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Abstract - In this paper we consider the multiple access 
problem with distributed dependent sources. We derive the 
optimal designs for the case of N correlated binary sources 
whose data are modelled as a two-state Markov chain. The 
solution can be classified as a group testing technique where 
data values at the sensors are determined through the suc- 
cessive refinements of the tests over smaller groups. The 
tests form, progressively, an accurate map of the sensor data 
at the central receiver. We derive the conditions on the pa- 
rameters of the data model for which the group testing ap- 
proach is superior to time sharing. In contrast to standard 
multiple access techniques, this is the first method proposed 
for data retrieval from distributed dependent sources which 
is content-based rather than user-based.' 

I .  INTRODUCTION 

The goal of our work is to design multiple access communi- 
cation strategies to transmit the information from a set of dis- 
tributed dependent sources to a central receiver through a mul- 
tiple access channel. In sensor networks, sensor nodes are often 
deployed in large scale to observe physical events or measure- 
ments from the environment. The detected events or quantized 
measurements at the sensors naturally classify them into groups 
OF the same state. For example, in the binary detection problem, 
the sensors that have detected a certain event will he grouped 
into one class, while the other nodes will be grouped into an- 
other class. In the case of quantized measurements, all sensors 
observing data within the same quantization level also constitute 
a certain class. By reliably identifying the class for which each 
sensor resides, the central node is able to reconstmct the entire 
sensor field or to accurately locate the occurrence of an event. 

The key idea of this work is to utilize the concept of group 
testing to efficiently acquire the states of the sensors instead of 
polling the sensors one-by-one. This is a revolution in multiple 
access since the method we propose is not aimed at retrieving 
the information within a certain node but rather to locate the 
sensors containing a certain information. This leads to the so 
called content-based multiple access technique. For a set of dis- 
tributed sources that have low aggregate entropy, we show that 
this technique can be more bandwidth efficient than its standard 
multiple access alternatives. 
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The concept of group testing was first introduced by Dorf- 
man [ I ]  in World War I1 to efficiently identify all syphilitic men 
called up for induction into the armed forces. The method sig- 
nificantly reduces the number of blood tests necessary by pool- 
ing a number of blood samples together, and testing the pooled 
samples instead of testing them individually. This method effi- 
ciently solves the problem of classifying the states of all indi- 
viduals in a large population. The work by Sohel and Groll [Z] 
further extended this method to many industrial applicalions. 

Group testing has also been proposed as an efficient solution 
for random access scheduling [3, 41. In this case, the probahil- 
ity that a particular sensor has a message to transmit is inde- 
pendent from sensor to sensor, therefore, classical group testing 
strategies can be applied directly since they are mostly based on 
the same assumption. In sensor networks, an analogous model 
could arise when unexpected independent events trigger alarms 
in isolated sensors. However, in general, the observations made 
at the sensors are often both spatially and temporally correlated, 
which violates the assumption in classical problems. To the best 
of our knowledge, we are the first to propose its application 
to directly retrieve information from a distributed sensor net- 
work, and in this lies o w  major contribution. To demonstrate 
that this strategy has wide applicability in the context of dis- 
tributed sources with low aggregate entropy, we explicitly derive 
the optimum group testing strategy for a special case of corre- 
lated sources, which are modelled as a two-state Markov chain. 

Group testing can in fact be applied to transmit efficiently a 
much wider class of information data from a set of distributed 
sources that have low aggregate entropy. Given a certain group 
testing strategy, the answers to the sequence of tests imposed 
upon the set of sensors constitute a code [4] that maps to the 
corresponding information at the sensors. If group testing is 
performed optimally, the average code length resulting from the 
tests should be shorter or at most equal to testing each node in- 
dividually. In the case where no error occurs in the tests. group 
testing may be seen as a special case of the zero-error data com- 
pression problem. Specifically, group testing has been applied 
in the context of image compression [5 ,  61. However, in con- 
trast to these applications, the information in sensor networks is 
distributed among sensors instead of being known at the central 
processor, therefore, the strategies used in the image compres- 
sion literature cannot be applied directly. The importance of 
our work is that we simultaneously schedule the transmission 
of each sensor while compressing the sensor information along 
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Figure I :  The spatial distribution of the sensors. 

the spatial domain [7]. Therefore, our method salves jointly the 
source coding and the multiple access channel coding pmhlems 
without separation.Compared to other works that proposed the 
Slepian-Wolf distributed source coding solution [8,Y, IO] to re- 
duce the aggegate rate of sensor networks, this method does 
not require the joint statistics of the data at the nodes. Further- 
more, it automatically achieves the cooperative compression ef- 
fect without requiring the sequential application of compression 
algorithms over increasingly large sets of data [ I  I]. 

