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ABSTRACT

What is the difference between classical remote sensing and sen-
sor networks? What kind of data models that one can assume in
the context of sensor networks? Can the sensors in the network
concurrelty contribute to the sensing objective, without creating
network conflicts? It is becoming apparent that methodologies de-
signed to resolve network resource allocation conflicts in the com-
munications among open systems have several bottlenecks when
applied to sustain networkign among concurrent sensing nodes.
Can we structure the network activities so that they are always
directly beneficial to the sensing task?

The goal of this paper is to articulate these questions and in-
dicate how some resource allocation conflicts can be removed em-
bracing colaborative networking approaches among the sensors.

1. INTRODUCTION

Sensor networks are generally considered as suffering the
curse of size. The capacity per square meter (i.e. the number
of bits that is sent and successfully received over a square
meter range) of a multi-hop network vanishes as anO(

√
N)

as the number of nodes N becomes large [1]. Centralized
architectures with a fusion center have even worse scaling
laws, such as the O(1/N) scaling performance derived in
[6] or the O(logN/N) attainable by utilizing antenna shar-
ing schemes indicated in [7]. Thus, using non cooperative
models in large scale sensors networks creates such a bur-
den that it is crucial to reduce the number of sensors to the
minimum needed.

Of course, mother nature often poses problems of great
complexity and with such a large description that they are
inherently ill posed, no matter how good is our design and
for these problems we cannot expect good scaling laws.
However, peculiarities of the sensor networks applications
are that: 1) sensors are not end users, their identity is merely
an attribute of the measurement - this implies that fairness is
not a real constraint in the resource allocation; 2) if there is
spatial redundancy in the system and sensors can cooperate
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rather than contend for the medium to deliver critical in-
formation; 3) the aggregate entropy/complexity of the data
in space and time is typically low. In fact, sensor networks
are deployed to record unexpected, dispersed events, sudden
but localized changes, inconsistencies or discontinuities that
occur rarely.

Henceforth, here we argue that the curse of scale is largely
due to the ad-hoc approach followed in dividing functionali-
ties, mostly that of communication and data processing, and
the tendency of organizing activities serially rather than in
parallel, vertically (or hierarchically) rather then horizon-
tally. For all those data collection or inference problems
that present a sparse structure, there is a great opportunity
of turning the abundance of sensors as a resource to sim-
plify the problem rather than complicating it and the key to
do that is to allow cooperation. Next we make an attempt to
characterize the type of problems that are of interest in the
sensor network arena, putting them into perspective com-
pared with the traditional approaches followed in the re-
mote sensing literature and highlighting the new problems
and the breakthroughs needed to have robust and efficient
sensor network technology.

1.1. Remote sensing or remote sensors networks?

Remote sensing is hardly a new problem: it is a subject that
had its breakthroughs in the early 1960’s [2]. The remote
sensing literature has put most of its emphasis on the data
processing with limited attention to the issue of deploying
sensors and getting data from them. For a long time the
central problem has been that of extracting good estimates
or inferences from few noisy sensors. Today, sensors are
cheap, in some cases disposable and it is easier to deploy a
large quantity of them. It is not atypical to have thousands
of sensors and much fewer time snapshots to use for the lack
of stationarity of the underlying process. At the other end of
the spectrum is the sensor networking problem, which often
ignores the final objective of the system. If a difference in
the actual models can be pointed out is that in sensor net-
works’ papers the sensing is often not assumed to be remote
and, in fact, more and more often it is the end user that is
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remote, not the sensors. Hence, in a nutshell, the difference
between sensor networking and remote sensing is in the rel-
ative distance of the sensors from the end user and from
the sensed environment. Interesting question that one may
want to answer are as follows: ”Is it better to send many
small sensors to Mars that communicate back to Earth or to
observe Mars with powerful sensors on Earth?”

1.2. Models for sensor networks

It is useful to make a coarse classification of the problem
faced in the data collection. We denote by y(t, r) the obser-
vation recorded at time t and location r.

