
SYSTOLIC ARRAY IMPLEMENTATION OF EUCLID'S ALGORITHM FOR INVERSION
AND DIVISION IN GF(2m)

Jyh-Huei Guo and Chin-Liang Wang
Department of Electrical Engineering, National Tsing Hua University

Hsinchu, Taiwan 300, Republic of China
clwang@ee.nthu.edu.tw

Abstract - This paper presents a new systolic VLSI
architecture for computing inverses and divisions in
finite fields GF(2") based on a variant of Euclid's
algorithm. It is highly regular, modular, and thus well
suited to VLSI implementation. It has O(m2) area
complexity and can produce one result per clock cycle
with a latency of 8m-2 clock cycles. As compared to
existing related systolic architectures with the same
throughput performance, the proposed one gains a
significant improvement in area complexity.

I. INTRODUCTION

Finite fields GF(2") have found many applications in
areas of communications, such as error-correcting codes
[l], [2] and cryptography [3]. In these applications,
computing inverses and divisions in GF(2") is usually
required. Since such computations are quite time-
consuming, it is desirable to design high-speed circuits for
them to meet the real-time requirements.

There have been a number of hardware structures
available for fast inversion andor division in GF(2") (see,
for example, [4]-[12]). Among them, the designs in [4]-[9]
employ serial-form input and/or serial-form output.
Basically, such circuits with serial-form data transmission
involve small hardware complexity but might have
unsatisfactory throughput performance when m gets large.
In contrast, the designs in [lo]-[1Sj make use of parallel-in
parallel-out U 0 and achieve higher throughput rates with
more hardware complexity. All these parallel architectures
are designed based on the concept of systolic arrays [13]
and are able to provide the maximum throughput in the
sense of producing new results at a rate of one per clock
cycle, i.e., the time complexity is O(1). However, their
hardware requirements seem too high for large fields; the
area complexity is O(m*2") for the circuit in [lo] and is
O(m3) for those in [1 11 and [121.

In this paper, a new parallel-in parallel-out systolic
array with 0(1) time complexity and O(m2) area complexity

This work was supported by the National Science Council of the
Republic of China under Grant NSC-85-2215-E-007-017.

is proposed for inversion and division in GF(2"). The
architecture is designed based on a variant of Euclid's
algorithm for computing the greatest common divisor of
two polynomials. It is highly regular, modular, and thus
well suited to VLSI implementation. As compared to
previous systolic architectures for inversion and division
with the same throughput performance, the proposed one
saves a significant amount of chip area.

11. VARIANTS OF EUCLID'S ALGORITHM
FOR COMPUTING INVERSIONS AND

DIVISIONS IN GF(Zm)

Let A(a) and B(a) be two elements in GF(2"), G(a) be
the primitive polynomial of degree m, and C(a)= A(a)/B(a)
mod G(a). Then we have

A(a)=um.lam-'+ + u,a+uo (1)
B(a)=b,.,a"'+ a.. + b,a+b, (2)
G(a)=am+gm-lam-'+ . * * + g,a+go (3)
c(a)=cm~Iam-l+ . * * + c,a+c, (4)
B(a)C(a)+G(a)D(a)=A(a) (5)

for some element D(a) in GF(2"), where each coefficient
of the polynomials is in { 0, 1 } . All arithmetic operations in
GF(2") are performed by taking the results mod 2, and
C(a) is called the inverse of B(a) when A(a)=l.

A. The Original Euclid's Algorithm

the following Euclid's algorithm [2] can be used:
R = B(a); S = G(a); U = A(a); V = 0;
while R f 0, do

To perform inversioddivision operations defined above,

Q = S DIV R; (*DIV: polynomial division*)
temp = S - QR, S = R; R = temp;
temp = V - Q @ V = U, U = temp;

end
U=C(a).

One disadvantage of this algorithm is that it does not
involve a fixed number of iterations for computing C(a) in
a given field. This makes it not easily realized using VLSI
techniques.

B. The Modijied Euclid's Algorithm in [9]
To overcome the above-mentioned problem, Brunner et

al. [9] proposed a modification of Euclid's algorithm that

0-7803-3073-0/96/$5 .OO 01996 IEEE 481

always involves 2m iterations to compute an inverse or
division in GF(2”). The algorithm can be summarized as
follows:

R = B(a); S = G = G(a); U = A(a); V = 0;
count = 0;
for i= l to2mdo

if r, = = 0 then (*occurring m times*)
R = a.R; U = a. U mod G;
count = count + 1 ;

ifs, = = 1 then

end
S = a.$
if count = = 0 then

R t, S; U o V; (*exchange operations*)
U = a.Umod G;
count = count + 1;