11. PROBLEM SETUP: CORKELATED INFORMATION 

Consider 1V = 2” sensors uniformly deployed on the real 
line within the interval [O, D ] ,  as shown in Fig. 1. Denote the 
network of sensors by S = {so, sl,. . . , s , ~ - ~ } .  The set of seo- 
sors observe a sequence of spatially correlated sensor infoma- 
tion X = {Xo:  X I , .  . . , X,v - l } ,  where Xi is the observation 
made at node s i  and that X i  E {O; I} for all i, i.e. binary sources. 
For example, the binary hits at each sensor may represent the lo- 
cal decisions of a binary hypothesis testing, or the information 
of the quantized samples that the sensors observe, both of these 
cases are correlated over the spatial area. Our goal is to allow 
a central node to efficiently acquire the information contained 
at each local sensor using the minimum number of channel ac- 
cess. More specifically, we consider a simplified model for the 
channel and make the following assumptions: 1) the medium 
is broadcast; 2) the answers to each test are reliable, i.e. zero 
errors. 

We envision that the optimum physical-layer strategy sup- 
porting this transmission will he highly dependent on the power 
constraints, propagation model and the topology of the sensor 
field. The transmission may be achieved with or without user 
cooperation. Clearly, it is possible to benefit from asking more 
articulate questions and receiving a greater number of aggre- 
gate bits per test. However, we choose to leave the study of 
deep physical layer aspects for future work. Particularly, it will 
he important to establish what is the minimum physical cost in  
terms of transmit power that this channel model implies, whaf 
is the test channel cut-off rate and how to combine error pm- 
tection with each test effectively. For the rest of the paper we 
associate the cost of transmission solely to the number of tests 
necessary to reconstruct the sensor field, assuming that each test 
is reliable. In this sense, what we are measuring in this paper is 
primarily the efficiency of transmission of our distributed com- 
pression technique. The next natural step is to combine each 
group testing with the optimum channel coding strategy. 

In classical group testing problems, e.g. the blood testing 

problem, each item in the population of s i x  iV can he either de- 
fective or non-defective. It is common to assume that each nodc 
is an independent Bemoulli trial with the identical probability 
p of being defective. When p << 1, the event that a particulw 
item is defecrive is very unlikely, therefore, testing each node 
individually, which is analogous to the TDMA in multiple ac- 
cess applications, is inefficient. Suppose we are able to apply 
tests on groups of items with size n > 1 such that a “positive” 
result is given if one or more items are defective, and a “nega- 
tive” result if and only if the items are all non-defective. When 
the “positivc” result is obtained, it means that thc group of n 
items contains at least one defective item, therefore, we must 
split the group into smaller subgroups to identify, specifically, 
which item or items are defective. It has been shown that group 
testing reduces significantly the average number of tests neces- 
sary when p is less than the cutoff point p’ = 4 (3 - fi) [ 121. 

In relating our problem to classical group testing, we cor- 
respond sensor si to he defective if xi = 1, while otherwise 
non-defective. To obtain the information X, the central node 
must impose a sequence of tests T0,Tl:. . . , T L - ~  to the sub- 
sets U,, U 1 , .  . , U L - I ,  where U1 c S for all 1 and L is ran- 
dom variable representing the number of tests necessary to re- 
constmct the sensor field. Within each test Ti, the distributed 
sensors in the subset Ut reply with only a simple pulse transmis- 
sion. For example, when the central node sends the test “Do you 
have hit I?” to the sensors in Ul, a sensor s i  E Vi will emit a 
pulse indicating that it is “defective” if x i  = 1. Assuming that 
the ccntral node utilizes only an energy detector, it is not able 
to distinguish between the number of defective items within the 
group, given that the number is grcater than 1. Therefore, if the 
contents of the sensors in U, were not completely resolved af- 
ter Ti, the group of senson U L + ~  chosen for the next test must 
contain a subset of U1 in order to identify exactly the sensors for 
which xi = 1, 

Although the sensor problem considered seems similar to the 
classical group testing problem, the efficiency can be improved 
over the traditional scheme by utilizing two major features: 

0.1) the bit information is correlated over sensors; 
(1.2) each sensor has knowledge of its own observation. 

