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Abstract membership in each class. This viewpoint not only reflects 
the reality of many applications in which categories have 
fuzzy boundaries, but also Provides a simple represents- 
tion of the potentially complex partition of the feature 
space. In brief, we use fuzzy  i f- then rules to describe a 
ChsSifier. A typical fuzzy classification rule is like: 

Fuzzy classification is the task of partitioning a feature 
space into fuzzy classes. A learn-by-example mechanism is 
desirable to automate the construction process of a fuzzy 
classifier. In this paper we introduce a method of em- 
ploying adaptive networks to solve a fuzzy classification 
problem. System parameters, such as the membership if XI is A and X2 is B then Z is C, 
functions defined for each feature and the parameterized 
t-norms used to combine conjunctive conditions are cali- 
brated with backpropagation. 

To explain this new approach, first we introduce the 
concept of adaptive networks and derive a supervised 
learning procedure based on a gradient descent algorithm 
to update the parameters in an adaptive network. Next, 
we apply the proposed architecture to two problems: two- 
spiral classification and Iris categorization. From the ex- 
periment results, it is summarized that the adaptively 
adjusted classifier performs well on an Iris classification 
problem. The results are discussed from the viewpoint of 
feature selection. 

I. INTRODUCTION 
Conventional approaches of pattern classification involve 
clustering training samples and associating clusters to 
given categories. The complexity and limitations of previ- 
ous mechanisms are largely due to the lacking of an effec- 
tive way of defining the boundaries among clusters. This 
problem becomes more intractable when the number of 

where X I  and X2 are features or input variables; A ,  B are 
linguistic terms  [13] characterized by appropriate mem- 
bership functions [la], which describe the featufes of an 
object 2. The firing strength or the degree of appropri- 
ateness of this rule with respect to a given object is the 
degree of belonging of this object to the class C. 

As such, a fuzzy rule gives a meaningful expression of 
the qualitative aspects of human recognition. Based on 
the result of pattern matching between rule antecedents 
and input signals, a number of fuzzy rules are triggered 
in parallel with various values of firing strength. Indi- 
vidually invoked actions are considered together with a 
combination logic. 

Further, we want the system to have learning ability 
of updating and fine-tuning itself based on newly coming 
information. Researchers have been trying to automate 
the classifier construction process based on a training data 
set. We propose a method of using adaptive networks 
for this purpose. We use experimental data to verify the 
effectiveness of this approach. 

features used for classification increases. 
On the contrary, fuzzy classification [9, 141 assumes the 

boundary between two neighboring classes as a continu- 

11. LEARNING WITH ADAPTIVE NETWORKS 

An adaptive network is a multi-layer feed-forward network 
ous, overlapping area within which an object has partial in which each node performs a particular function (node 
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Figure 1: A n  adaptive-network-based fuzzy classifier. 

function) based on incoming signals and a set of param- 
eters pertaining to this node. The type of node function 
may vary from node to node; and the choice of node func- 
tion depends on the overall function that the network is 
designed to carry out. 

Figure 1 demonstrates the adaptive-network-based clas- 
sifier architecture with two input variables, X1 and X2. 
The training data are categorized by three classes, C1, C2 

and C3. Each input is represented as three linguistic 
terms, thus we have nine fuzzy rules. In our model the 
nodes in the same layer have the same type of node func- 
t ion. 

Each node in Layer 1 is associated with a parameterized 
bell-shaped membership function represented as 

where Xi is one of the input variables, A is the linguistic 
term associated with this node function, and {ai, b,, cj} 
is the parameter set. 

The initial values of the parameters are set in such a way 
that the membership functions along each axis satisfy E 

completeness [SI (6 = 0.5 in our case), normality and con- 
vezity [5]. Figure 2 illustrates the concept. Although these 
initial membership functions are set heuristically and sub- 
jectively, they do provide an easy interpretation parallel 
to human thinking. The parameters are then tuned with 
backpropagation, a gradient descent method, in the learn- 
ing process based on a given training data set. 

