
A Programming Methodology for Designing Block Recursive Algorithms on
Various Computer Networks �

Min-Hsuan Fan, Chua-Huang Huang, Yeh-Ching Chung
Department of Information Engineering

Feng Chia University
Taichung, Taiwan, R.O.C.

Abstract

In this paper, we use the tensor product notation as the
framework of a programming methodology for designing
block recursive algorithms on various computer networks.
In our previous works, we propose a programming method-
ology for designing block recursive algorithms on shared-
memory and distributed-memory multiprocessors without
considering the interconnection of processors. We extend
the work to consider the block recursive algorithms on di-
rect networks and multistage interconnection networks. We
use parallel prefix computation as an example to illustrate
the methodology. First, we represent the prefix computation
problem as a computational matrix which may not be suit-
able for deriving algorithms on specific computer network-
s. In this methodology, we add two steps to derive tensor
product formulas of parallel prefix algorithms on computer
networks: (1) decompose the computational matrix into two
submatrices, and (2) construct an augmented matrix. The
augmented matrix can be factorized so that each term is a
tensor product formula and can fit into a specified network
topology. With the augmented matrix, the input data is also
extended. It means, in addition to the input data, an aux-
iliary vector as temporary storage is used. The content of
temporary storage is relevant to the decomposition of the o-
riginal computational matrix. We present the methodology
to derive various parallel prefix algorithms on hypercube,
omega, and baseline networks and verify correctness of the
resulting tensor product formulas using induction.

Keywords: programming methodology, tensor product,
block recursive algorithm, parallel processing, parallel pre-
fix, hypercube network, omega network, baseline network.

�This work was supported in part by National Science Council, Taiwan,
R.O.C. under grant NSC90-2213-E-035-024.

1 Introduction

Tensor products, also known as Kronecker products [4],
have been successfully used to express and implement par-
allel block recursive algorithms such as fast Fourier trans-
forms [7, 8] and Strassen’s matrix multiplication [6, 11].
The tensor product notation is also suitable for expressing
data distribution and modeling interconnection networks
[9, 10]. The tensor product operations can be mapped to
corresponding programming constructs. Therefore, the ten-
sor product notation provides a framework of designing and
implementing parallel programs [2, 5].

In our previous works, we propose a programming
methodology for designing block recursive algorithms on
shared-memory and distributed-memory multiprocessors
without considering the interconnection of processors [3].
We extend the work to consider the block recursive algo-
rithms on direct networks and multistage interconnection
networks. In this paper, we present a systematic methodol-
ogy by which tensor product formulas of a given computa-
tional problem on specified networks will be derived step-
wise. The parallel prefix problem will be used to illustrate
the programming methodology. Various parallel prefix al-
gorithms on hypercube, omega, and baseline networks are
presented in this paper [14, 15].

The programming methodology is divided into five step-
s. First, expresses a computational problem in its matrix
form. Second, represent the specified network by a network
connection matrix. Third, decompose the problem compu-
tational matrix into two partial computational matrix and
build an augmented problem matrix for the given problem
with original input vector and auxiliary input vector. Fourth,
try to factorize the augmented matrix of the computation-
al problem into product of tensor product formulas so that
each term can fit into the network connection matrix. Fi-
nally, we obtain a tensor product formula that represent an
algorithm for the parallel prefix problem on the specified
network.

In this paper, we use parallel prefix problem as an ex-

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Tsing Hua University Institutional Repository

https://core.ac.uk/display/61643654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ample. The parallel prefix computation is used by many
applications such as evaluation of polynomials, solution of
linear recurrence equations, carry-look-ahead circuits, radix
sorting, quick sorting, and scheduling problems [1].

The organization of this paper is as the following. Sec-
tion 2 defines the tensor product notation and gives a brief
summary of the properties that we will use through this pa-
per. Section 3 presents a programming methodology for a
general block recursive algorithm on a specified network
and explains the programming methodology using the par-
allel prefix problem. Section 4 illustrates the generation
of parallel prefix algorithms on hypercube network, omega
network, and baseline network. The conclusions and future
works are given in Section 5.

2 The Tensor Product Notation

In this section, we give a brief overview of the tensor
product definition and relevant properties. Tensor product
operation is a bilinear form that constructs a block matrix
from two matrices.

Definition 2.1 (Tensor product of matrices) Let Am�n

be an m � n matrix and Bp�q be a p � q matrix. The
tensor product of A and B is the block matrix obtained by
replacing each element ai;j by the matrix ai;jBp�q , i.e.,
the result is an mp� nq matrix, defined as

Am�n
Bp�q

=

2
64

a0;0Bp�q � � � a0;n�1Bp�q

...
. . .

...
an�1;0Bp�q � � � an�1;n�1Bp�q

3
75
mp�nq

:

Two important forms of tensor product formulas are
when one of the operands is the identity matrix. If the first
operand is the identity matrix, i.e., Y = (In
 A)X , it can
be interpreted as parallel operations on segments of X and
is called the parallel form. If the second operand is the iden-
tity matrix, i.e., Y = (A
 In)X , it can be interpreted as
vector operations on elements of X and is called the vector
form.

