
Title Cognitive dysfunction in Duchenne muscular dystrophy: a possible role
for neuromodulatory immune molecules

Author(s) Rae, Mark G.; O'Malley, Dervla

Publication date 2016-09-01

Original citation Rae, M.G. and O'Malley, D. (2016) 'Cognitive dysfunction in Duchenne
muscular dystrophy: a possible role for neuromodulatory immune
molecules', Journal of Neurophysiology, 116(3), pp.1304-1315. doi:
10.1152/jn.00248.2016

Type of publication Article (peer-reviewed)

Link to publisher's
version

http://dx.doi.org/10.1152/jn.00248.2016
Access to the full text of the published version may require a
subscription.

Rights © 2016, The American Physiological Society.

Embargo information Access to this article is restricted until 12 months after publication by
request of the publisher.

Embargo lift date 2017-09-01

Item downloaded
from

http://hdl.handle.net/10468/3189

Downloaded on 2017-09-04T23:45:09Z

http://dx.doi.org/10.1152/jn.00248.2016
http://hdl.handle.net/10468/3189


1 
 

Cognitive dysfunction in Duchenne Muscular Dystrophy: a possible role 

for neuromodulatory immune molecules. 

Mark G. Rae1 and Dervla O’Malley1,2. 

1. Department of Physiology, University College Cork, Western Road, Cork, Ireland. 

2. APC Microbiome Institute, University College Cork, Western Road, Cork, Ireland. 

 

Correspondence to:  

Dr. Dervla O’Malley,  

Department of Physiology,  

Western Gateway Building,  

University College Cork,  

Cork, Ireland.  

d.omalley@ucc.ie 

Telephone: +353-21-4205483     Fax: +353 (0)21 4205370 

 

For submission to: Journal of Neurophysiology – a multidisciplinary neuroscience journal. 

Running title: Cytokines in DMD-associated cognitive dysfunction. 

Acknowledgements: We wish to acknowledge funding support from Muscular Dystrophy 

Ireland.  

Disclosures: No conflict of interest, financial or otherwise.  



2 
 

Abstract 

Duchenne Muscular Dystrophy (DMD) is an X chromosome-linked disease characterized by 

progressive physical disability, immobility and premature death in affected boys. Underlying the 

devastating symptoms of DMD is the loss of dystrophin, a structural protein which connects the 

extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced 

damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also 

expressed in neurons within specific brain regions, including the hippocampus, a structure associated 

with learning and memory formation. Linked to this, a subset of boys with DMD exhibit non-

progressing cognitive dysfunction, with deficits in verbal, short-term and working memory. 

Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, 

but not all, types of learning and memory are deficient and specific deficits in synaptogenesis and 

channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive 

deficits associated with DMD in comparison to the research conducted into the peripheral effects of 

dystrophin deficiency. Therefore, this review will focus upon what is known about the role of full 

length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and 

memory will be assessed and the potential importance that inflammatory mediators, which are 

chronically elevated in dystrophinopathies, may have on hippocampal function will also be evaluated.  

 

Key Words (5 max): Duchenne Muscular Dystrophy, dystrophin, hippocampus, learning, 

memory. 
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Introduction 

The fatal, X chromosome-linked disease, Duchenne muscular dystrophy (DMD) is caused by 

the loss of the structural protein, dystrophin (Bulfield et al. 1984). Interactions between 

dystrophin and the dystrophin associated protein complex (DAPC), which includes the 

membrane spanning β dystroglycan component, serves to link the sub-sarcolemmal 

cytoskeletal actin to the extracellular matrix in skeletal muscle. In such contracting cells 

dystrophin, through interactions with the DAPC, protects the sarcolemma against the 

mechanical stresses of repeated contractions. Thus, loss of functional dystrophin, which 

comprises 0.1% of the total human genome (Barbujani et al. 1990; Koenig et al. 1987), 

causes muscle fibres to become more susceptible to contraction-induced damage. This, in 

turn, results in  muscle inflammation and myophagocytosis (Anderson et al. 1987) leading to 

progressive physical disability, eventual immobility and, finally, premature death in affected 

boys. There is currently no cure for DMD, with patients experiencing an average life 

expectancy of just over 20 years (Yiu & Kornberg 2008), and most eventually succumbing to 

death via cardio-respiratory failure. 

