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Abstract—Nowadays, most video-enabled mobile terminals have 
been equipped with modern video codecs. Video communications, 
especially for encoding H.264 format bit-stream, however, are 
usually very power-consuming, leading to rather limited 
communication period for mobile devices powered by batteries. 
Computation-aware video coding can effectively extend the battery 
life. In this paper, we propose a computation-aware intra mode 
decision for H.264 coding and transcoding applications. The 
proposed algorithm optimizes the visual quality by adaptively 
adjusting the number of prediction modes in mode decision under a 
given computation constraint. We introduce a new concept of 
computation buffer and formulate the computation control of mode 
decision as a rate-distortion optimization problem of computation  
buffer control. Experimental results show that our proposed 
algorithm can effectively control the computational complexity 
while maintaining good RD-performance and satisfying the given 
computation constraint. 

I. INTRODUCTION 
The explosive growth of compressed video streams and 

repositories which are accessible worldwide and the recent 
addition of new video-related standards, such as H.264/AVC [1] 
and MPEG-21, have stimulated research for new technologies and 
applications in the area of multimedia architectures, processing, 
and networking. Users may employ heterogeneous video-enabled 
terminals such as computers, TVs, mobile phones and personal 
digital assistants with a wide range of computational and display 
capabilities, energy resources, features, accessibilities, and user 
preferences. In recently years, mobile devices have been widely 
deployed. These mobile devices usually have rather limited 
battery power lifetime. Nowadays, most video-enabled mobile 
terminals have been equipped with modern video codecs. Video 
communications, especially for encoding H.264 format bit-stream, 
however, are usually very power-consuming, leading to rather 
limited communication period for mobile devices powered by 
batteries. How to use the limited power more efficiently for 
optimal video encoding thus becomes an important issue. 

H.264 achieves significant improvement on rate-distortion 
performance by exploiting advanced video coding technologies, 
such as Variable Size Block Motion Estimation (VSBME), 
Multiple Reference Prediction, Intra Prediction, Improved Loop 
Filter, and Context-Based Adaptive Binary Arithmetic Coding 
(CABAC). It can save up to 50% in bit-rates as compared to 
MPEG-4 Advanced Simple Profile (ASP). The outstanding 
coding performance of H.264/AVC, however, comes with a cost 

of high complexity, making it too complex to be used for devices 
with limited computing resource, especially for mobile devices 
with limited battery power. 

The issues about power consumption reduction and effective 
power allocation for handheld devices have been addressed in the 
literature. In [2] and [3], Kannangara et al. proposed a variable 
complexity algorithm for H.264, and adapted for a per-frame 
computational control algorithm. This computational control 
algorithm is based on minimizing the Lagrange Rate-Distortion-
Complexity cost of the encoder. In [4], Wang et al. proposed a 
complexity adaptive motion estimation and mode decision 
(CAMED) method for an H.264 encoder. By giving the bit rate 
and computational constraints, CAMED explores the trade-off 
between video quality and computation resource consumption to 
determine the optimal motion vectors and block modes used in the 
motion-compensation process in the decoder. 

Computation-aware video coding can effectively extend the 
battery life of mobile devices. In this paper, we propose a 
computation-aware intra mode decision for H.264 coding and 
transcoding applications. The proposed algorithm optimizes the 
visual quality by adaptively adjusting the number of prediction 
modes in mode decision under a given computation constraint. 
We introduce a new concept of computation buffer and formulate 
the computation control of mode decision as a rate-distortion 
optimization problem of computation  buffer control.  

II. PROPOSED COMPUTATION CONTROL 
ALGORITHM 

H.264 performs intra prediction by using the spatial 
correlation with adjacent previously encoded blocks. As 
illustrated in Figure 2(a), a to p are the luma pixels to be 
predicted, and A to M are the boundary luma pixels of previously 
encoded adjacent blocks. Figure 1(b) shows nine prediction 
modes in Intra_4×4 prediction: eight directional modes and one 
non-directional mode (Mode2). Before encoding each 4×4 luma 
block, nine 4×4 prediction blocks are produced by using 
Intra_4×4 prediction. For example, in Mode 0, pixel A is used to 
predict the pixels a, e, i, and m; pixel B is used to predict the 
pixels b, f, j, and n, and so on. Likewise in the case of Mode 1, 
pixel I is used to predict the pixels a, b, c, and d, and so on. For 
Mode 3 to 8, the pixels are predicted using a directional weighted 
average of A to M. For example, in Mode 4, d is predicted by 
round(B/4 + C/2 + D/4). In Mode 2 (DC prediction), the average 
of A to L is used to predicted a to p. 
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Figure 1. Intra_4×4 prediction: (a) indices for 4×4 block and 
adjacent pixels, (b) directions for each prediction mode. 