Another important operation is a stride permutation.

Definition 2.2 (Stride permutation) Lmn
n (emi
 enj) =

enj
 emi .

Lmn
n is the stride permutation of size mn stride with dis-

tance n. When a matrix is stored by rows, the tensor basis
emi
 enj is isomorphic to E

m;n
i;j . In addition, tensor basis

enj
 emi is isomorphic to Em;n
i;j when a matrix is stored by

columns.
The followings are some properties of the tensor prod-

ucts and stride permutations:

1. A
B
 C = (A
B)
 C = A
 (B
 C)

2. (A1
� � �
Ak)(B1
� � �
Bk) = (A1B1
� � �
AkBk)

3. (A1
B1)(A2
B2) � � � (Ak
Bk) = (A1A2 � � �Ak

B1B2 � � �Bk)

4.
Qn�1

i=0 (In
Ai) = In

Qn�1

i=0 Ai

5.
Qn�1

i=0 (Ai
 In) =
Qn�1

i=0 Ai
 In

6. (Lmn
n)�1 = Lmn

m , Ln
n = In

7. Lrst
rs = Lrst

r Lrst
s

8. Lrst
t = (Lrt

t
 Is)(Ir
 Lst
t)

9. Lrst
st = (Is
 Lrt

t)(L
rs
s
 It)

3 The Programming Methodology

In this section, we propose a programming methodology
for deriving block recursive algorithms on various intercon-
nection networks based on the tensor product notation. The
programming methodology contains five steps. We explain
them as following:
Step 1. Represent the computational problem as a computa-
tional matrix QN . For example, the parallel prefix compu-
tation problem can be represented by YN = QNXN , where
XN is an ordered column vector as the input data, YN is the
prefix result column vector as the output data, and QN is an
N �N computational matrix, where all the lower triangu-
lar and diagonal elements of QN are 1’s, and all the upper
triangular elements of QN are 0’s.
Step 2. Represent the specified interconnection network of
N nodes as an N � N network connection matrix HN . If
node i has a link to node j, then the value of matrix element
hi;j is one, otherwise the value of hi;j is zero. Suppose
PN is an N �N matrix and each element of PN is one or
zero. We call a computational matrix PN fits into a network
connection matrix HN if element pi;j in PN is one, then
hi;j in HN should also be one, for all i, j from 0 to N � 1.

For example, if S =

�
0 1
1 0

�
, the hypercube network

connection matrix is represented as

H2n =

�
1; for n = 0:

I2n +
Pn�1

i=0 I2n�i�1
 S
 I2i ; for n > 0:

In this network connection matrix, the identity matrix I2n

represents the self-connected links, and I2n�i�1
 S
 I2i

represents the links along dimension i of the hypercube.
Step 3. Given a network connection matrix as in Step 2,
if we use the methodology in our previous paper, it is not
possible to factorize the original prefix computational ma-
trix such that each factor fits into the specified network con-
nection matrix. In this step, we try to solve the problem

2

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

by decomposing the original computational matrix into t-
wo partial problem matrices and then augmenting the par-
tial problem matrices so their factorization can fit into the
specified network connection matrix. The augmentation is
intent to add an auxiliary vector representing temporary s-
torage to the input data. The content of the input vector
and the auxiliary vector may affect the decomposition of
the computational matrix and the construction of the aug-
mented matrix.

The purpose of the construction of augmented problem
matrix is to find a factorization so that each term can fit in-
to the specified network connection matrix. There are two
disadvantages of the augmentation. One is more data stor-
age. The other is more communication and computation.
The advantage of the augmentation is that we can solve the
computation problem in a specified computer network. As
a total gain, the result is a more efficient algorithm for the
specific interconnection network.

The initial content of the auxiliary vector may simply be
zero vector, a copy of the original input vector, or a permu-
tation of the original input vector. The choice of the initial
content of the auxiliary vector may affect the construction
of the augmented matrix.

An augmented problem matrix of the original prefix
computation matrixQN can be defined as the following ma-
trix: �

Q11

N Q12

N

Q21

N Q22

N

�
;

where the size of Q11

N , Q12

N , Q21

N , and Q22

N are N �N . The
size of input vector of the augmented problem matrix is
2N . We will obtain the resulting vector YN , in the form

of

�
Y 1

N

Y 2

N

�
, from the augmented computational matrix ap-

plying on the original input vectorXN with auxiliary vector
ZN , i.e., �

Y 1

N

Y 2

N

�
=

�
Q11

N Q12

N

Q21

N Q22

N

��
XN

ZN

�
:

For example, if we initialize the auxiliary vector ZN to
be XN , we may decompose the original matrix QN to Q11

N

and Q12

N such that QN is equal to Q11

N + Q12

N . Therefore,
we obtain the equation below:�

Q11

N Q12

N

Q21

N Q22

N

��
XN

XN

�

=

�
(Q11

N +Q12

N)XN

(Q21

N +Q22

N)XN

�

=

�
QNXN

(Q21

N +Q22

N)XN

�

=

�
YN

(Q21

N +Q22

N)XN

�
:

In this case, Y 1

N = YN , which is the computational result,
and Y 2

N = (Q21

N + Q22

N)XN , which may be ignored at the

end of computation. Therefore, the definition of Q21

N and
Q22

N does not affect the computing result. But they may
determine whether the augmented matrix can fit into a given
network connection. If the specific network is hypercube,
we may assign Q11

N = IN and Q12

N = QN � IN .
For another example, if we initialize the auxiliary vector

ZN to be the zero vector, we may decompose the original
matrix QN to Q11

N and Q21

N such thatQN = Q11

N +Q21

N . We
have

�
Q11

N Q12

N

Q21

N Q22

N

� �
XN

0

�
=

�
Q11

NXN

Q21

NXN

�
:

We can get the result vector YN from the summation of the
first half of the output vector and the second half of the
output vector, i.e., YN = Q11

NXN + Q21

NXN = (Q11

N +
Q21

N)XN = QNXN . The definition of Q12

N and Q22

N does
not affect the computing result. But they may determine
whether the augmented matrix can fit into a given network
connection. If the specific network is hypercube, we may
assign Q11

N = IN and Q21

N = QN � IN .
Step 4. In Step 3, we construct an augmented matrix based
on the initial value of the input data and the original prob-
lem matrix. In this step, we begin to factorize the augment-
ed matrix such that each term should fit into the specified
network matrix. In the direct network case, we may use
a methodology similar to the methodology in our previous
paper.

Considering the hypercube network, we may formu-

late a matrix equation of

�
Q11

N Q12

N

Q21

N Q22

N

�
to factorize

the augmented problem matrix into a smaller size of
augmented problem matrix with additional pre-operation�
R11

N R12

N

R21

N R22

N

�
and post-operation

�
P 11

N P 12

N

P 21

N P 22

N

�
as E-

quation (1):

h
Q11

N
Q12

N

Q21

N
Q22

N

i
=

h
P 11

N
P 12

N

P 21

N
P 22

N

i
�
IN1

Q11

N2

 IN3

IN1

Q12

N2

 IN3

IN1

Q21

N2

 IN3

IN1

Q22

N2

 IN3

�h
R11
N

R12
N

R21
N

R22
N

i
(1)

where N = N1N2N3.

�
Q11

N2
Q12

N2

Q21

N2
Q22

N2

�
is the same aug-

mented problem matrix with smaller size 2N2. IN1
and

IN3
are identity matrices with size N1 and N3, respectively.

This equation is called the recursive form of the augmented
problem matrix.

Then, we need to find a solution for the Equation (1) such
that P 11

N , P 12

N , P 21

N , P 22

N , R11

N , R12

N , R21

N , and R22

N are all fit
into the assigned network connection matrix.

For example, if the augmented parallel prefix problem
matrix of size N = 2n with N1 = 2 and N3 = 1. The
network is the hypercube network. The augmented parallel

3

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

prefix problem matrix can be formulated as the following
matrix equation:

�
Q11

2n
Q12

2n

Q21
2n

Q22
2n

�
=

�
P 11

2n
P 12

2n

P 21
2n

P 22
2n

�
�
I2
Q11

2n�1
I2
Q12

2n�1

I2
Q21

2n�1
I2
Q22

2n�1

� �
R11

2n
R12

2n

R21

2n
R22

2n

�

Let Q11

2n
= I2n , Q12

2n
= Q2n� I2n , Q21

2n
= [0]2n , Q11

2n
=

[1]2n , R11
2n = I2n , R12

2n = 0, R21
2n = 0, and R22

2n = I2n .
There are four matrix equations to be solved as following.

I2n = P 11

2n
(I2
 I2n�1) + P 12

2n
(I2
Q21

2n�1
) (2)

Q2n�I2n = P 11

2n (I2
(Q2n�1�I2n�1))+P
12

2n (I2
Q
22

2n�1
)

(3)

Q21

2n
= P 21

2n
(I2
 I2n�1) + P 22

2n
(I2
Q21

2n�1
) (4)

Q22

2n = P 21

2n (I2
(Q2n�1�I2n�1))+P
22

2n (I2
Q
22

2n�1
) (5)

We solve Equations (2) to (5) and obtain a possible so-

lution P 11

2n
= I2n , P 12

2n
=

�
02n�1 02n�1
I2n�1 02n�1

�
, P 21

2n
= 0,

and P 22
2n =

�
I2n�1 I2n�1

I2n�1 I2n�1

�
which all fit into the hyper-

cube network connection matrix. As a result, the solution
P
ij

2n�1
and R

ij

2n�1
, for i; j = 1; 2 , all fit into the hyper-

cube network connection matrix. However, Equation (1) is
a recursive tensor product formula which is not suitable for
program generation.

Step 5. Find the iteration form of the augmented problem
matrix. This step is to recursively factorize the augmented

problem matrix

�
Q11

2n�1
Q12

2n�1

Q21

2n�1
Q22

2n�1

�
with the same factor-

ization in Step 4 until N2 is small enough such that QN2

can fit into the network connection matrix. The final factor-
ization is a product of some matrices that each term can fit
into the network connection matrix. This equation is called
the iteration form of the given computational problem.