In considering (U), one must adjust the b-ouping strategy ac- 
cordingly with respect to the result of previous tests. For ex- 
ample, in the case where sensors are highly correlated, a set of 
, in senxxs tested to he non-defective may imply that the whole 
network of N sensors are non-defective with probability close 
to 1. In applying (U), the central node is allowed to impose dif- 
ferent questions upon the set of sensors. In other words, instead 
of asking each time the question “Do you have hit l?”, a central 
node may also ask the question “Do you have hit O?” when it  
is more efficient to do so. Since the sensor has knowledge of 
i ts  own observation, it is able to answer the latter question using 
the same pulse transmission. ’Ibis is generalizing the reversing 
technique [3] applied by Berger et al in their reservation-based 
multiple access protocol. 

A. Sensor Model: Two State Markov Chain 
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In this case, the central station accesses the channel twice 
during each test: it first asks if any sensor within the group has 
the bit 1, then asks whether any sensor has the bit 0. Each sensor 
within the tested group replies through a noiseless OR channcl, 
thus, for group U,, the feedback obtained from the test is P 

Figure 2: The two state Markov chain. (ZU,>ZClJ = ( v ~ < c u t X ; , v $ . E C l ~ ~ i ) .  (3) 

Consider thc case where the sequence of binary observa- 
tions X = (Xo, XI. ’ .  . , X,V-I) are modelled using a two state 
Markov chain, as shown in Fig. 2, where the two states 0 and 
1 represent the realization of the observations at each node. Let 
a and p be the transition probability from state 0 to state 1 and 
state 1 to state 0, respectively. Assume that the initial probabili- 
ties are the steady state distributions such that 

and, similarly, Pr{Xi = 0 )  = 2- = 1 - p = q. Therefore, 
g:, = E[Xi - E(Xi)]’ = p( l  - p )  and Cov(X;, X~+I) = 
p(1 - p)[l - (a  + p)]. Thus, the correlation coefficient 

a+P 

We note that ( p ;  p) uniquely specifies the pair of transition 
probabilities (a ,  0). In this work, we restrict our problem to the 
case where p t [0,1] such that group of nodes adjacent to each 
other would have the highest correlation [c.f. Section 1111. 

B. Information Lower Bound 
During cach access o l  the channel, the central node asks a 

question which is responded by the binary answer - “yes” or 
“no”. With the sequence of answers obtained from the tests, 
the central node is able to obtain a lossless reconstruction of 
the sensor field. Therefore, the total number of access can be 
trivially lower-hounded by the entropy of the sensor data X. The 
entropy of X is given as follows: 

H(X) = h(p) + ( N  - 1)H(XIIXO) (2) 

whereH(X11X0) = ~ . h [ ( l - ~ ) ( l - p ) l + ( l - p ) . h [ p ( l -  PI]  
andh(p)=-plogp-( l -p) log(l-p) .  

egy by exploiting the knowledge of the correlation. 
In the following section, we derive the optimal grouping strat- 

111. OPTIMAL STRATEGY 
In considering (U), we fix the strategy such that the central 

node asks both questions each time it imposes a test upon a cer- 
tain group. We note that the true optimal strategy would be to 
ask one question each time, but to choose the best question de- 
pending on the sensor model and the results of the previous tests. 
However. to he consistent with the strategies discussed through- 
out this paper, we derive, in this section, the optimal grouping 
given that both questions are asked during each test. 

The outcome of the test Ti may be one of the following pairs: 
(r.1) ( Z U ~ ? ~ , , )  = ( % I ) ;  
(r.2) (ZU, ,ZU,)  = ( L O ) ;  
(r.3) (ZU,>%,)  = (1,Q 

If the result of test Ti is @.I), then the central station knows that 
X i  = 0 for all si E U,; and vice versa for (r.2). However, when 
the test results in (r.3), the content of the group U, is not resolved 
since both 1 and 0 are contained in the group, we refer to this 
state as the erasure. When (r.3) occurs, further testing should be 
performed on a subgroup of U, in order to resolve completely 
the contents within. This is equivalent to the ternary 0, 1, e 
feedback proposed in [TI. 