In H.264, if all frames are intra-coded, the main 
computational  bottleneck is the number of Intra_4×4 candidate 
modes for RDO computation. Our algorithm is aimed at 
dynamically controlling the encoding complexity subject to a 
given computing power constraint (i.e., the remaining battery 
power budget) while maintaining the video quality. We define 
the computation constraint as the number of prediction modes to 
be used per 4×4 intra block. For example, a “44%” computation 
constraint means that, on average four out of nine prediction 
modes will be chosen per 4×4 intra block in RDO computation of 
mode decision. With the proposed algorithm, an encoder can 
adaptively determine the number of candidate modes for each 
4×4 intra block according to the block’s characteristics under the 
given computation constraint. The proposed algorithm is divided 
into four steps as elaborated below.  

A.  Computation Buffer Initialization 
Before encoding a video sequence, a computation buffer is set 

up based on a given computing power constraint. The 
computation buffer records and updates the available computing 
power budget up to the current block. Two control parameters are 
used: 

1) C: the number of remaining non-encoded 4×4 intra blocks 
of the video sequence. 

2) Buffer: the number of avalible candidate modes that can be 
chosen for RDO computation. 

For instance, given “70%” computing power constraint for a 
QCIF format sequence with 50 I-frames, two control parameters 
are determined as below: 

498960%709

,7920050
4

144
4

176

=××=

=××=

CBuffer

C  

B. Modeling 
The proposed computation model is used to determine how 

many candidate modes can be used for predicting each 4×4 intra-
block based on the features of the block. In our model, an intra-
block is characterized based on the following three observations. 

1) Observation 1: the rank of best mode’s prediction error. 
RDO computation, rather than the prediction error of prediction 
modes, has been used for determining the best intra-mode in the 
H.264 reference software for sake of accuracy. The RDO 
computation, however, consumes heavy computing power. To 
show the relationship between the best mode obtained by RDO 

and the SAD (Sum of Absolute Difference) or SATD (Sum of 
Absolute Transformed Difference) prediction errors, the 
SAD/SATD prediction errors of nine prediction modes are sorted 
by the error values. Figure 2 (a)-(b) shows the percentages in 
population of the best mode (obtained by mode decision with 
RDO) sorted by its rank of SAD and SATD prediction errors 
among the nine prediction modes. From the figure, we observed 
that the top four prediction modes (with lowest SAD/SATD 
values) make up more than 90% of the population. Such high 
percentages imply that SAD or SATD prediction error can be 
used to predict the best mode efficiently without significant 
reduction in accuracy. In our method, SATD is adopted to 
calculate the prediction error as it is more accurate than SAD in 
predicting the best coding mode. 

 
(a) 

 
(b) 

Figure 2. Average percentages of the prediction modes that are ranked 
by their prediction errors being chosen as the best coding mode after 
mode decision with RDO for four test sequences: (a) Foreman and (b) 
Carphone. 

2) Observation 2: the relationship between the standard 
deviation of SATD and the rank. 

The standard deviation σ of nine prediction modes’ SATD 
values can be obtained from (1): 

8 8
2
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where is the index of prediction modes.
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These statistics can be used to characterize the relationship 
between the standard deviation of SATD prediction errors and 
the average rank of best mode SATD value. For example, if we 
find that the average rank of the best mode SATD is 4 while the 
standard deviation of SATD prediction errors is 50, the best 
mode can be found from the four top-ranking modes (sorted by 
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SATD) with a high probability if the standard deviation of SATD 
prediction errors is 50. With such models, we are able to use the 
statistics of SATD prediction errors of each block to estimate the 
average rank of best mode’s SATD value without resorting to 
RDO computation, leading to significant computation reduction. 

We use the linear regression to find the mathematical model to 
approximate the relationship curve as follows. 
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where Optimali denotes the optimal number of candidate modes. 
The mode parameter sets (a,b) and (c,d) are determined using the 
least squares method. Table I lists the derived coefficient set (a,b) 
and (a,b) by using (3) in the Foreman and Carphone sequences. 

TABLE I. The coefficient sets for 2 different test sequences with 
four different quantization parameters. 

Sequence QP a b c d 
28 2.3688 0.9272 3.6651 -0.3942 
32 2.3493 0.9411 4.2650 -0.4981 
36 2.1755 1.0469 5.0111 -0.6179 Foreman 

40 2.0805 1.0266 5.6999 -0.7094 
28 2.1590 0.9037 3.3406 -0.3243 
32 2.1271 1.0335 3.7453 -0.3882 
36 2.0500 1.0230 4.1852 -0.4503 Carphone 

40 2.0310 1.0434 5.0347 -0.5799 

Figure 3 compares the actual data obtained from our 
experiment and the corresponding curve approximated by the 
proposed model in (2). The dark blue lines denote the actual data 
curve, whereas the red lines represent the approximated model 
curve. We define this curve as a “Standard Deviation-to-Rank” 
(SR) curve. The result shows that the proposed model is accurate 
enough. 