Following the example in Step 4, the augmented parallel
prefix problem matrix can be expanded as below:

�
Q11

2n Q12

2n

Q21

2n Q22

2n

�

=

�
P 11

2n P 12

2n

P 21

2n P 22

2n

��
I2
Q11

2n�1
I2
Q12

2n�1

I2
Q21

2n�1
I2
Q22

2n�1

�

=

�
P 11

2n P 12

2n

P 21

2n P 22

2n

�

(L42
 I2n�1)(I2

�
Q11

2n�1
Q12

2n�1

Q21

2n�1
Q22

2n�1

�
)(L42
 I2n�1)

=

�
P 11

2n P 12

2n

P 21

2n P 22

2n

�

(L42
 I2n�1)(I2

�
P 11

2n�1
P 12

2n�1

P 21

2n�1
P 22

2n�1

�
)(I2
 L42
 I2n�2)

(I4

�
Q11

2n�2
Q12

2n�2

Q21

2n�2
Q22

2n�2

�
)(I2
 L42
 I2n�2)(L

4

2
 I2n�1)

=

�
P 11

2n P 12

2n

P 21

2n P 22

2n

�
(L42
 I2n�1)(I2

�
P 11

2n�1
P 12

2n�1

P 21

2n�1
P 22

2n�1

�
)

(L42
 I2n�1)(L
4

2
 I2n�1)(I2
 L42
 I2n�2)

(I4

�
Q11

2n�2
Q12

2n�2

Q21

2n�2
Q22

2n�2

�
)(I2
 L42
 I2n�2)(L

4

2
 I2n�1)

=

�
P 11

2n P 12

2n

P 21

2n P 22

2n

��
I2
 P 11

2n�1
I2
 P 12

2n�1

I2
 P 21

2n�1
I2
 P 22

2n�1

�

(L42
 I2n�1)(I2
 L42
 I2n�2)

(I4

�
Q11

2n�2
Q12

2n�2

Q21

2n�2
Q22

2n�2

�
)(I2
 L42
 I2n�2)(L

4

2
 I2n�1)

= � � �

=
Q

n

i=1

�
I2n�i
 P 11

2i
I2n�i
 P 12

2i

I2n�i
 P 21

2i
I2n�i
 P 22

2i

�
;

where P 11

2i
= I2i , P 12

2i
=

�
02i�1 02i�1
I2i�1 02i�1

�
, P 21

2i
= [0]2i ,

and P 22

2i
=

�
I2i�1 I2i�1

I2i�1 I2i�1

�
, for i = 1 to n.

Suppose each element xj and zj of the original input
vector XN and the auxiliary input vector ZN are allocat-
ed in processor j of hypercube network. The final tensor
product formula

nY
i=1

�
I2n�i
 P 11

2i
I2n�i
 P 12

2i

I2n�i
 P 21

2i
I2n�i
 P 22

2i

�

can be interpreted as following. The matrix product no-
tation represents a sequence of the operation steps. Right
most matrix will apply to the input data first. The prod-
uct of n matrices means n sequential steps will be per-

formed. Each step

�
I2n�i
 P 11

2i
I2n�i
 P 12

2i

I2n�i
 P 21

2i
I2n�i
 P 22

2i

�
means

2n�i copies of P 11

2i
, P 12

2i
, P 21

2i
, and P 22

2i
are performed in

parallel.
Operations I2n�i
 P 11

2i
and I2n�i
 P 21

2i
apply to XN .

Since P 11

2i
= I2i , operation I2n�i
 P 11

2i
is interpreted as

each processor reading the local element of XN . Since
P 21

2i
= [0], I2n�i
 P 21

2i
is interpreted as no-operation on

the local element of XN .
Operations I2n�i
 P 12

2i
and I2n�i
 P 22

2i
apply to ZN .

Since P 12

2i
=

�
02i�1 02i�1
I2i�1 02i�1

�
, operation I2n�i
 P 12

2i
is

interpreted as partitioning processors into 2n�i groups. In
each group, the processors in the first half of the group move
the local data in ZN along dimension i�1 of the hypercube
network to the processors in the second half of the group,
and then the receiving processors adding the received data
to the local data in XN .