U = U/a mod G;
count = count - 1 ;

else

S = S + R ; V = V + U ;

else (*occurring m times*)

end
end

end (*U=C(a) = A(a)/B(a) mod G(a); count = 0*)
where r, and s, denote the most significant coefficients of
R and S, respectively. This algorithm involves 2m iterations
(i=l to 2m) and kount = 0” always occurs at the end of the
last iteration [9]. In other words, both of the statements
“count = count + 1” and “count = count - 1” run m times
during the 2m iterations. To realize the algorithm, a serial-
in serial-out pipelined architecture was given in [9]. This
circuit possesses good area-time performance, but it is not a
systolic design and suffers from broadcasting problems.
The reason why the algorithm is not amenable to systolic
array implementation is that its arithmetic operations are
not uniform during the 2m iterations. It performs “U = a.U
mod G” for some iterations, and performs “U = U/a mod
G” for the others.

C. A New Variant of Euclid’s Algorithm
Note that, if the statement “U = U/a mod G” is removed

from the algorithm given above, the final result will
become U = C(a)am, instead of the desired answer U =
C(a). To obtain the correct answer, we can execute the
operation “U = U/a mod G’ m times after the 2m iterations
have been completed. It can also be seen from the
statements “temp = V - QlJ V = U, U = temp” given in
Section 1I.A that removing the statement “U = U/a mod G”
is equivalent to executing the statement “V = a.V mod G”.
Moreover, the statements “R ++ S; U +-+ V; U = a.U mod
G” are equivalent to “V = a.V mod G; R o S; U ++ V’.
With these observations, we can derive the following
algorithm for inversion/division in GF(2”):

R = B(a); S = G = G(a); U = A(a); V = 0;
count = 0;

Part A:
for i = 1 to 2m do

if r, = =O then
R = a-R; U = a.Umod G;
count = count + 1;

ifs, = = 1 then
S = S + R ; V = V+ V;

end
S=aS; V=a.VmodG;
if count = = 0 then

R t , S ; U t , V;
count = count + 1 ;

count = count - 1;

else

else

end
end

end (*U = C(a).a” mod G(a).; count = 0*)

for i = 2m+l to 3m do
U = Ula mod G;

end (*U = C(a) = A(a)/B(a) mod G(a)*)

Part B:

Apparently, the new variant of Euclid’s algorithm
consists of two parts; Part A first generates a temporary
result C (a) d mod G(a)., and then Part B divides it by am
to yield the correct answer. Table I demonstrates a
procedure of the proposed algorithm for computing
inverses/divisions in GF(24), where G(a) = a4+a+l, A(a) =
a3+a2+a, and B(a) = a3+a+ 1. At step i = 2m = 8, U = a2+ 1
is the temporary result C(a).a” mod G(a)., and at step i =
3m = 12, U = a+l is the correct answer C(a) = A(a)/B(a)
mod G(a). As compared to the algorithm described in
Section II.B, the new algorithm involves more uniform
arithmetic operations during the recursively computing
process, and is thus easier to realize using a systolic
architecture.

111. SYSTOLIC IMPLEMENTATION OF THE
PROPOSED ALGORITHM

Fig. 1 shows a systolic architecture to implement the
proposed algorithm for computing inverses and divisions in
GF(2”), where ‘0’ denotes a one-cycle delay element. It
consists of a subarray of 2m Type-I cells and 2mxm Type-I1
cells for realizing the Part-A operations and a subarray of
mxm Type-I11 cells for realizing the Part-B operations. The
ith row of each subarray performs the ith-iteration
operations of the corresponding part. The functions of these
three types of basic cells are illustrated in Figs. 2 to Fig. 4.

482

TABLE I
An Example of Computing Inverses/Divisions in GF(Z4)

Based on the Pro osed Algorithm
(G (~) = ~ ~ + ~ + I , A (~) = ~ 9 B (~) = a3+a+1)

Fig. 1. The proposed systolic architecture for computing
inversions/divisions in GF(2”). m=3.

+
count‘ t: f:

Fig. 2. The circuit of Type-I cell in Fig. 1.

RUmulti

Exchange

r’, s: U: g1 v:
Fig. 3. The circuit of Type-I1 cell in Fig. 1.

Fig. @d,!a 4. The circuit of Type-111 cell in Fig. 1.

483

Each Type-I cell is used to generate the following control
signals:

RUmulti = (r, = = 0)
Add = (r, = =1) & (s, = = 1)
Exchange = (rm = = 1) & (count = = 0)
count’ = count - 1, if (count z 0) & (rm ==1)
count’ = count + 1, else

When RUmulti = 1, the corresponding row of Type-2 cells
executes the operations given in (I); otherwise, it does the
operations of (111). The Add and Exchange signals are used
to determine whether the operations of (11) and (IV) are
performed or skipped. The Part-A subarray generates the
temporary result C(a)a” mod G at its bottom row, and
then sends it to the Part-B subarray for further processing.
With little effort, one can check the inversioddivision
results will emerge from the bottom of the Part-B subarray
at a rate of one per clock cycle. It can also be seen that the
proposed systolic architecture has area complexity of O(m2)
and a latency of 8m-2 clock cycles.

