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Abstract-Based on a modifled Bernoulli-Gaussian 
model, we propose an adaptive maximum-likelihood 
channel equalizer, which is a block signal processing 
algorithm, for the detection of binary sequences trans- 
mitted through an unknown slowly time-varying chan- 
nel. Both computational load and storage required by 
the proposed adaptive channel equalizer are linearly 
rather than exponentially proportional to the size of 
signal processing block. A simulation example is pro- 
vided to support that it can simultaneously track the 
variation of slowly time-varying channels and detect 
unknown binary sequences well. 

I. INTRODUCTION 

Estimating a desired signal ~ ( j )  from a given set of 
noisy data { ~ ( j ) ,  j = 1,2,  ..., N }  based on the convolu- 
tional model 

48 = P ( j )  * v(i) + .(j) (1) 

is a deconvolution problem where n ( j )  is white Gaussian 
noise with variance U: and v ( j )  is the impulse response of 
a linear time-invariant signal distorting system which cor- 
responds to such as the source wavelet in seismic deconvo- 
lution, the channel impulse response in channel equdiza- 
tion and the vocal-tract impulse response in speech and- 
ysis/synthesis. 

Kormylo and Mendel [l-31 proposed a Bernoulli- 
Gaussian (B-G) model, which has been used in seismic 
deconvolution, for a sparse spike sequence with random 
amplitudes as 

P ( j )  = a . n ( j )  (2) 
where ~ ( j )  is a zero-mean white Gaussian random se- 
quence with variance (r: and q ( j )  is Bernoulli for which 

Quite many B-G model based maximum-likelihood de- 
convolution (MLD) off-line algorithms as well aa adaptive 
algorithms such as [l-71 have been reported in the past 
decade. 

Recently Chi and Chen [a] proposed an adaptive B- 
G model based MLD algorithm for estimating positive 
sparse spike trains, and it has been successfully applied 
to deconvolution of voiced speech signals because a posi- 
tive sparse spike train can be modeled as a B-G signal by 
letting E[r(j)] = m,. > 0 and > 1. Furthermore, 
they found that, by setting m, > 0 and U! = 0, binary 
random sequences of {m,., -mr} can also be modeled as 

~ ( j )  = 4 9  * q ( j )  = mrq(j) (4) 

where q ( j )  = -1 or q( j )  = 1 with equal probability. Then 
they [9] proposed a B-G model based maximum-likelihood 
(ML) channel equalizer for the detection of binary se- 
quences (modeled as (4)) assuming that the channel im- 
pulse response u ( j )  is known a priori. It not only works as 
well as but also requires smaller computational load and 
storage than some well-known maximum-likelihood (ML) 
channel equalizers such as [lo-121. In this paper, we pro- 
pose an adaptive B-G model based ML channel equal- 
izer for the detection of binary sequences (modeled as 
(4)) transmitted through an unknown slowly time-varying 
channel. 

11. AN ADAPTIVE B-G MODEL BASED ML CHANNEL 
EQUALIZER 

The new adaptive B-G model based ML channel equal- 
izer is a block signal processing algorithm. Let the size of 
signal processing block be 2L and the contiguous blocks 
have a 50% overlap. A block of z ( j ) ,  j = k,k + 1, ..., k + 
2L - 1 is processed to yield g ( k ) ,  a(k + l ) ,  ..., $(k + L - 1) 
and then the next block of z(j), j = k+L, k+L+l ,  ..., k+ 
3L - 1, is processed to yield a(k + l ) ,  ..., a ( k  + 2L - 1). 
p^(j) for j 2 k + 2L are obtained so on and so forth. 
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Assume that, within any signal processing block, v ( j )  is 
a time-invariant pth-order autoregressive moving average 
(ARMA(p,p-1)) system with a system transfer function 
as follows: 

(5 )  
p1 + p a r 1  + ... + ppz-@-1) 

1 - a 1 r - 1  - ... - (Ypr-p 
V ( r )  = * 

The convolutional model (1) can also be represented in a 
pth-order state-variable form tu 

&) = - 1) + 1 mr qr (i) (6) 

( 7) .(j) = h'&) + n(j) 
where ~ ( j ) ,  y and hare  p x 1 vectors, @ is a p x p matrix. 
Note that v 6 )  = ht#7 and that given V ( z )  there exist - 
many ( @ I  1, h)'s. 

Let 
B = (a1 , &a,  ..., Qp, P 1  I Pa, ... I Pp- l ) t ,  

4 = ( r ( l ) ,  %(2), . . . I  r(k + 2L - l))', 

= (q(l), 421, ... IQ@ + 2L - 1))' 

= (e( I), e(2), ..., e ( k  + 2L - I))$ 

e ( i )  = .(j> - m, di) * Vb-1. 

( 8) 

( 9) 

(10) 

(11) 

(12) 

and 

where 

The new adaptive B-G model based ML channel equalizer 
tries to search for p = t j  , fi = & and U: = &:(k) such 
that the likelihood%nct& 

S, {SI fi, 1% = f i i 4 )  * pr(% IA = 0.5) 

is maximum under the "adaptiveness constraint": 

(c1) q( j )  = d ( j )  and e ( j )  = = 4 j )  - m W  * W 
for j 5 k - 1, where tj(j) is the detected q( j )  prior to 
time k. 

Our approach for finding a local maximum of Sk is an 
iterative block component method (BCM) [1,2] shown in 
Figure 1, where M is the allowed maximum number of 
iterations and is se! ahead of time. Whenever a block of 
parameters, r& or & or &:(k), is updated with the other 
parameters fixed, Sk is guaranteed to increase. We, next, 
present how to update tj , & and 8i(k) by processing the 
measurement block of &), r(k + l), ..., r(k + 2L - 1). 