4

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

x0 = a0
z0 = a0

x1 = a1
z1 = a1

x2 = a2
z2 = a2

x3 = a3
z3 = a3

x4 = a4
z4 = a4

x5 = a5
z5 = a5

x6 = a6
z6 = a6

x7 = a7
z7 = a7

x0 = a0
z0 = a0 + a1

x1 = a0 + a1
z1 = a0 + a1

x2 = a2
z2 = a2 + a3

x3 = a2 + a3
z3 = a2 + a3

x4 = a4
z4 = a4 + a5

x5 = a4 + a5
z5 = a4 + a5

x6 = a6
z6 = a6 + a7

x7 = a6 + a7
z7 = a6 + a7

x0 = a0
z0 = a0+ ... +a3

x1 = a0 + a1
z1 = a0+ ... +a3

x2 = a0 + a1 + a2
z2 = a0+ ... +a3

x3 = a0+ ... +a3
z3 = a0+ ... +a3

x4 = a4
z4 = a4+ ... +a7

x5 = a4 + a5
z5 = a4 + a5

x6 = a4 + a5 + a6
z6 = a4+ ... +a7

x7 = a4+ ... +a7
z7 = a4+ ... +a7

x0 = a0
z0 = a0+ ... +a7

x1 = a0 + a1
z1 = a0+ ... +a7

x2 = a0 + a1 + a2
z2 = a0+ ... +a7

x3 = a0+ ... +a3
z3 = a0+ ... +a7

x4 = a0+ ... +a4
z4 = a0+ ... +a7

x5 = a0+ ... +a5
z5 = a0+ ... +a7

x6 = a0+ ... +a6
z6 = a0+ ... +a7

x7 = a0+ ... +a7
z7 = a0+ ... +a7

p0p0

p0p0

p1p1

p1p1

p2p2

p2p2

p3p3

p3p3

p4p4

p4p4

p5p5

p5p5

p6p6

p6p6

p7p7

p7p7

Step 0 Step 1

Step 2 Step 3

Figure 1. Parallel prefix algorithm on hypercube for
N = 8

Since P 22

2i
=

�
I2i�1 I2i�1

I2i�1 I2i�1

�
, operation I2n�i
 P 22

2i

is interpreted as partitioning processors into 2n�i groups.
In each group, the processors in the first half group and the
second half group exchange the local data in ZN along di-
mension i � 1 of the hypercube network, and then adding
the received data to the local data in ZN .

We demonstrate this step by an example of size 8 in Fig-
ure 1. The SPMD program of this parallel prefix algorithm
is given in Figure 2. The SPMD program is suitable for
fine-grained computation. Each processor has only two lo-
cal variables x and z, an output variable y, and a temporary
variable temp. As shown in Figure 1, the final result of Zi

in each processor is the summation of the input data.

From the above five steps, we have derived an algorithm
for a computation problem on a specified network. The al-
gorithm can be represented by a tensor product formula and
translated to program statements directly.

4 More Parallel Prefix Algorithms by The
Methodology

In this section, we use the methodology in the previ-
ous section to derive different algorithms for parallel prefix
problem on the hypercube network, the omega network, and
the baseline network.

z = x

for i = 1 to n

offset = my rank - (my rank mod 2i)
if (my rank - offset < 2i�1) then
send(processor[my rank + 2i�1], z)
receive(processor[my rank + 2i�1], temp)
z = z + temp

end if
if (my rank - offset >= 2i�1) then
send(processor[my rank - 2i�1], z)
receive(processor[my rank - 2i�1], temp)
x = x + temp

z = z + temp

end if
end for
y = x

Figure 2. SPMD program for the parallel prefix al-
gorithm on hypercube

4.1 Another Parallel Prefix Algorithm on Hyper-
cube Network

Based on the methodology in Section 3, the auxiliary
vector Z and the matrices Q11

2n
, Q21

2n
, Q12

2n
, and Q22

2n
can

be defined in many ways. Alternative definition may result
in different algorithms.

Let the auxiliary vector Z2n be 0 and the augment-

ed problem matrix

�
Q11

2n
Q12

2n

Q21
2n Q22

2n

�
satisfy the condition

Q11

2n
+ Q21

2n
= Q2n , where Q2n is the prefix computation

matrix. Let Q11

2n
= I2n , Q21

2n
= Q2n � I2n , Q12

2n
= [0]2n ,

and Q22
2n = [1]2n . We also set P 11

2n = I2n , P 12
2n = 0,

P 21

2n
= 0, and P 22

2n
= I2n which all fit into the hypercube

network connection matrix.
The recursive form of the augmented parallel prefix

problem matrix can be formulated as the following matrix
equation:�

I2n [0]2n

Q2n � I2n [1]2n

�
=�

I2
 I2n�1 I2
 [0]2n�1
I2
 (Q2n�1 � I2n�1) I2
 [1]2n�1

� �
R11

2n R12

2n

R21

2n
R22

2n

�
:

There are four matrix equations to be solved as following:

I2n = (I2
 I2n�1)R
11

2n
(6)

[0]2n = (I2
 I2n�1)R
12

2n (7)

Q2n�I2n = (I2
(Q2n�1�I2n�1))R
11

2n
+(I2
[1]2n�1)R

21

2n

(8)
[1]2n = (I2
 (Q2n�1 � I2n�1))R

12

2n
+ (I2
 [1]2n�1)R

22

2n

(9)