Circuits
tem

Number of
Cells

Throughput
(Ucycle)
Latency
(cycles)

Maximum
Cell Delay

Cell
Complexity

IV. CONCLUSIONS

Table I1 gives a comparison of the proposed parallel-in
parallel-out systolic array for inversion and division in
GF(2m) with those in [111 and [121. We can see from this
table that all the architectures compared reach the same
throughput rate of one result per clock cycle, but the
proposed one has much smaller area requirement, much
shorter latency, and much better area-time product
performance.

Wei Wang & Guo
Cl11 C121

m2(m-1) mz(m-1)/2

1 1

3mz-2m 2m2-3mR

TmZ
+T, +TXOR4

TANDZ

3 AND,’s 6AND,’s
1 XOR, 2 XOR4’s
1 XOR, 17 latches
13 latches

REFERENCES

[11 W. W. Peterson and E. J. Weldon, Jr., Error-Correcting
Codes. Cambridge, MA: MIT Press, 1972.

[2] E. R. Berlekamp, Algebraic Coding Theory. New
York: Mcgraw-Hill, 1968.

[3] D. E. R. Denning, Cryptography and Data Security.
Reading, MA: Addsion-Wesley, 1983.

[4] C. C. Wang, T. K. Truong, H, M, Shao, L. J. Deutsch,
J. K. Omura, and I. S. Reed, “VLSI architectures for
computing multiplications and i Jerses in GF(2m),”
IEEE Trans. Comput., vol. C-34, pp. 709-719, Aug.
1985.

[SI G.-L. Feng, “A VLSI architecture for fast inversion in
GF(2”),” IEEE Trans. Comput., vol. 38, pp. 1383-
1386, Oct. 1989.

[6] C.-L. Wang and J.-L. Lin, “A systolic architecture for
computing inverses and divisions in finite fields
GF(Z?”),” IEEE Trans. Comput., vol. 42, pp. 1141-
1146, Sep. 1993.

[7] M. A. Hasan and V. K. Bhargava, “ Bit-level systolic
divider and multiplier for finite fields GF(2m),” IEEE
Trans. Comput., vol. 41, pp. 972-980, Aug. 1992.

[SI K. Araki, I. Fujita, and M. Morisue, “Fast inverters
over finite field based on Euclid’s algorithm,” Trans.

[9] H. Brunner, A. Curiger, and M. Hofstetter, “On
computing multiplicative inverses in GF(2m),” IEEE
Trans. Comput., vol. 42, pp. 1010-1015, Aug. 1993.

[101M. Kovac, N. Ranganathan and M. Varanasi, “SIGMA:
A VLSI systolic array implementation of a galois field
GF(2“‘) based multiplication and division algorithm,”
IEEE Trans. VLSI Systems, vol. 1, pp. 22-30, Mar.
1993.

[1 l]S.-W. Wei, “VLSI architectures for computing
exponentiations, multiplicative inverses, and divisions
in GF(2”),” in Proc. 1995 IEEE Int. Symp. Circuits
Syst., London, May 1995, pp. 4.203-4.206.

[12]C.-L. Wang and J.-H. Guo, “New systolic arrays for
C+AB2, inversion, and division in GF(2”),” in Proc.
1995 European Conference Circuit Theory Design,
Istanbul, Turkey, Aug. 1995, pp. 431-434.

[13lH. T. Kung, “Why systolic architectures?,” IEEE
Trans. Comput., vol. 15, pp. 37-46, Jan. 1982.

IEICE, vol. E-72, pp. 1230-1234, NOV. 1989.

TABLE I1
Comparison of Some Parallel-In Parallel-Out Systolic
Arrays for Computing InversionsiDivisions in GF(2”)

I I

AT-oroduct I O h 3) I oh3)

Proposed

Type I: 2m
Type 11: 2mZ
Type 111: m2

1

8m-2

T - , + T x o w + ~ T ~
Type I:
5 AND,’s 2 XOR,’s
5MUX,’s I INV
log,(m+l) bits adder
zero-check circuit
9+21og,(m+ 1) latches
Type 11:
4AND,’s 2 XORz’s

18 latches
Type 111:

4 latches

1 XOR, 8MUXZ’s

1ANDz IXORZ

0(mZ)

AND, : i-input AND gate; XOR, : i-input XOR gate.
INV : inverter; MUX, : i-input multiplexer.
TANDi : the propagation delay through an i-input AND gate.
TxOw : the propagation delay through an i-input XOR gate.
T,, : the propagation delay through an i-input multiplexer.

484

