other cloud operating systems. 

Tools and frameworks for elastic high performance application have been 

addressed in associated literature. Rajan et al. [25] proposes the Work Queue framework 
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to manage the master-slave elastic applications development. This framework enables 

adding the worker components, which are defined as “slave” entities to be replicated at 

runtime. When a new worker component is instantiated, it communicates with the master 

node to synchronize the task execution. In [26], Fito et al. proposes the Cloud Hosting 

Provider (CHP), a web provider that can elastically allocate public cloud resources in 

support of overwhelmed local machines. The main objective of CHP is avoiding the SLA 

violation. Marshall et al. [27] recommends Elastic Site, a platform that elastically extends 

clusters by allocating additional cloud resources. It is developed to request additional 

computing based on available resources on Nimbus private cloud and Amazon EC2. 

Elastic Site initially assigns the available resources on the local nodes before escalating to 

request virtual resources provided by Amazon EC2. Virtualization based HA has been 

widely investigated. In [28, 29], HA is maintained using the concept of failover within 

the workload of the component. While deploying an application in a virtualized 

environment, each application’s component is encapsulated in a virtual machine. This 

allows virtualization managers to capture snapshots of the system state, and enables 

checkpoint and rollback mechanisms to be the primary recovery criteria in a 

virtualization environment. The recovery process based on this checkpoint and rollback 

can be achieved using various approaches. Stop-Resume approach is the first category of 

VM checkpoint, and is discussed in [30] where the VM is arrested completely to save its 

state in persistent storage, and then resumed on another server. This approach incurs a 

large system downtime during the checkpoint. In order to eliminate the downtime of a 

virtual machine, a live migration is proposed [29][31,32,33]. In live migration, the VM 

computing resources state image is transferred in real time (with zero downtime) to 

different locations initiated on the newly assigned server. 

All the aforementioned virtualization based HA solutions and elastic frameworks 

address the cloud applications availability at the level of the virtual machine, as well as 

the allocation of virtual resources. Moreover, some of these solutions are a proprietary 

remedy for specific types of applications and clouds. In summary, all of the discussed HA 

solutions guarantee the application’s availability level to achieve 99.95 percent. This 

achievement is reflected in the service level agreements of the cloud service providers. 
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For instance, Microsoft’s and Google’s maximum guaranteed availability is 99.95% in 

their cloud platforms. 

The proposed solution offers an elastic HA-aware framework that differ from the 

discussed frameworks and HA solutions. The proposed framework migrates the 

SAForum services to cloud environments to ensure the 5 nines (99.999%) and higher 

availability for cloud application. In addition, the prototype framework implemented tool 

can be integrated with different cloud management systems to ease the development, 

deployment, and manageability of the HA cloud applications. 

3.7 Chapter Contribution 

This chapter proposed a comprehensive framework for the elasticity of highly available 

applications that considers the elastic deployment of the platform and the HA placement 

of the application’s components. The proposed approach allows the use of robust and 

standards-based HA middleware (OpenSAF) solution in a dynamic cloud setting by 

defining elastic HA-aware scheduling constraints and extending configuration 

management tools (Puppet) via a set of agents that dynamically generate configurations, 

modify manifests, and enforce changes in a transparent manner. The approach is applied 

to an internet protocol multimedia subsystem (IMS) application and demonstrates how 

within a matter of seconds, the IMS application can be scaled up while maintaining its 

HA status. 
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Chapter 4 

4. Conclusion and Future Work 

4.1 Conclusion 

The NFV aims to revolutionize the telecommunication industry by decoupling network 

functions from the underlying proprietary hardware. It provides all the benefits of IT 

virtualization platforms. Academic researchers and network engineers are exploiting 

virtual environments to simplify and enhance NFV in order to find its way smoothly into 

the telecommunications industry. Besides all the advantages brought by NFV to the 

telecommunications industry, it faces technical challenges that might hinder its progress. 

Therefore, IT organizations, network enterprises, telecommunication equipment vendors, 

and academic researchers should be aware of these challenges and explore new 

approaches to overcome them.  

In the thesis, a grouping criterion for virtualized network functions to enhance 

performance and minimize the transaction of vEPC entities occurring on the physical 

network has been presented. The analysis shows that the presented grouping can reduce 

the network control traffic by 70 percent and suit vEPC entities to the virtualization 

environment. 

Furthermore, an elasticity framework is presented. The elasticity framework 

considers a holistic approach that targets elasticity from the cloud tenant’s perspective of 

the infrastructure, HA platform, and application level. The proposed approach allows the 

use of robust and standards-based HA middleware solutions in a dynamic cloud setting 

by defining elastic HA-aware scheduling and extending configuration management tools 

via a set of agents that dynamically generate configurations, modify manifests, and 

enforce changes in a transparent manner. Experimental results show that avoiding the 

runtime installation of the software on the newly added VMs by using VM (or container) 

images that already include the software installation would significantly improve the 

response time of scaling up the system. The implementation of the elasticity framework 
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will ease the migration of VNF to the cloud while satisfying the carrier grade 

requirement. 

4.2 Future Work 

Elastic highly available application in cloud environment is achieved through a set of 

integrated components. In this thesis, a Framework for achieving elastic highly available 

applications in the cloud environment is presented. The proposed framework integrated 

different component to provide the core functionality for managing and scaling the HA 

application in the cloud environment. 

As a future work, the proposed framework can be extended to integrate further 

components to enhance the performance, reliability and availability of the HA 

applications in the cloud environment. The extension components can be added to the 

framework as plugin applications. The following specific areas are suggested for the 

enhancement of the framework: 

1) Workload Monitoring and Provisioning: the framework can be extended to 

include workload monitoring and provisioning components for achieving the 

desired QoS without sacrificing the HA state of the application. The workload-

provisioning component can include various artificial intelligence techniques to 

predict and allocate the required resources. The provisioning component is fed 

with data from the monitoring component that collects the data from the proposed 

framework. By integrating the workload and provisioning components into the 

proposed framework, cloud service providers can satisfy the service level 

agreement’s objectives more efficiently. 

2) Automated Application Components Deployment: development and operations 

(DevOps) is an emerging paradigm that integrates the development and operation 

concepts. DevOps is essential in the cloud computing era for enabling fast-

orchestrated application deployment and release management. The framework 

proposed in this thesis is a solution that manages and provides elastic HA middle 

for applications in the cloud environment. Application components that utilize the 

framework meanwhile have to be deployed by the user. For providing a complete 
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automated elastic HA cloud application, the application components have to be 

managed by a DevOps entity. This DevOps entity has to be researched and 

designed for the integration with the proposed framework’s software management 

entity. Having a DevOps entity embedded in the proposed framework will assure 

the ease of HA software deployment in cloud environments and yields a lower 

response time for the application scaling process. 
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