1- Fields with sparse representation: In this class of prob-
lems the observation recorded y(t, r) are random or deter-
ministic signals, which can be scalar observations (e.g. a
temperature field) or vector observations (e.g. images); the
key to address tractable data collection problems is to con-
sider cases where the observation recorded have a sparse
representation over some appropriate basis:

y(t, r) =
M∑

k=1

Ckψk(t, r). (1)

The expansion in (1) can be valid in the exact sense when
assuming a deterministic model or can be interpreted as be-
ing equal to the signal in the mean square sense for a random
model. Using a Gaussian random model and rate distortion
theoretic arguments, for example, it was shown in [4] that
the number of bits necessary to represent the sensor field
can be shown to grow logarithmically in the number of sen-
sors if the total distortion is fixed.

2- Fields with few sources in noise The case where y(t, r)
originates from a finite number of sources embedded in noise,
i.e.:

y(t, r) =
K∑

k=1

sk(t, r) + w(t, r), (2)

is the classical array processing setup where, assuming that
the signals are narrowband, the problem is often reduced as
follows:

y(t, r) = A(r)s(t) + w(t, r), (3)

with A(r) representing the so called array manifold matrix
and s(t) being the vector of source signals. The aim is the
identification of the array manifold to localize the sources
by separating the mixture of signals.

3- Fields with conditionally independent/Markov-process
observations This model is mostly embraced for techni-
cal reasons and has two versions: 1) the first and simplest
one postulate the independence of the random observations
y(t, r) with respect to the position, given a certain hypoth-
esis Hi, i = 1, . . . ,M (this is a classical model used in

the distributed detection literature); 2) the second one in-
troduces an ordering among the sensor positions r and pos-
tulates that the observations form conditionally a Markov
chain or, often, they are samples of a Gauss-Markov process.

4- Fields with random dynamical sources This model is
considered when tracking sources that move in the sensor
field. For simplicity, let us address the case of one source:
the position of the target is considered equivalent to a state
variable x(t) and observation y(t; r) such that

x(t+1) = f(t,xt)+vk(t), y(t+1; r) = g(t,xt+1, r)+wk(t).
(4)

Under bandwidth and energy constraint there are two
approaches that can be taken: 1) in the data collection process
the transmissions map the data y(t, r) into a representation
ŷ(t, r) that is used to perform some inference; 2) in the data
processing the transmissions map y(t, r) into an estimate or
a decision θ̂ on some parameters θ embedded in the model.
The sensor network question is essentially how demanding
this is in terms of network resources and if it can be done
efficiently. Clearly, to fully answer the question one should
quantify the performance loss associated with the lack of
direct access to y(t, r). The answers lie at the intersec-
tion of statistical signal processing, signal compression and
communication/information theory. One emerging trend is
that of introducing collaboration among the sensor nodes
to speed up and render more power efficient the data gath-
ering. Although the interplay between cooperation among
nodes and performance gain is not fully understood, as dis-
cussed in the introduction, there are clear indications that
the traditional networking is too limiting and not scalable.

In the following two sections we discuss how cooper-
ation can lead to very rapid network synchronization and
scheduling that achieves cooperative gains in multi-hop broad-
cast networks.