Given any particular group in the group testing strategy, it is 
most desirable to have each test result in either (r. I )  or (r.2) since 
no further testing is necessary in these cases and the total num- 
ber of tests necessary to resolve the whole field may be reduced. 
In modelling the sensors with a two-state Markov Chain and for 
any given group size n, choosing sensors that are adjacent to 
each other has the highest probability of obtaining (r.1) or (r.2) 
since these group of sensors have the highest correlation among 
each other. Therefore, we restrict our choice of the groups only 
to adjacent sensors (see Fig. 1). Furthermore, a sensor with 
a lower subscript is always chosen over the sensor with higher 
subscript if the cuntent of that sensor has not yet been deter- 
mined. For example, if U[ = { s k , ,  s k , + l > .  ’ ’  sk ,+~, , \ -~}  for 
some integer kl, then the bits 20,. . . , x ~ , - ~  are known through 
thetestsTo, . . .  ,Tk,- , .  

Let L be the random variable that denotes the minimum num- 
ber of tests necessary to reconstruct the sensor field. To derive 
the expectation of L,  i .e. E{L}, it is necessary to introducc the 
following notations: 

G,(n): the expected number of tests to resolve the values of 
U, = {zk,, ’ ’  , Z ~ ~ + ~ - L }  given z~,-1 = a,  when the 
central node has no knowledge Ut. 

F,(m): the expected number of tests to resolve the values of 
U, = {zk,,... ,T&,+~-I)  given zki-1 = a when the 
outcome of the test (Z,,, Z,) = ( 1 , l ) .  

Therefore, given that there are N nodes in the network, the ex- 
pected number of tests necessary for the central node to com- 
pletely reconstruct the sensor field is 

E{L} (1 -p).Go(N) + p . G i ( N ) .  (4) 

Since a E (0: 1) is the value of the bit z k z - l  preceding the 
tested group, we denote by Pr,(E) the probability of the event 
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1 

P P 0 0  

Figure 3: For N = lG, we show the expected number of access 
E{2L} for each ( p ,  p)  pair. 

E conditioned on the preceding bit equal to a. The values of 
Ga(n) and F,(m) can be written as the following recursion: 

G,(n) = l +  min PrO(Az)GO(n - z) + Pr,(B,)Gi(n - z) 
1<D<IL 

z 

+Pr,(G) Fa(z) + ~Pr,(D%Q%(n - 9 

+~Pr , (D~lC , )Go(n -Z)  

;=2 

( 5 )  

1 
i=2 

+Pr,(BzlCm)4(m ~ z) + Pr,(CzICnL)Fa(z) ( 6 )  

where the boundary conditions are G,(O) = 0 and F,(1) = 0; 
and the events are defined as follows: 

A, = {All z items have bit 0} 
B, = {All z items have bit 1) 
C, = {Not all z items have the same bit} 

D: 
0: 

= 

= 
{First 2-1 items are 0 and the zth item is 1) 
(First z-1 items are 1 and the zth item is 0 )  

The probabilities of these events are derived in the appendix. 
In Fig. 3, we show, for each value of ( p ,  p), the expected 

number of channel access E{2L} required for the central node 
to reconstruct the sensor field using the optimal strategy. We 
compare the performance to the information lower bound of X 
which is also symmetric with respect to p since both question 
were asked during each test. We also observe that E{2L} de- 
creases as the correlation p increases, which is expected since, 
with high correlation, the sensor bits is likely to be the same, 
therefore, the values of a large -goup can be resolved with a 
single test. The gap between the optimal strategy and the infor- 
mation lower bound comes from the fact that we choose to aqk 

U,, 

s, s, s, s, s, s, s. s, s. s, s,, s,, s,, s,, s,, s,, 
0 1 0  0 1  1 1  1 0 0 0 0 1  1 0 0  

Figure 4: Example of the realization of a sensor field with the 
binary sequence 010011 1100001 100. 

both questions at each test even when it is not necessary. We 
could further optimize the strategy by taking into consideration 
the choice of the question along with the optimal group. How- 
ever, this will not be treated in this paper. 