 
Figure 3. Comparison between the actual data and the proposed model 
(Foreman, QCIF, 300 I-Frames, QP = 18). 

However, for each frame, the SR data of a video frame can be 
obtained after the frame has been encoded. This is only feasible 
for non-realtime coding and transcoding applications. In real-time 
applications, only the data of previous encoded frames are 
available, whereas the SR data of the current frame is unknown 
before performing RDO. However, we will show that the SR 
model of current frame can be estimated using the data of 

previous coded frames with fairly good accuracy according to the 
following observation. 

3) Observation 3: Temporal similarity of SR models. 
Suppose the SR data of the jth frame is denoted as SRj. 

And the linear regression is defined as Linest(). The model 
coefficients of the jth frame is thus Linest(SRj). The cumulative 
SR data of previous t frames, SRj,t, is defined in (3). 

∑
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Moreover, the curve coefficients of pervious t frames is 
denoted as Linest(SRj,t). The sum of coefficient difference, 

tCD , is defined as follows. 

∑
=

−=
N
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where N is the total number of frames. As a special case, the 
SR data from all frames is defined as SRAll  by using (5). 

∑
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The model parameter set of all frames is denoted as  
Linest(SRAll). Then the sum of coefficient difference, CDAll, is 
defined in (6). 
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By using the features defined in (3), (4), (5), and (6), the 
temporal similarity of SR data between current frame and 
previous frames can be characterized. Table II shows the 
coefficient difference with different values of t. We can 
observe that the coefficient difference is small when t is small 
enough, meaning that there exists temporal similarity between 
the SR models of current frame and previous frames. As a 
result, the SR curve of current frames from can be estimated 
form those of previous frames before encoding current frame 
with high reliability. 

TABLE II. Coefficient Difference for Foreman QCIF  

1CD  5CD  AllCD  QP
C D C D C D 

20 75.28 14.66 57.80 12.41 127.45 28.73
24 60.53 11.59 49.13 10.62 118.96 27.01
28 63.79 12.24 53.43 11.69 128.79 29.93
32 82.21 15.28 67.41 14.12 140.66 31.88
36 85.42 16.00 62.09 12.47 138.85 29.49
40 86.98 17.84 63.44 13.93 87.27 18.61

C. Computation Allocation 
The objective of computation resource allocation is to 

determine the number of candidate modes for each 4×4 intra 
blocks. The computation budget for the jth frame, Budgetj, is 
defined as follows: 

C
BufferBudget j = . (7) 

Before encoding a 4×4 intra block, we define two control 
parameters as below: 
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1) Budget: the computation budget for the ith 4×4 intra block. 
2) Extra: After encoding ith 4×4 intra block, this control 

parameter is used to record the surplus computational budget for 
encoding next block. 

 
Figure 4. Standard Deviation-Rank Curve (Foreman, QCIF, 300 I-
Frames, QP=40). 

While initializing Budgetj, a check of standard deviation is 
performed to find out additional computation according to the 

values of Extra. The SR model usually drops sharply at the small 
standard deviation region as shown in Figure 4, that is, the SR 
curve value is smaller than the statistical data at left region of the 
red vertical line. Therefore, if the standard deviation of the ith 
block is smaller than the threshold (THσ) and there are some 
extra computations, the Budgeti can be increased. The value of 
THσ is determined empirically.  

Finally, the initialization of iBudget  is described in (8). 
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Figure 5. Flowchart of the Proposed Method. 
 

Before choosing the candidate modes for each block, as 
mentioned previously, the optimal number of candidate modes 
can be estimated based on the features of each block. Thus, in the 
following, Budgeti or Optimali are chosen as the final number of 
candidate modes based on the relationship between Budgeti or 
Optimali. There are four cases of the relationship between 
Budgeti and Optimali. The final number of candidate modes for 
the ith intra block is denoted as Finali. In each case, the proposed 
method chooses Budgeti and Optimali to be Finali, and update 
Extra for encoding next intra block. Each case is described 
below: 

1)  ii BudgetOptimal ≤    
If iOptimal  is much smaller than Budgeti, it means 

that the computation budget is enough. To meet the budget 
as close as possible, the following updates vare performed. 