5

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

x0 = a0
z0 = 0

x1 = a1
z1 = 0

x2 = a2
z2 = 0

x3 = a3
z3 = 0

x4 = a4
z4 = 0

x5 = a5
z5 = 0

x6 = a6
z6 = 0

x7 = a7
z7 = 0

x0 = a0
z0 = 0

x1 = a1
z1 = 0

x2 = a2
z2 = 0

x3 = a3
z3 = 0

x4 = a4
z4 = a0

x5 = a5
z5 = a1

x6 = a6
z6 = a2

x7 = a7
z7 = a3

x0 = a0
z0 = 0

x1 = a1
z1 = 0

x2 = a2
z2 = a0

x3 = a3
z3 = a1

x4 = a4
z4 = a0 + a2

x5 = a5
z5 = a1 + a3

x6 = a6
z6 = a0 + a2 + a4

x7 = a7
z7 = a1 + a3 + a5

x0 = a0
z0 = 0

x1 = a1
z1 = a0

x2 = a2
z2 = a0 + a1

x3 = a3
z3 = a0 + a1 + a2

x4 = a4
z4 = a0+ ... +a3

x5 = a5
z5 = a0+ ... +a4

x6 = a6
z6 = a0+ ... +a5

x7 = a7
z7 = a0+ ... +a6

p0p0

p0p0

p1p1

p1p1

p2p2

p2p2

p3p3

p3p3

p4p4

p4p4

p5p5

p5p5

p6p6

p6p6

p7p7

p7p7

Step 0 Step 1

Step 2 Step 3

Figure 3. Parallel prefix algorithm on hypercube for
N = 8

Solving Equation (6) to (9), we obtain one feasible solu-

tion, R11

2n = I2n , R12

2n = 0, R21

2n =

�
02n�1 02n�1
I2n�1 02n�1

�
, and

R22

2n
=

�
I2n�1 I2n�1

I2n�1 I2n�1

�
, which all fit into the hypercube

network connection matrix.
The iteration form of the augmented prefix computation

problem is as following:

�
Q11

2n
Q12

2n

Q21

2n
Q22

2n

�
=

1Y
i=n

�
I2n�i
R11

2i
I2n�i
R12

2i

I2n�i
R21

2i
I2n�i
R22

2i

�
;

where R11

2i
= I2i , R12

2i
= 0, R21

2i
=

�
02i�1 02i�1
I2i�1 02i�1

�
, and

R22

2i
=

�
I2i�1 I2i�1

I2i�1 I2i�1

�
.

We demonstrate this step by an example of size 8 in Fig-
ure 3.

4.2 Parallel Prefix Algorithm on Omega Network

In a multistage interconnection network, the network
connection matrix between each stage is a permutation ma-
trix. For a multistage interconnection network of N = 2n

input lines, each stage contains 2n�1 switching elements.
We use S2n = I2n�1
 s2 to represent a switching stage

and operation s2 =

�
a11 a12
a21 a22

�
to represent a switching

element, where aij = 0 or 1, for 1 � i; j � 2, depend-
ing on the computation performed in the switching elemen-
t. A permutation between two switching stages is required
to connect the output lines of a switching stage to the input
lines of its adjacent stage. In addition, a pre-permutation
and a post-permutation may be required to rearrange the in-
put data and output data, respectively. For example, the pre-
permutation and the permutation between switching stages
of the omega network are the stride permutationL2

n

2n�1
. The

omega network can be represented in the following tensor
product formula:

N =

n�1Y
i=0

(I2n�1
 s2)L
2
n

2n�1
:

For the parallel prefix computation on the omega
network, we build an augmented problem matrix�
Q11

2n
Q12

2n

Q21
2n Q22

2n

�
and let the auxiliary input vector Z2n

be 0, then

�
Q11
2n

Q12
2n

Q21

2n
Q22

2n

��
X2n

0

�
=

�
Q11
2n
X2n

Q21

2n
X2n

�
.

If Q11

2n
+ Q21

2n
= Q2n , we may get the result vector

Y2n from the summation of the first half of the output
vector and the second half of the output vector, i.e.,
Y2n = Q11

2n
X2n + Q21

2n
X2n . We set Q11

2n
= I2n and

Q21

2n = Q2n � I2n .

To design the parallel prefix algorithm on the omega net-
work, we will rewrite the augmented matrix to the following
form:

�
Q11

2n Q12

2n

Q21

2n
Q22

2n

�
=

Qn�1

i=0

�
(I2n�1
A2)L

2
n

2n�1
(I2n�1
B2)L

2
n

2n�1

(I2n�1
 C2)L
2
n

2n�1
(I2n�1
D2)L

2
n

2n�1

�

(10)
where A2, B2, C2, and D2 are computations to be per-
formed in the switching elements. We need to derive A2,
B2, C2, and D2. The definition of Q12

2n and Q22
2n does not

affect the computation result. Their definition is determined
by the values of A2, B2, C2, and D2.

Considering the omega network of size 2, i.e., n = 1, we
rewrite the augmented matrix as following:

�
Q11

2
Q12

2

Q21

2
Q22

2

�
=

�
A2 B2

C2 D2

�
(11)

Since Q2 = Q11
2 + Q21

2 , we set A2 = Q11
2 = I2 =�

1 0
0 1

�
and obtain C2 = Q21

2
= Q2�Q11

2
=

�
0 0
1 0

�
.