In the optimal strategy, the number of nodes taken in each 
group is optimized depending on the outcome of the previous 
tests. This dynamic strategy may be computationally inefficient 
when the number of nodes are large. In the next section, we 
propose a suboptimal tree algorithm that is easily implementable 
and nonparametric to the probability distribution and the number 
of nodes in the network. 

Iv. SUBOPTIMAL STRATEGY 

Consider a network of 16 nodes, as shown in Fig. 4. Let 
each vertex Uij denote a group consisting of sensors within its 
subtree. In the suboptimal scheme, the sequence of tests starts 
from the subgroups of UOQ, i.e. U10 and U,,, and continues the 
tests upon each subgroup in the order of their size. If the re- 
sult of the test on U;j is either (r.1) or (r.2), then the values of 
the sensors within Uij are all resolved and the central station 
muves on to test the group U,, j+ l .  However, if the test results 
in an erasure, i.e. (r.3), the central station does a binary split- 
ting among the nodes within the subtree, and chooses the group 
V<+l,zj to be tested next. For the example shown in Fig. 4, the 
sequence of tests are done in the order of the following groups: 

U.3 i U,, t U37. After the test of U,,, the test on U41 is not 
necessary since we already know that U 3 0  is in conflict. 

The importance of the binary tree splitting algorithm is that 
the algorithm is nonparametric and it is applicable to all cases 
independent of the probability model. The performance of this 
scheme serves as an upper bound to the minimum number of 
tests that can be achieved through group testing. This strategy 
can be applied to a number of nodes equal to the power of 2. 
In the following, we use Capetanakis' approach [I31 to calcu- 
late the expected number of tests necessary to completely re- 
construct the sensor field. Assuming that the entire group is im- 
mediately split into two groups, we need a minimum of 2 tests 

U10 U20 + U30 U40 U31 + U21 U11 U22 
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to resolve the field. Then, the number of tests can he expressed 
as follows: 

where 

(8) 
1 
0 othcnviae. 

if the subgroups of U"] are tested 
nu = 

The factor of 2 in  the second term of (7) represcnts the binary 
splitting of each group Ujj, therefore, two subgroups of Uij is 
tested if nij = 1. Since we require the central node to ask both 
questions during each test, it is necessary to test subgroups of 
Uij if and only if the set of senson in Uij do not contain thc 
exact Same hit of information. However, for i = h.f - 1, each 
suhgroup of U,l,-l.j consists of only one node. Therefore, hav- 
ing resolved the content of the lirst node gives you knowledge 
of the second node provided that nij = 1, since i t  is known that 
the two sensors do not contain the same hit of information. The 
probability of the event that n,] = 1 is 

Pr(nij = 1) = +(AI - i, a, 0) (9) 

where 

Then the expected number of tests can he calculated as 

61-3  

E{L} = 2 +  C 2~+'$ ( i~ f - i , a , , !? )+2n ' -1$ ( l ,~~ ,p ) .  (IO) 
,=0 

If a,,!? << 1, i.e. p ~ i l  1, we can approximate (9) as 

a[1-,0(2"-' - l ) ]  P[1-a(2"-i - l)] 
Pr(n;j = 1) 2 1 - - 

a+P a+P 

Then, we can approximate the expected number of tests as 

= 2+ [4iV . log, iV-9N + 8].p(l - p).(l - p). (12) 

In the TDMA scheme where each sensor is tested individu- 
ally, the expected number of tests is equal to the total number of 
sensors N .  Compared to the tree algorithm proposed above, the 
TDMA system is advantageous only when 

2{2+[4N . log2 N-SA' + 8 ] . p ( l  - p) . ( l  - p ) }  > A', (13) 

i.e. when 

I - Region lor Optimal Slrategy 
Approximate region lor Tree Algorithm - - Accurate region lor Tree Algorithm ~ 

. . . . . . . . . . . . . . .  0.9 ' . . 

0.8. . . . . . . .  

Figure 5: Let A' = 16. TDMA is optimal in the region under the 
performance curves shown for the approximation and accurate 
derivation of the Tree Algorithm and the Optimal Strategy. 