2. COOPERATIVE SYNCHRONIZATION

One of the key issues in any collaborative activity is that the
system has to be able to rapidly achieve a common sync.
This allows the sensors to pace their activities so as to not
interfere with each other. Most synchronization protocols
proposed for networks operate at the packet-level, where
the time information is exchanged explicitly among nodes,
and they require the processing of these messages to cali-
brate the time difference between their local clock. Because
these schemes are evolutions of synchronization protocols
used over the Internet, they use point-to-point transmissions
instead of capitalizing on the broadcast nature of the wire-
less channel. There are essentially three families of ap-
proaches: 1) Centralized methods, utilizing the Global Po-
sitioning System (GPS) [8] to synchronize the network to an
external timescale. The accuracy is in the order of 200nsec
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but the cost of the hardware is high and it needs a line-of-
sight to a GPS satellite, which is unrealistic in many prac-
tical settings; 2) Master-slave methods, such as the Mills
Network Time Protocol (NTP) [9] widely used over the In-
ternet. In the NTP, a hierarchy is constructed among nodes
in the network with multiple roots synchronized to external
global time sources (e.g. the GPS) and all the other nodes
synchronized to its corresponding parent-node; in NTP the
accuracy is strongly affected by the symmetry of the delays
in the transmission paths between the transmitter and re-
ceiver node and it also degrades significantly when the level
of the node is low within the hierarchy and these problems
are retained in the wireless adaptations of the NTP proto-
col such as in [10]; 3) Decentralized methods, such as the
Reference Broadcast Synchronization (RBS) scheme [10],
where each node sends reference beacons to neighbors us-
ing a physical-layer broadcast. The nodes that received the
beacon exchange the arrival time of the beacon relative to
the local clock and obtain a time difference matrix and clock
skew information. RBS eliminates the contribution of the
random processing time spent at the transmitter node due
to the protocol processing and the variable delays of the
operating system and therefore is more accurate than NTP.
However, the RBS scheme requires a large amount of data
exchange which makes it non-scalable.

A network synchronization protocol that is totally de-
centralized, and where is no estimate or exchange of times
stamps or multiple access control involved since it operates
exclusively at the physical layer is that proposed in [12].
We are not aware of any other alternative that shares the
scalability of this method. It essentially emulates a mech-
anism that explains the ability to sync observed in several
biological networks. The synchronization is not achieve by
estimating clock timing from other nodes, it is the result
of the dynamics of a set of coupled non linear differential
equation that evolve concurrently in the nodes. In the ideal
system xi(t) is the state variable of node i and the system
dynamics are regulated by:

dxi(t)
dt

= −γxi(t)−δ(xi(t) − 1)
|ẍi(t)| +ε

∑
j �=i

δ(xj(t) − 1)
|ẍj(t)| (5)

the term εδ(xj(t) − 1)/|ẍj(t)| is valid for j �= i and is
called the coupling. The concurrent activity of these equa-
tions has only a stable point, which is that where all states
xi(t) evolve identically. It is easy to see that when the states
are the same, the coupling has no effect since it is concur-
rent with the contribution to the equation that resets the state
to zero δ(xi(t)−1)

|ẍi(t)| .
In a sensor system the access to the other node state vari-

able can be only through a noisy observations of their sig-
nals and, while the [12] partially addressed this issue, it is
important to derive design principles that can be applied to
more general synchronization objectives and transmission

interfaces. In particular, it is of great interest: 1) to develop
robust mechanisms, in continuous or discrete time, that pro-
vide the same effect of (5); 2) to investigate the fundamental
performance limits and means square error of decentralized
synchronization systems where the coupling is affected by
random noise. It is, in fact, not straightforward to compare
the performance of this decentralized clock generation sys-
tem with formal Cramér Rao bounds for time estimation.

3. COOPERATIVE DATA DRIVEN TRANSMISSION

How difficult is to extract information which is distributed?
The concept of communication complexity is formally de-
fined in as the problem of minimizing the binary messages
that are involved in the computation of a function f(X,Y )
where X and Y are known originally by only one of the
two terminals. While wondering if functions were com-
putable with a minimal sequence of messages among termi-
nals, Orlisky and El Gamal [13] noticed that, quote: ”Con-
siderable insight has been obtained by noting that sequences
are compressible to their entropy, notwithstanding the fact
that most sequences are incompressible because their en-
tropy is maximal. Does a similar property hold for com-
munication complexity?”. Most of the theoretical work on
communication complexity and data querying considers strate-
gies that are applicable to ”wired” parallel computers but
that are not suitable for a wireless sensor network. On the
other hand, it is well-known [3] that the separation of source
and channel coding is not optimal and that feedback im-
proves the capacity of the multiple access channel.