Each node in Layer 2 generates a signal correspond- 
ing to the conjunctive combination of individual degrees 
of match. The output signal corresponds to the firing 
strength of a fuzzy rule with respect to an object to be 

A1 A2 A3 

Figure 2 :  Partition of feature space. 

categorized. In most pattern classification and 
retrieval systems, the conjunction operator plays 

query- 
an im- ~. 

portant role and its interpretation changes across con- 
texts. Since there does not exist a single operator that 
is suitable for all applications, we can use Parameterized 
t-norms at Layer 2 to cope with this dynamic property of 
classifier design. Bonissone provided a detailed discussion 
on t-norms and their parameterized versions, see [2]. For 
example, we can use Hamacher’s t-norm: 

where xi’s are the operands and y is a non-negative pa- 
ramet er. 

In some other applications, e.g., see [15], features are 
combined in a compensatory way. For these situations, 
mean operators [ll] are more appropriate than conjunc- 
tive operators. To find a good mean operator for a certain 
system, we can also implement a parameterized operator 
and use training data to calibrate it. For instance, we can 
use the one proposed by Dyckhoff and Pedrycz: 

(3) 

where y 2 1. Note that we can either use a parameterized 
operator for each node in Layer 2 or employ a single one 
for the whole layer. Whether an operator is local or global 
depends on applications. Moreover, a parameterized fuzzy 
quantifier [3] can also be introduced into this picture based 
on the same concept. The combinational parameters are 
also fine-tuned by backpropagation. 

We take the linear combination of the firing strengths 
of the rules at Layer 3 and apply a sigmoidal function at 
Layer 4 to calculate a degree of belonging to a certain 
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Figure 3: Thining data for the two-spiral problem. 
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class. Through experience we found the following defini- 
tion of error measure useful in classification problems. As 
before, assume we have three classes, the error measure E 
can be formulated as: 

E = d o l ( 1 -  d02) (1 -  d o s ) { ( s i g [ m ( c ~ a  - c o l ) ]  
+ sig[m(co3 - C O I ) ] }  

+ sig[m(co3 - cos)]} 

+ sig[m(coa - cos) ] }  

+ ( 1  - dOl)dO2(1 - d03)((5ig[m((!Ol - COa)]  

+ ( 1  - dOl)( l  - d02)d03{(Sig[m((!Ol - CO3)]  

( 4 )  
where doi’s are desired outputs and coj’s are calculated 
outputs. The first, second and third terms account for the 
conditions when the desired classes are class 1 ,  2 and 3,  
respectively. Since this error measure is rearonable when 
the maximum selector is used, it is therefore referred to 
as maximum-type error measure. 

The maximum-type error measure introduced above can 
increase the degrees of freedom and therefore is suitable 
for crisp-output neuro-fuzzy classifiers. Meanwhile, the 
slow convergence of the gradient descent is compensated 
for by the proper choice of the maximum-type error mea- 
sure, so the learning process will not suffer from the draw- 
backs of the gradient descent. In the following we present 
two application examples which employ nemo-fuzzy clas- 
sifiers with maximum-type error measures to do crisp pat- 
tern classification. with maximum-type error measures to 
do crisp pattern classification. 

111. TWO-SPIRAL PROBLEM 
The twu-spiral problem was proposed by Alexis P. 
Wieland on the connectionist mailing list as an interesting 
benchmark task for neural networks. The task requires a 
neural network classifier with two inputs and one output 

to learning a mapping that distinguishes between points 
of two intertwined spirals. The two sets of spiral data 
consist of 194 points, with 97 points for each spiral. One 
spiral is generated as a mirror image of the other, making 
the problem highly nonlinear-separable. 

As pointed out by Wieland, this task has several fea- 
tures that makes it an interesting test for neural network’s 
learning algorithms. First of all, it requires the neural 
networks to learn the highly nonlinear separation of the 
input space, which is difficult for most current learning al- 
gorithms. Secondly, its 2-dimensional input space makes 
it easy to plot the overall input-output relations as a 3- 
dimensional surface or 2-dimensional image for visual in- 
spection and analysis. 

To proceed with the simulation, first the rule num- 
ber has to be decided. Since the input partition is 
checkerboard-like, we expect that the partition number 
(or equivalently, the number of membership functions) on 
either input 2 and y should be equal to the maximum 
number of alternations between classes along one dimen- 
sion when the other is fixed. In the two-spiral problem, the 
maximum number of alternations on y is approximately 
14, which occurs on the straight line z = 0; the maximum 
number of alternations on z is approximately 13, which 
occurs on y = 0. 

Using the maximum-type error measure defined above, 
we perform four runs of simulation; the number of mem- 
bership functions on both inputs is varied from 10 to 13 
sequentially. It is found that 13 is the minimum number 
for the network to classify the two spirals correctly. This 
agrees with our observation of the maximum number of 
alternations along each dimension. 