The factor of 2 on the LHS of (13) represents the two channel 
accesses that is needed in each testing while TDMA requires 
only one channel slot for each sensor. As shown in Fig. 5 ,  the 
region for which TDMA is optimal compared to both the tree 
algorithm and the optimal strategy (c.f. Section 111) is the area 
under the concave curve. Specifically, for a fixed number of 
sensors N ,  the tree algorithm performs better than TDMA when 
the correlation is high. This is reasonable since it is inefficient 
to ask each node individually if they are likely to contain the 
same hit. The region in (14) is symmetric with respect t op ,  as 
opposed to that in [ 121, since we ask both questions during each 
testing. 

Although the binary splitting algorithm provides a scheme 
that is nonparametric to the distribution or  the number of nodes 
in the network, it may be more desirable for one to split the root 
of the tree into 2K branches, for K > 1, instead of just two 
branches, when further knowledge of the probability distribu- 
tion of the sensor bits can be utilized. The optimization can he 
done by following the same approach as that in [13]. Intuitively, 
choosing a larger group of sensors to he  tested is advantageous 
when the correlation among nodes are high, i.e. when the group 
of sensors tested has a higher probability of containing the same 
bit of information. However, when the correlation is low, one 
should choose a smaller group since a larger group would more 
likely result in a conflict. We claim that the optimal splitting of 
the root node varies monotonically with respect to the correla- 
tion coefficient p. This is different from that considered in [I31 
where the size of the tested group depends only on the prohahil- 
i t y p  since all the sensors are modelled as i.i.d. Bemoulli. 
Conjecture 1 The number of branches 2K forthe oprimalsplit- 
ting of the mot node decreases monotonically with the correla- 
tion coeficient p. f o r  0 5 p 5 1. 

Given that the conjecture is true, we can determine the op- 
timal K (denoted by K') as a function of p. Since the rela- 
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tion between p and K is monotone, there must exist an interval 
(b~+i . ,%r:f i~, , i , ]  Of p for each K such that K' = K for all 
p E ( f i ~ + ~ . g , ,  jK,nf]. To simplify our analysis, we assume that 
each subgroup of the groups resulting in erasure are tested even 
when each subgroup contains only one node. This makes the al. 
gorithm slightly inefficient by not utilizing the advantage of the 
case of i = i\I - 1 as described previously. However, in this 
case, splitting the root node into Z K  branches is equivalent to 
starting the test from the the layer i = K - 1, which is equiva- 
lent to having ZK-' binary trees with 2("-K+') sensors in each 
tree. Therefore, it follows similar to that in 1131 that 

E { L I p > p : h I , K }  = Z K - ' E { L l p : p , h I - K + l ; l }  (15) 

where the conditioning on K on the left-hand side indicates the 
logarithm of the number of branches the mot node is split into, 
and 1l.I is the logarithm of thc total number of sensors in the 
network. Similarly on the right-hand side. Furthermore, from 
Conjecture 1 and the continuity of the minimized expectation 
due to optimal splitting with respect to p. we solve for D K , M  by 

E{Llp:p:i\f,K} = E{Llp,p:AI,K - 1). (16) 

From (15) and (1 6), we obtain the following condition for which 
K is the optimal splitting: 

(17) 

- 2'  (18) 

1 
2 

+ ( h f - K + l , a , p ) = - .  

By substituting p ,  p and p into the previous equation, we obtain: 
M - - K + L 1  1 - _  nr - K+1_ 

PI1 - d 1 -  P)P + qI1 - d l  -PIP 

Forp = 0.5 and a given value of the correlation coefficient p. 
it is optimal to split the root node into Z K  branches where 

Furthermore, by approximating (17) the same way as in (1 I), 
we can obtain for a ,  p << 1 that 

From (19), we observe that it is optimal to test each individual 
sensor one at a time for (p,p) = (0.5,0) since K = hI in 
this case. It is most likely that the sensors within a group will 
contain different symbols. This also achieves the information 
lower bound sinceIf(X) = N .  H ( X 1 )  = N .  

A. THE PROBABILITIES USED IN (5) A N D  (6) 
Note that Pr,(CI) = 0, then 

Pro(A,) = (1 -a ) " ;  
Pro(B,) = a(1 -p)"-'; 
Pro(C,) = 1 - (1 - a)" - a(1- ,O)"-'; 

a(1- a)+' 
1 - (1  -a)" - u(l - p)"-" Pro(DPICz) = 
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