
Computation-Aware Intra-Mode Decision for H.264
Coding and Transcoding

Jhih-Shen Shen, Chih-Hung Chen, and Chia-Ming Tsai
Department of Computer Science & Information Engineering

National Chung Cheng University
Chiayi 621, Taiwan

tsaicm@cs.ccu.edu.tw

Chia-Wen Lin
Department of Electric Engineering

National Tsing Hua University
Hsinchu 30013, Taiwan
cwlin@ee.nthu.edu.tw

Abstract—Nowadays, most video-enabled mobile terminals have
been equipped with modern video codecs. Video communications,
especially for encoding H.264 format bit-stream, however, are
usually very power-consuming, leading to rather limited
communication period for mobile devices powered by batteries.
Computation-aware video coding can effectively extend the battery
life. In this paper, we propose a computation-aware intra mode
decision for H.264 coding and transcoding applications. The
proposed algorithm optimizes the visual quality by adaptively
adjusting the number of prediction modes in mode decision under a
given computation constraint. We introduce a new concept of
computation buffer and formulate the computation control of mode
decision as a rate-distortion optimization problem of computation
buffer control. Experimental results show that our proposed
algorithm can effectively control the computational complexity
while maintaining good RD-performance and satisfying the given
computation constraint.

I. INTRODUCTION
The explosive growth of compressed video streams and

repositories which are accessible worldwide and the recent
addition of new video-related standards, such as H.264/AVC [1]
and MPEG-21, have stimulated research for new technologies and
applications in the area of multimedia architectures, processing,
and networking. Users may employ heterogeneous video-enabled
terminals such as computers, TVs, mobile phones and personal
digital assistants with a wide range of computational and display
capabilities, energy resources, features, accessibilities, and user
preferences. In recently years, mobile devices have been widely
deployed. These mobile devices usually have rather limited
battery power lifetime. Nowadays, most video-enabled mobile
terminals have been equipped with modern video codecs. Video
communications, especially for encoding H.264 format bit-stream,
however, are usually very power-consuming, leading to rather
limited communication period for mobile devices powered by
batteries. How to use the limited power more efficiently for
optimal video encoding thus becomes an important issue.

H.264 achieves significant improvement on rate-distortion
performance by exploiting advanced video coding technologies,
such as Variable Size Block Motion Estimation (VSBME),
Multiple Reference Prediction, Intra Prediction, Improved Loop
Filter, and Context-Based Adaptive Binary Arithmetic Coding
(CABAC). It can save up to 50% in bit-rates as compared to
MPEG-4 Advanced Simple Profile (ASP). The outstanding
coding performance of H.264/AVC, however, comes with a cost

of high complexity, making it too complex to be used for devices
with limited computing resource, especially for mobile devices
with limited battery power.

The issues about power consumption reduction and effective
power allocation for handheld devices have been addressed in the
literature. In [2] and [3], Kannangara et al. proposed a variable
complexity algorithm for H.264, and adapted for a per-frame
computational control algorithm. This computational control
algorithm is based on minimizing the Lagrange Rate-Distortion-
Complexity cost of the encoder. In [4], Wang et al. proposed a
complexity adaptive motion estimation and mode decision
(CAMED) method for an H.264 encoder. By giving the bit rate
and computational constraints, CAMED explores the trade-off
between video quality and computation resource consumption to
determine the optimal motion vectors and block modes used in the
motion-compensation process in the decoder.

Computation-aware video coding can effectively extend the
battery life of mobile devices. In this paper, we propose a
computation-aware intra mode decision for H.264 coding and
transcoding applications. The proposed algorithm optimizes the
visual quality by adaptively adjusting the number of prediction
modes in mode decision under a given computation constraint.
We introduce a new concept of computation buffer and formulate
the computation control of mode decision as a rate-distortion
optimization problem of computation buffer control.