INPUT DATA BLOCK k = k t L  
z(k), z(ktl), ..., z(kt2L1) ITER(k) = 0 

d L 

ITER&) = IT'ER(k) t 1 

I 
L 

A A  

q(k). q(k+1), ..., ;(k+L-l) 

Figure 1. The signal processing procedure of the proposed 
adaptive B G  model based ML channel equalizer. 

A .  Detection o f q ( j )  for j = k, k + 1, ..., k + L - 1: 
The well-known iterative single-most-likely-replace- 

ment (SMLR) algorithm [2,9] with some necessary modifi- 
cations is suited for the detection of q ( j ) .  Let A(j)  denote 
the likelihood ratio 

where E = (qr(1) = tj(l)jqr(2) = p*(2),...,qr(k - 1) = 
tj(k - I), qr(k), qr(k + I), ..., qr(k + 2L - I))' is a ref- 
erence sequence (due to (Cl)) and - $ = (~r( l ) ,qr(2) j  

a test sequence which differs from only at a single time 
location j. During the recursion k, the iterative detection 
algorithm searches for the optimum & as follows: 

(A) Compute InA(j) for j = k,k + 1, ..., k + 2L - 1. 

(B) Assume that InA(j') = m a z { l n A ( j ) , k ~  j 5 k+2L- 
1); if InA(j') > 0, update qr( j ' )  by - q r ( j ' )  and go to 

qr(j-l)Iqr(j) = -qr(j)jqr(j+l)l . - . I  qr(k+2L-1))' is 

( 4 .  
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When lnA(j) 5 0 for all k 5 j 5 k + 2L - 1, the 
detection procedure is finished and the first L elements 
of the obtained q+ are the desired estimates q^(k),q*(k + 
l), ..., e ( k  + L - g. It has been shown in [9] that 

lnA(j) = -2 m, { q r ( j ) . f j  + m a j )  (15) 

.fj = x t ~ ( . i ) ,  (16) 

a j  = r'cw(.i)x (17) 

where 

in which the p x 1 vector ~ ( j )  and the p x p matrix C, (j) 
can be obtained by running 

&(j) = 0 &(j - 1) + l - q r ( j )  

Z(j) = .(j) - h'&(j) 

(18) 

(19) 

w( j )  = + 1) + bZ(j)/u: (20) 

C w ( j )  = O%(j + 1)O + ! d / u :  (21) 

forwards from j = k to k + 2L - 1 and then running 

backwards from j = k + 2L - 1 to k. The initial condi- 
tion g(k - 1) for (18) is associated with S k - L ,  and thus 
is available priori to time point k. The initial conditions 
for (20) and (21) are ~ ( k  + 2L) = Q (zero vector) and 
Cw(k + 2L) = [O] (zero matrix), respectively. 

B. Estimation of e 
Maximizing S k  given by (13) with respect to Sunder the 

constraint (Cl) is equivalent to minimizing the following 
highly nonlinear objection function 

Estimating the system parameter with the system in- 
put p ( j )  = mq*(j) and the output z(j) based on J ( S )  is 
nothing but the well-known prediction error identification 
method [13]. We use a Newton-Raphson type iterative al- 
gorithm to search for a local minimum of J(8J and the 
associated a. 
C. Estimation of U: 

equal to zero, one can obtain 
Setting the partial derivative of sk with respect to U: 

where we have used e ( j )  = E( j )  for j I k- 1 (see (cl)). 

111. A SIMULATION EXAMPLE 
In this section, we present a simulation example to 

support the proposed adaptive B-G model baaed ML 
channel equalizer. A time-varying channel with V ( z )  = 
p/(l - a ( j ) z - l )  represented by the following state- 
variable model 

4 j )  = a(j).(j - 1) + mr!m 

4) = P 4 j )  + .(j) 

(24) 

(25) 
was used in our simulation where /3 = 1, a(j)  = 0.3+ 
0.5sin(j/6000), m, = 1 and U: = 0.1582. The param- 
eters L and M used in the proposed adaptive equalizer 
were L = 128 and M = 1, respectively. The simulation 
results are shown in Figure 2, from which one can see that 
estimate &(j) (dashdot line) shown in Figure 2(a) tracks 
a( j )  (solid line) very well and that all estimates B (dot's) 
shown in Figure 2(a) are quite close to p = 1. The cumu- 
lative symbol error rate (SER(k)) shown in Figure 2(b), 
defined as 

Cumulative SER(k) = 

, (26) 
number of correct detections of q ( j )  up to j = k 

k 
converges toward 0.007 after the initial transient over- 
shoot. These simulation results manifest the good per- 
formance of the proposed adaptive B-G model based ML 
channel equalizer for this time-varying channel. 

IV. CONCLUSIONS 
We have presented a new adaptive ML channel equal- 

izer based on the modified B G  model given by (4) for the 
detection of binary sequences transmitted through an un- 
known slowly time-varying channel. It is also an adaptive 
block signal processing algorithm with 50% overlap based 
on the likelihood function sk (see (13)) under the con- 
straint (Cl) , and it is implemented by a block component 
method shown in Figure 1. We also provided a simula- 
tion example to support that it can track the variation of 
slowly time-varying channels well and detect unknown bi- 
nary sequences well in the meantime. On the other hand, 
both computational load and storage required by the pro- 
posed adaptive channel equalizer are linearly rather than 
exponentially proportional to the size of signal processing 
block. 
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