Data driven communication is a keyword that is seldom
used in the literature on physical layer transmission. It es-
sentially means that the data type that the sensor node ac-
quires automatically assigns a channel to transmit. In [11]
we argued that to reach minimum complexity in the data
collection it is necessary to formulate the sensor commu-
nication problem as the construction of a guessing game
where each query activates the transmission of a code from
collaborating sensors and the answer to the query is the
feedback that allows to formulate the next most likely guess.
The optimization objectives in designing the communica-
tion protocols can be that of minimizing the number of queries
to groups of nodes (time efficiency) or invoking the answers
from a minimum number of sensors (space efficiency) or
requiring the minimum total energy for the acquisition (en-
ergy efficiency). This approach would naturally lead to a
data and computation driven multiple access scheme. A
special case of this class of strategies is what we refer to
as the Group Testing Multiple Access (GTMA) [11]. In
general, let Sl be the time slot interval at which the l-th
test is performed and let Bl,i = B[Tl,Xi, Zl−1, . . . , Z1] be
the ith node answer, function of the test Tl the sensor data
Xi and the previous feedback Zl−1, . . . , Z1. The short-
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Fig. 1. The rate-distortion lower bound (�) and the av-
erage number of tests (•) for our data driven data collec-
tion algorithm. Each sensor sample is quantized into a 8
bit message where the quantizer contains two 4-level uni-
form quantizers, within the range [−2σ2, 2σ2], that are bi-
ased by the amount σ2/2 (see [11] for details). The vector
of samples V has mean 0, is spatially stationary and has
covariance matrix RV (ξ, ν) = sinc(πξ

N )sinc(πν
N ) where

ξ, ν = −N + 1, · · · , 0, 1, · · · , N − 1.

est slot duration |Sl| is the Nyquist limit 1/W where W
is the signals bandwidth, although in general |Sl|W ≥ 1.
The baseband complex equivalent model of the received
signal in multi-path (convolution channel hi(t)) and addi-
tive Gaussian noise w(t) is in general a mixture of signals,
with individual powers Pi, that can be written as xl(t) =∑

i∈Ul
hi(t) ∗

√
Pisi(t;Bl,i)+w(t) , t ∈ Sl. The discrete-

time representation of the received signal in is the vector
(Hi are convolution matrices and wl ∼ N (0, N0I)):

xl =
∑
i∈Ul

Hi

√
Pisi(Bl,i) + wl (6)

The feedback is Zl = D(xl|Zl−1, . . . , Z1) where D(.) is
the decision rule. The design of the optimum set of encoded
signals si(t;Bl,i) is not a classical multiple access prob-
lem. If the signals were designed to allow the receiver to re-
solve allXi without the feedback Zk from the previous tests
and without the selection of a specific group Ul, the scheme
would be equivalent to polling the sensors individually. In
our preliminary results in [11] we considered a rudimentary,
yet effective, memoryless coding technique and linear mod-
ulation, which can be summarized saying that 1) the answer
Bl,i = B[Tl,Xi] has no memory of the previous feedback
and it is a simple boolean answer (yes/no → Bl,i = 0/1);
2) si(t;Bl,i) = Bl,ip(t) → si(Bl,i) = Bl,i and, 3) the
detection rule uses xl to detect the presence or absence of
at least one positive answer Bl,i = 1, i.e. in this case
D(xl;Zl−1, . . . , Z1) = D(xl) = {||xl||2 ≥ τ}, where τ
is an energy detection threshold. Nodes that reply Bl,i = 1
indicate to the receiver that the test was a wrong guess and
that the search needs to proceed. Fig. 1 gives the aver-
age number of tests required by one instance of the family

of algorithms we just described [11] and the correspond-
ing the rate-distortion lower-bound (we assume noise free
reception). The sensors are spread on a uniform lattice in
a unit area. We observe that the average number of tests
(channel uses) for the algorithm does not increase linearly
with N which is the number of sensors. In fact, the growth
rate increases similar to that of the rate-distortion bound, al-
though a degradation in performance is observed due to its
sub-optimal structure.
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