 




−=+
=

ii

ii

FinalBudgetExtra
BudgetFinal  (9) 

2)   iii BudgetOptimalBudget ≤<    
If Optimali is slightly smaller than Budgeti, Optimali is 

prefferred to be chosen as Finali because the computation 
constraint can be met and the svaed computation can be 
reserved for encoding the following blocks. As a result, 
the computation buffer control is as follows: 
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3)   1+≤< iii BudgetOptimalBudget     
If Optimali is slightly larger than Budgeti, it is 

preferred to be Finali because the computation does not 
exceed the budget too much. Therefore, we update Finali 
as in (12) 

 ii OptimalFinal =  (11) 
4)   ii OptimalBudget <+1  

If Optimali is much larger than Budgeti, it means that 
the computation budget is not enough. To meet the budget 
as close as possible, Finali is updated as follows: 

 ii BudgetFinal =  (12) 
Case 4 is the worst case in the proposed method, because the 

available computations are too low to satisfy the optimal number 
of candidate modes. If there are many extra computations when 
case 4 is chosen, then it can change to case 3 to fit the optimal 
value of candidate modes. 

     ( )
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D. Computational Buffer Update 
After encoding all 4×4 intra blocks in the jth frame, we define 

Sumj which is used to record the total number of candidate modes 
for RDO computation for the jth frame. 

∑
−

=

=
1

0

M

i
ij FinalSum , (14) 

where M denotes the total number of 4×4 blocks in the jth frame. 
Subsequently we update the two control parameters Buffer and C 
in the computation buffer as in (15) for encoding the next frame. 
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The flowchart of the proposed computation control algorithm 
is depicted in Figure 5. 

III. EXPERIMENTAL RESULTS 
The proposed computation control algorithm is implemented 

into JVT JM 12.2 reference software, and compared with the 
original H.264 encoder with full search. In our experiments, the 
environment settings are as follow: 

• Intra Period is set to 1. (All frame using intra coding only) 
• Main profile is adopted with RDO and CABAC enabled. 
• Each 300-frame sequence is encoded with four 

quantization parameters: 20, 24, 28, 32, 36, and 40. 
• THσ  = 1 for each test sequences. 

 
(a) 

 
(b) 

Figure 6. Average number of candidate modes using the proposed 
algorithm for QCIF sequences: (a) Foreman, QP=40, (c,d)=(5.45, -0.61); 
(b) Coastguard, QP=20, (c,d)=(3.73, -0.42)) 

Figure 6 shows the average number of candidate modes by 
using our proposed method with various constraints. Under each 
computation constrain, the proposed algorithm always makes a 
decision that fits the trend of SR curve and assigns the 
computation resources properly. Table III lists the average time 
saving with various computation constraints. The  intra 4x4 mode 
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decision consumes about 60% of the total encoding time 
according to the experiments, and our algorithm almost fit this 
condition with the optimal coding efficiency. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. The RD-performance comparison between the original H.264 
encoder with proposed computation control algorithm for three QCIF 
test sequences: (a) Stefan, (b) Foreman, and (C) Carphone. 

Figure 7 shows the RD-performance results for three QCIF 
300-frame test sequences. We compare the proposed method 
with three different approaches. The blue square lines indicate 
the RD-performance of the original H.264 encoder. The light 

orange triangles represent the method that uses the fixed number 
of candidate modes in the encoding procedure. The fixed 
numbers of prediction modes are determined by the constraints. 
For example, if the computation constraint is 50%, the fixed 
number of prediction modes is 4.5 on average. The red diamond 
lines show the modified H.264 encoder that use only the DC 
mode and disables all other 4x4 intra mode for intra 4x4 blocks. 
According to the PSNR comparison, we can see that ever though 
only 20% computation constraint is given, compared with the 
original H.264 encoder, the PSNR loss of the proposed method is 
only smaller than 0.24 dB in the worst case. This means that our 
computational control algorithm can maintain the acceptable 
video quality when the computational resource is limited. 

Table III. Average Time Saving with various computation 
constrains 

Sequences 80% 60% 40% 20% 
Foreman 12.55% 25.35% 34.94% 48.65% 

Akiyo 11.92% 25.21% 34.02% 47.85% 

Carphone 12.16% 25.61% 34.53% 48.58% 

Coastguard 13.12% 26.85% 35.62% 50.09% 

IV. CONCLUSIONS 
We proposed a computation-aware intra mode decision for 

H.264 coding and transcoding applications. The proposed 
algorithm optimizes the visual quality by adaptively adjusting the 
number of prediction modes in mode decision under a given 
computation constraint. We introduced a new concept of 
computation buffer and formulate the computation control of 
mode decision as a rate-distortion optimization problem of 
computation  buffer control. Experimental results show that our 
proposed algorithm can effectively control the computational 
complexity while maintaining good RD-performance and 
satisfying the given computation constraint.  
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