As mentioned earlier, this problem is suitable for vi- 
sual inspection or analysis on the classifier’s input-output 
behavior through data visualization techniques such as 5- 
D surface or 2-D image. Figure 4 depicts the classifier’s 
input-output behavior; each of the four images is com- 
posed of 22,500 ( 1 5 0 ~  150) pixels which are 2 bit deep. 

Although we can always employ a large number of mem- 
bership to achieve a perfect classification, this kind of over- 
parameterized structure is not recommended since it not 
only slows down the learning but also degrades the gen- 
eralization power for unseen data sets; this is just like the 
case in over-parameterized neural networks. Therefore, 
the ability to determine the number of membership func- 
tions from visual inspection is a very practical and use- 
ful technique that enables us to find roughly a minimum 
structure of a neuro-fuzzy classifier to do the job. For neu- 
ral networks, we do not have similar quick and easy tech- 
niques to determine the minimum structure (node num- 
bers and layer numbers) simply due to the uniformity in 
the node function. 
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Figure 4: Image representation of classifier's input-output 
behavior. The number of membership functions on x and 
y equals to (a) 10; (b) 11; (c) 12 and (d) 13. 
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Figure 5: Membership functions after 20 training epochs 
in Iris classification. 

IV. IRIS CATEGORIZATION 

Next we apply the proposed scheme on an Iris classifi- 
cation problem of finding the mapping between four in- 
put variables (sepal length, sepal width, petal length, and 
petal width) and three classes (Setosa, Versicolor, and Vir- 
ginica) . 

There are 150 samples in the data set and we use 120 
of them as training data and the other 30 for testing. Ini- 
tially, each feature dimension is partitioned into 3 homoge- 
neously distributed overlapping regions. We constructed 
a network and trained it with the training data set for 
20 epochs. The adjusted network was then evaluated by 
the testing data set. The desired and calculated outputs 
matched for all 30 testing data. The discriminating power 
of the classifier was well validated. 

Another advantage of our fuzzy approach is that the 
resulted model gives us insights of the data characteristics. 
We analyzed the data set with statistical methods and 
found that, individually speaking, both inputs 3 and 4 
have stronger (but incomplete) discriminating ability than 
inputs 1 or 2. However, if we choose input 3 as the primary 
salient feature, we need input 1 to be the secondary feature 
to complete the feature space partition. This analytical 
conclusion was predicted by the adjusted parameters in 
our adaptive network model. Figure 5 shows the final 
membership functions. 

In this figure, the membership functions of the third 
input clearly gives the ranges of the salient feature. On 
the other hand, inputs 2 and 4 are neglected by different 
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ways. For input 2, two of the initial functions shrank to 
peaks and left the remaining one to cover the entire di- 
mension. For input 4, the three functions adjusted them- 
selves to overlap each other and redundantly covered the 
dimension. The various behavior remains an interesting 
research topic to  be further studied in the future. 

v. CONCLUDING REMARKS 

An adaptive classifier partitions the feature space based 
on labeled training data. In the context of fuzzy classifica- 
tion, classes are overlapping and each training data item is 
associated with numbers in the unit ihterval representing 
degrees of belonging, one value for each class. The over- 
lapping among regions provides the natural smoothness 
for the input-output mapping. This characteristic makes 
this model suitable for classification problems, especially 
for those with overlapping categories. 

We proposed a general fuzzy classification scheme with 
learning ability using an adaptive network, which can be 
used in pattern recognition, decision analysis, and many 
other fields. Membership parameters were identified with 
the model. Parameterized t-norms and mean operators 
were brought into this picture to make the classification 
scheme more flexible. The resulted membership function 
served the need of feature selection. 

The proposed neuro-fuzzy approach is better than neu- 
ral network classifiers in the sense that prior knowledge 
about the training data set can be encoded into the param- 
eters of the neuro-fuzzy classifier. This encoded knowl- 
edge, usually acquired from human experts or data visu- 
alization techniques, can almost always allow the learning 
process to  begin from a good initial point not far away 
from the optimal one in the parameter space, thus speed- 
ing up the convergence to the optimal or a near-optimal 
point. Moreover, the parameters obtained after the learn- 
ing process can be easily transformed into structure knowl- 
edge in the form of fuzzy if-then rules. 
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