II. PROPOSED COMPUTATION CONTROL
ALGORITHM

H.264 performs intra prediction by using the spatial
correlation with adjacent previously encoded blocks. As
illustrated in Figure 2(a), a to p are the luma pixels to be
predicted, and A to M are the boundary luma pixels of previously
encoded adjacent blocks. Figure 1(b) shows nine prediction
modes in Intra_4×4 prediction: eight directional modes and one
non-directional mode (Mode2). Before encoding each 4×4 luma
block, nine 4×4 prediction blocks are produced by using
Intra_4×4 prediction. For example, in Mode 0, pixel A is used to
predict the pixels a, e, i, and m; pixel B is used to predict the
pixels b, f, j, and n, and so on. Likewise in the case of Mode 1,
pixel I is used to predict the pixels a, b, c, and d, and so on. For
Mode 3 to 8, the pixels are predicted using a directional weighted
average of A to M. For example, in Mode 4, d is predicted by
round(B/4 + C/2 + D/4). In Mode 2 (DC prediction), the average
of A to L is used to predicted a to p.

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.78

427

Ninth IEEE International Symposium on Multimedia 2007 - Workshops

0-7695-3084-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ISM.Workshops.2007.78

427

Figure 1. Intra_4×4 prediction: (a) indices for 4×4 block and
adjacent pixels, (b) directions for each prediction mode.

In H.264, if all frames are intra-coded, the main
computational bottleneck is the number of Intra_4×4 candidate
modes for RDO computation. Our algorithm is aimed at
dynamically controlling the encoding complexity subject to a
given computing power constraint (i.e., the remaining battery
power budget) while maintaining the video quality. We define
the computation constraint as the number of prediction modes to
be used per 4×4 intra block. For example, a “44%” computation
constraint means that, on average four out of nine prediction
modes will be chosen per 4×4 intra block in RDO computation of
mode decision. With the proposed algorithm, an encoder can
adaptively determine the number of candidate modes for each
4×4 intra block according to the block’s characteristics under the
given computation constraint. The proposed algorithm is divided
into four steps as elaborated below.

A. Computation Buffer Initialization
Before encoding a video sequence, a computation buffer is set

up based on a given computing power constraint. The
computation buffer records and updates the available computing
power budget up to the current block. Two control parameters are
used:

1) C: the number of remaining non-encoded 4×4 intra blocks
of the video sequence.

2) Buffer: the number of avalible candidate modes that can be
chosen for RDO computation.

For instance, given “70%” computing power constraint for a
QCIF format sequence with 50 I-frames, two control parameters
are determined as below:

498960%709

,7920050
4

144
4

176

=××=

=××=

CBuffer

C

B. Modeling
The proposed computation model is used to determine how

many candidate modes can be used for predicting each 4×4 intra-
block based on the features of the block. In our model, an intra-
block is characterized based on the following three observations.

1) Observation 1: the rank of best mode’s prediction error.
RDO computation, rather than the prediction error of prediction
modes, has been used for determining the best intra-mode in the
H.264 reference software for sake of accuracy. The RDO
computation, however, consumes heavy computing power. To
show the relationship between the best mode obtained by RDO

and the SAD (Sum of Absolute Difference) or SATD (Sum of
Absolute Transformed Difference) prediction errors, the
SAD/SATD prediction errors of nine prediction modes are sorted
by the error values. Figure 2 (a)-(b) shows the percentages in
population of the best mode (obtained by mode decision with
RDO) sorted by its rank of SAD and SATD prediction errors
among the nine prediction modes. From the figure, we observed
that the top four prediction modes (with lowest SAD/SATD
values) make up more than 90% of the population. Such high
percentages imply that SAD or SATD prediction error can be
used to predict the best mode efficiently without significant
reduction in accuracy. In our method, SATD is adopted to
calculate the prediction error as it is more accurate than SAD in
predicting the best coding mode.

(a)

(b)

Figure 2. Average percentages of the prediction modes that are ranked
by their prediction errors being chosen as the best coding mode after
mode decision with RDO for four test sequences: (a) Foreman and (b)
Carphone.

2) Observation 2: the relationship between the standard
deviation of SATD and the rank.