Next, considering the omega network of size 4, we again

6

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

rewrite the augmented matrix as following:�
Q11

4
Q12

4

Q21

4
Q22

4

�

=

�
(I2
A2)L

4
2
(I2
B2)L

4
2

(I2
 C2)L
4

2
(I2
D2)L

4

2

�
�
(I2
A2)L

4

2
(I2
B2)L

4

2

(I2
 C2)L
4

2
(I2
D2)L

4

2

� (12)

From Equation (12), we have

Q11

4 = (I2
A2)L
4

2(I2
A2)L
4

2 + (I2
B2)L
4

2(I2
 C2)L
4

2

= I4 + (I2
B2)(C2
 I2)
= I4 + (C2
B2):

Since Q11
4

= I4, we obtain a trivial solution of B2 =�
0 0
0 0

�
: From Equation (12), we also have

Q21

4 = (I2
 C2)L
4

2(I2
A2)L
4

2 + (I2
D2)L
4

2(I2
C2)L
4

2

= (I2
 C2) + (I2
D2)(C2
 I2)
= (I2
 C2) + (C2
D2)

Since Q21

4
= Q4 � I4, we obtain D2 =

�
1 1
1 1

�
. Fur-

thermore, from the solution of A2, B2, C2, and D2, we can
obtain Q12

2n
= [0]

2n
, and Q22

2n
= [1]

2n
. The correctness of

Equation (10) can be verified by induction.
We demonstrate this algorithm by an example of size 8

in Figure 4.

x0 = a0
z0 = 0

x1 = a1
z1 = 0

x2 = a2
z2 = 0

x3 = a3
z3 = 0

x4 = a4
z4 = 0

x5 = a5
z5 = 0

x6 = a6
z6 = 0

x7 = a7
z7 = 0

x0 = a0
z0 = 0

x1 = a4
z1 = a0

x2 = a1
z2 = 0

x3 = a5
z3 = a1

x4 = a2
z4 = 0

x5 = a6
z5 = a2

x6 = a3
z6 = 0

x7 = a7
z7 = a3

x0 = a0
z0 = 0

x1 = a2
z1 = a0

x2 = a4
z2 = a0 + a2

x3 = a6
z3 = a0 + a2 + a4

x4 = a1
z4 = 0

x5 = a3
z5 = a1

x6 = a1
z6 = a1 + a3

x7 = a7
z7 = a1 + a3 + a5

x0 = a0
z0 = 0

x1 = a1
z1 = a0

x2 = a2
z2 = a0 + a1

x3 = a3
z3 = a0 + a1 + a2

x4 = a4
z4 = a0+ ... +a3

x5 = a5
z5 = a0+ ... +a4

x6 = a6
z6 = a0+ ... +a5

x7 = a7
z7 = a0+ ... +a6

Step 0 Step 1 Step 2 Step 3

Figure 4. Parallel prefix algorithm on omega net-
work for N = 8

4.3 Parallel Prefix Algorithm on Baseline Net-
work

The baseline network is defined as the following tensor
product formula:

BN =

n�1Y
i=0

(I2i
 L2
n�i

2
)(I2n�1
 s2):

We choose the auxiliary vector Z2n to be 0. The aug-

mented matrix

�
Q11

2n
Q12

2n

Q21

2n Q22

2n

�
must satisfy the condition

Q11

2n
+ Q21

2n
= Q2n , where Q2n is the prefix computation

matrix. We omit the detailed steps and show the factoriza-
tion of the augmented matrix as the following:

�
Q11

2n Q12

2n

Q21

2n Q22

2n

�
=

n�1Y
i=0

��
I2n 0

0 I2i
 L2
n�i

2

� �
A2n B2n

Ci

2n D2n

��

(13)
where

A2n = I2n�1
 I2
B2n = I2n�1
 02

Ci

2n =

8>>>>>><
>>>>>>:

I2i

��
I2n�i�2

�
0 0
1 1

��
��

I2n�i�2

�
0 0
0 0

���
for i = 0 to n� 2

I2n�1

�
0 0
1 0

�
for i = n� 1

D2n = I2n�1

�
1 1
1 1

�

The correctness of Equation (13) can be verified using in-
duction. The final tensor product formula (13) represents
a parallel prefix algorithm implemented on a baseline net-
work. If we expand the product of Equation (13), the origi-
nal input vector is applied on I2n in each stage, i.e., the in-
put vector remains unchanged. In the baseline network, this
fact can be implemented as each switching element con-
taining two local registers and storing the input data XN

statically.
The auxiliary vector ZN is manipulated according to the

application of Ci
2n on XN and D2n on ZN and its elements

are transmitted according to the stride permutation of the
baseline network. An example of the this algorithm for
N = 8 is demonstrated in Figure 5.

5 Conclusions

In this paper, we present a programming methodology
for designing block recursive algorithms on various com-
puter networks. We employ the tensor product notation to
formulate computational problems and derive different al-
gorithms on various computer networks.