The standard deviation σ of nine prediction modes’ SATD
values can be obtained from (1):

8 8
2

0 0

1 1() ,
9 9

where is the index of prediction modes.

k k
k i

SATD SATD and SATD SATD

k

σ
= =

= − =∑ ∑ (1)

These statistics can be used to characterize the relationship
between the standard deviation of SATD prediction errors and
the average rank of best mode SATD value. For example, if we
find that the average rank of the best mode SATD is 4 while the
standard deviation of SATD prediction errors is 50, the best
mode can be found from the four top-ranking modes (sorted by

428428

SATD) with a high probability if the standard deviation of SATD
prediction errors is 50. With such models, we are able to use the
statistics of SATD prediction errors of each block to estimate the
average rank of best mode’s SATD value without resorting to
RDO computation, leading to significant computation reduction.

We use the linear regression to find the mathematical model to
approximate the relationship curve as follows.

>⋅+=
=⋅+=

0,ln
0,

σσ
σσ

fordcOptimal
forbaOptimal

i

i (2)

where Optimali denotes the optimal number of candidate modes.
The mode parameter sets (a,b) and (c,d) are determined using the
least squares method. Table I lists the derived coefficient set (a,b)
and (a,b) by using (3) in the Foreman and Carphone sequences.

TABLE I. The coefficient sets for 2 different test sequences with
four different quantization parameters.

Sequence QP a b c d
28 2.3688 0.9272 3.6651 -0.3942
32 2.3493 0.9411 4.2650 -0.4981
36 2.1755 1.0469 5.0111 -0.6179 Foreman

40 2.0805 1.0266 5.6999 -0.7094
28 2.1590 0.9037 3.3406 -0.3243
32 2.1271 1.0335 3.7453 -0.3882
36 2.0500 1.0230 4.1852 -0.4503 Carphone

40 2.0310 1.0434 5.0347 -0.5799

Figure 3 compares the actual data obtained from our
experiment and the corresponding curve approximated by the
proposed model in (2). The dark blue lines denote the actual data
curve, whereas the red lines represent the approximated model
curve. We define this curve as a “Standard Deviation-to-Rank”
(SR) curve. The result shows that the proposed model is accurate
enough.

Figure 3. Comparison between the actual data and the proposed model
(Foreman, QCIF, 300 I-Frames, QP = 18).

However, for each frame, the SR data of a video frame can be
obtained after the frame has been encoded. This is only feasible
for non-realtime coding and transcoding applications. In real-time
applications, only the data of previous encoded frames are
available, whereas the SR data of the current frame is unknown
before performing RDO. However, we will show that the SR
model of current frame can be estimated using the data of

previous coded frames with fairly good accuracy according to the
following observation.

3) Observation 3: Temporal similarity of SR models.
Suppose the SR data of the jth frame is denoted as SRj.

And the linear regression is defined as Linest(). The model
coefficients of the jth frame is thus Linest(SRj). The cumulative
SR data of previous t frames, SRj,t, is defined in (3).

∑
−

−=

=
tj

ji
itj SRSR

1
,

 (3)

Moreover, the curve coefficients of pervious t frames is
denoted as Linest(SRj,t). The sum of coefficient difference,

tCD , is defined as follows.

∑
=

−=
N

i
itit SRLinestSRLinestCD

1
,)()(, (4)

where N is the total number of frames. As a special case, the
SR data from all frames is defined as SRAll by using (5).

∑
=

=
N

i
iAll SRSR

1

 (5)

The model parameter set of all frames is denoted as
Linest(SRAll). Then the sum of coefficient difference, CDAll, is
defined in (6).

∑
=

−=
N

i
iAllAll SRLinestSRLinestCD

1
)()((6)

By using the features defined in (3), (4), (5), and (6), the
temporal similarity of SR data between current frame and
previous frames can be characterized. Table II shows the
coefficient difference with different values of t. We can
observe that the coefficient difference is small when t is small
enough, meaning that there exists temporal similarity between
the SR models of current frame and previous frames. As a
result, the SR curve of current frames from can be estimated
form those of previous frames before encoding current frame
with high reliability.

TABLE II. Coefficient Difference for Foreman QCIF

1CD 5CD AllCD QP
C D C D C D

20 75.28 14.66 57.80 12.41 127.45 28.73
24 60.53 11.59 49.13 10.62 118.96 27.01
28 63.79 12.24 53.43 11.69 128.79 29.93
32 82.21 15.28 67.41 14.12 140.66 31.88
36 85.42 16.00 62.09 12.47 138.85 29.49
40 86.98 17.84 63.44 13.93 87.27 18.61

C. Computation Allocation
The objective of computation resource allocation is to

determine the number of candidate modes for each 4×4 intra
blocks. The computation budget for the jth frame, Budgetj, is
defined as follows:

C
BufferBudget j = . (7)

Before encoding a 4×4 intra block, we define two control
parameters as below:

429429

1) Budget: the computation budget for the ith 4×4 intra block.
2) Extra: After encoding ith 4×4 intra block, this control

parameter is used to record the surplus computational budget for
encoding next block.

Figure 4. Standard Deviation-Rank Curve (Foreman, QCIF, 300 I-
Frames, QP=40).

While initializing Budgetj, a check of standard deviation is
performed to find out additional computation according to the

values of Extra. The SR model usually drops sharply at the small
standard deviation region as shown in Figure 4, that is, the SR
curve value is smaller than the statistical data at left region of the
red vertical line. Therefore, if the standard deviation of the ith
block is smaller than the threshold (THσ) and there are some
extra computations, the Budgeti can be increased. The value of
THσ is determined empirically.

Finally, the initialization of iBudget is described in (8).

 =

><

−=
+=

 otherwise,
changenot is

1 and when ,
1

1

Extra
BudgetBudget

ExtraTH
ExtraExtra
BudgetBudget

ji

ji
σσ

 (8)

430430

Figure 5. Flowchart of the Proposed Method.

Before choosing the candidate modes for each block, as
mentioned previously, the optimal number of candidate modes
can be estimated based on the features of each block. Thus, in the
following, Budgeti or Optimali are chosen as the final number of
candidate modes based on the relationship between Budgeti or
Optimali. There are four cases of the relationship between
Budgeti and Optimali. The final number of candidate modes for
the ith intra block is denoted as Finali. In each case, the proposed
method chooses Budgeti and Optimali to be Finali, and update
Extra for encoding next intra block. Each case is described
below:

1) ii BudgetOptimal ≤
If iOptimal is much smaller than Budgeti, it means

that the computation budget is enough. To meet the budget
as close as possible, the following updates vare performed.

−=+
=

ii

ii

FinalBudgetExtra
BudgetFinal (9)

2) iii BudgetOptimalBudget ≤<
If Optimali is slightly smaller than Budgeti, Optimali is

prefferred to be chosen as Finali because the computation
constraint can be met and the svaed computation can be
reserved for encoding the following blocks. As a result,
the computation buffer control is as follows:

−=+
=

ii

ii

FinalBudgetExtra
OptimalFinal (10)

3) 1+≤< iii BudgetOptimalBudget
If Optimali is slightly larger than Budgeti, it is

preferred to be Finali because the computation does not
exceed the budget too much. Therefore, we update Finali
as in (12)

 ii OptimalFinal = (11)
4) ii OptimalBudget <+1

If Optimali is much larger than Budgeti, it means that
the computation budget is not enough. To meet the budget
as close as possible, Finali is updated as follows:

 ii BudgetFinal = (12)
Case 4 is the worst case in the proposed method, because the

available computations are too low to satisfy the optimal number
of candidate modes. If there are many extra computations when
case 4 is chosen, then it can change to case 3 to fit the optimal
value of candidate modes.

 ()

=
−>=

otherwise ,
 when ,

ii

iiii

BudgetFinal
BudgetOptimalExtraOptimalFinal (13)

D. Computational Buffer Update
After encoding all 4×4 intra blocks in the jth frame, we define

Sumj which is used to record the total number of candidate modes
for RDO computation for the jth frame.

∑
−

=

=
1

0

M

i
ij FinalSum , (14)

where M denotes the total number of 4×4 blocks in the jth frame.
Subsequently we update the two control parameters Buffer and C
in the computation buffer as in (15) for encoding the next frame.

−=
−=

MCC
SumBufferBuffer j (15)

The flowchart of the proposed computation control algorithm
is depicted in Figure 5.