The key idea of the programming methodology is to
augment the problem computation matrix and accompanied
with an auxiliary vector. Then factorize the augmented ma-
trix such that each term should fit into a specified network
connection matrix. The factorization steps require solving
of matrix equations. Since there are more matrix variables
than the number of matrix equations, the solutions of the
matrix variables are not unique. A key issue of deriving

7

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

x0=a0z0=0

x1=a1
z1=0

x2=a2z2=0

x3=a3
z3=0

x4=a4z4=0

x5=a5
z5=0

x6=a6z6=0

x7=a7
z7=0

x0=a0z0=0

x1=a1
z1=0

x2=a2z2=0

x3=a3
z3=0

x4=a4z4=a0 + a1

x5=a5
z5=a2 + a3

x6=a6z6=0

x7=a7
z7=0

x0=a0z0=0

x1=a1
z1=0

x2=a2z2=a0 + a1

x3=a3
z3=0

x4=a4z4=a0+ ... + a3

x5=a5
z5=0

x6=x6z6=a0+ ... + a5

x7=a7
z7=0

x0=a0
z0=0

x1=a1
z1=a0

x2=a2
z2=a0 + a1

x3=a3
z3=a0 + a1 + a2

x4=a4
z4=a0+ ... +a3

x5=a5
z5=a0+ ... +a4

x6=a6
z6=a0+ ... +a5

x7=a7
z7=a0+ ... +a6

Step 0 Step 1 Step 2 Step 3

Figure 5. Parallel prefix algorithm on baseline net-
work for N = 8

proper algorithms for a specific network is to find solutions
that fit into interconnection of the network.

The programming methodology does not only provide a
formal approach for designing parallel algorithms on spe-
cific interconnection networks, both direct and multistage
networks, but it can also be used for designing VLSI circuit-
s. In the future, we will extend the methodology to gener-
ate VHDL programs and thus to design circuits for special
purpose applications such as digital signal processing and
image processing [12, 13].

References

[1] G. E. Blelloch. Prefix sums and their application-
s. Technical Report CMU-CS-90-190, School of
Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, November 1990.

[2] D. L. Dai, S. K. S. Gupta, S. D. Kaushik, J. H.
Lu, R. V. Singh, C. H. Huang, P. Sadayappan, and
R. W. Johnson. Extent: A portable programming
environment for designing and implementing high-
performance block-recursive algorithms. In Proceed-
ings of Supercomputing ’94, pages 49–58, Los Alami-
tos, USA, 1994. IEEE Comput. Soc. Press.

[3] M.-H. Fan, C.-H. Huang, Y.-C. Chung, J.-S. Liu, and
J.-Z. Lee. A programming methodology for design-
ing parallel prefix algorithms. In Proceedings of the
2001 International Conference on Parallel Process-
ing, pages 463–470, Los Alamitos, USA, 2001. IEEE
Comput. Soc. Press.

[4] A. Graham. Kronecker Products and Matrix Calculus:
With Applications. Ellis Horwood Limited, 1981.

[5] S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and
R. W. Johnson. A framework for generating
distributed-memory parallel programs for block recur-
sive algorithms. J. Parallel and Distributed Comput-
ing, 34:137–153, 1996.

[6] C.-H. Huang, J. R. Johnson, and R. W. Johnson. A ten-
sor product formulation of Strassen’s matrix multipli-
cation algorithm. Appl. Math Letters, 3(3):104–108,
1990.

[7] J. R. Johnson, R. W. Johnson, D. Rodriguez, and
R. Tolimieri. A methodology for designing, modify-
ing and implementing Fourier transform algorithms on
various architectures. Circuits Systems Signal Process,
9(4):450–500, 1990.

[8] R. W. Johnson, C.-H. Huang, and J. R. Johnson. Multi-
linear algebra and parallel programming. The Journal
of Supercomputing, 5(2–3):189–217, October 1991.

[9] S. D. Kaushik, S. Sharma, and C.-H. Huang. An alge-
braic theory for modeling multistage interconnection
networks. Journal of Information Science and Engi-
neering, 9(1):1–26, 1993.

[10] S. D. Kaushik, S. Sharma, C.-H. Huang, J. R. John-
son, R. W. Johnson, and P. Sadayappan. An algebraic
theory for modeling direct interconnection network-
s. Journal of Information Science and Engineering,
12(1):25–49, 1996.

[11] B. Kumar, C.-H. Huang, P. Sadayappan, and R. W.
Johnson. A tensor product formulation of Strassen’s
matrix multiplication algorithm with memory reduc-
tion. Scientific Programming, 4(4):275–289, Winter
1995.

[12] S. Mazor and P. Langstraat. A Guide to VHDL. Kluwer
Academic Publishers, 1992.

[13] G. X. Ritter and P. D. Gader. Image algebra techniques
and parallel image processing. J. Parallel and Dis-
tributed Computing, 4:7–44, 1987.

[14] Y. Saad and M. Schultz. Data communication yyper-
cubes. Journal of Parallel and Distributed Computing,
6:115–135, 1989.

[15] C.-L. Wu and T. Feng. On a class of multistage inter-
connection networks. IEEE Transactions on Comput-
ers, 29(8):801–810, 1980.

8

Proceedings of the International Conference on Parallel Processing Workshops (ICPPW’02)
1530-2016/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