III. EXPERIMENTAL RESULTS
The proposed computation control algorithm is implemented

into JVT JM 12.2 reference software, and compared with the
original H.264 encoder with full search. In our experiments, the
environment settings are as follow:

• Intra Period is set to 1. (All frame using intra coding only)
• Main profile is adopted with RDO and CABAC enabled.
• Each 300-frame sequence is encoded with four

quantization parameters: 20, 24, 28, 32, 36, and 40.
• THσ = 1 for each test sequences.

(a)

(b)

Figure 6. Average number of candidate modes using the proposed
algorithm for QCIF sequences: (a) Foreman, QP=40, (c,d)=(5.45, -0.61);
(b) Coastguard, QP=20, (c,d)=(3.73, -0.42))

Figure 6 shows the average number of candidate modes by
using our proposed method with various constraints. Under each
computation constrain, the proposed algorithm always makes a
decision that fits the trend of SR curve and assigns the
computation resources properly. Table III lists the average time
saving with various computation constraints. The intra 4x4 mode

431431

decision consumes about 60% of the total encoding time
according to the experiments, and our algorithm almost fit this
condition with the optimal coding efficiency.

(a)

(b)

(c)

Figure 7. The RD-performance comparison between the original H.264
encoder with proposed computation control algorithm for three QCIF
test sequences: (a) Stefan, (b) Foreman, and (C) Carphone.

Figure 7 shows the RD-performance results for three QCIF
300-frame test sequences. We compare the proposed method
with three different approaches. The blue square lines indicate
the RD-performance of the original H.264 encoder. The light

orange triangles represent the method that uses the fixed number
of candidate modes in the encoding procedure. The fixed
numbers of prediction modes are determined by the constraints.
For example, if the computation constraint is 50%, the fixed
number of prediction modes is 4.5 on average. The red diamond
lines show the modified H.264 encoder that use only the DC
mode and disables all other 4x4 intra mode for intra 4x4 blocks.
According to the PSNR comparison, we can see that ever though
only 20% computation constraint is given, compared with the
original H.264 encoder, the PSNR loss of the proposed method is
only smaller than 0.24 dB in the worst case. This means that our
computational control algorithm can maintain the acceptable
video quality when the computational resource is limited.

Table III. Average Time Saving with various computation
constrains

Sequences 80% 60% 40% 20%
Foreman 12.55% 25.35% 34.94% 48.65%

Akiyo 11.92% 25.21% 34.02% 47.85%

Carphone 12.16% 25.61% 34.53% 48.58%

Coastguard 13.12% 26.85% 35.62% 50.09%

IV. CONCLUSIONS
We proposed a computation-aware intra mode decision for

H.264 coding and transcoding applications. The proposed
algorithm optimizes the visual quality by adaptively adjusting the
number of prediction modes in mode decision under a given
computation constraint. We introduced a new concept of
computation buffer and formulate the computation control of
mode decision as a rate-distortion optimization problem of
computation buffer control. Experimental results show that our
proposed algorithm can effectively control the computational
complexity while maintaining good RD-performance and
satisfying the given computation constraint.

REFERENCE

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Trans. Circuits Sys. Video Technol., vol. 13, no. 7, pp. 560-576,
July 2003.
[2] C. S. Kannangara, I. E. G. Richardson, M. Bystrom, J.R.
Solera, Y. Zhao, A. MacLennan, and R. Cooney, “Low-
complexity Skip Prediction for H.264 Through Lagrangian Cost
Estimation,” IEEE Trans. Circuits Sys. Video Technol., vol. 16,
no. 2, pp. 202-208, Feb. 2006.
[3] C. S. Kannangara and I. E. G. Richardson, “Computational
control of an H.264 encoder through Lagrangian cost function
estimation,” in Int. Workshop Very Low Bit-rate Video-coding,
Sept. 2005.
[4] Y. Wang and S.-F. Chang, “Complexity adaptive H.264
encoding for light weight streams,” Proc. IEEE Int. Conf.
Acoustics, Speech Signal Processing, May 2006.

432432