 

Chronic inflammation is a key symptom and contributory factor in the pathogenesis of DMD, 

due in part to the secretion of pro-inflammatory immune mediators from damaged 

dystrophin-deficient muscle fibers (De Paepe and De Bleecker 2013; Porter et al. 2002). Pro-

inflammatory cytokines, including Tumor necrosis factor (TNF)α (Kuru et al. 2003; Porreca 

et al. 1999), interleukin (IL)-1β (Evans et al. 2009), IL-6 (Messina et al. 2011; Rufo et al. 

2011) and the promotor of ongoing inflammation, IL-17 (De Pasquale et al. 2012) are 

elevated in muscle biopsies from DMD patients.  
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Although dystrophinopathies have principally been studied in the context of skeletal muscle 

dysfunction, DMD itself is actually a multi-system disorder due to the fact that dystrophin is 

also expressed in cardiac and smooth muscle, endocrine glands and neurons. In healthy 

individuals, neurons in the central nervous system (CNS) express full length dystrophin 

(Dp427). Specifically, it is expressed in the hippocampus, cerebellum, cerebral cortex and 

amygdala (Bies et al. 1992; Knuesel et al. 2000; Lidov et al. 1993; Lidov et al. 1990; 

Sekiguchi et al. 2009). Consistent with the functional importance of dystrophin in the CNS, 

boys with DMD often exhibit varying degrees of non-progressing cognitive impairment 

(Anderson et al. 2002; Bresolin et al. 1994), with their intelligence quotients (IQ) shifted 

downward one standard deviation below the normal range (Felisari et al. 2000; Nardes et al. 

2012). Moreover, boys with DMD have difficulty communicating. They exhibit social 

behavior problems and have poor facial affect recognition (Hinton et al. 2007; Hinton et al. 

2006). Interestingly, expression of Dp71, a protein product produced through a mutation in 

the dystrophin gene and only expressed in the CNS, has been linked to intellectual disability 

without an attendant muscular dystrophy phenotype (de Brouwer et al. 2014). In the context 

of the frontal cortex and hippocampus, both of which facilitate learning and memory 

processes, DMD patients exhibit deficits in verbal, short-term and working memory (Hinton 

et al. 2000; 2001; Snow et al. 2013). As it is now recognized that activation of the immune 

system in the periphery greatly influences the normal function of the central nervous system 

(Marin and Kipnis 2013), this review will assess the possible role of inflammatory mediators 

in DMD-associated cognitive dysfunction focusing on the hippocampus. 

 

The potential role of inflammatory molecules in DMD-associated cognitive dysfunction. 

Chronic inflammation is a key aspect of DMD pathophysiology. Indeed, corticosteroids with 

potent anti-inflammatory effects are the most effective treatment for delaying the onset and 
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progression of the disease (Gloss et al. 2016). Skeletal muscle biopsies exhibit necrotic and 

degenerating fibers surrounded by macrophages and CD4+ lymphocytes in the early stages of 

the disease, when new myocytes are still being produced, however, the capacity to regenerate 

new myofibres becomes exhausted and muscle fibers are eventually replaced by connective 

and adipose tissue. There is also evidence of immune cell infiltration  into muscle tissue and 

activation of the complement system (Haslett et al. 2002), which is an important effector arm 

of both the innate and adaptive divisions of the immune system. The inflammatory response 

is due, in part, to the secretion of cytokines from damaged dystrophin-deficient muscle fibers 

(De Paepe and De Bleecker 2013; Porter et al. 2002). Consistent with this, DMD muscle 

biopsies display altered cytokine profiles with elevated levels of pro-inflammatory mediators 

such as TNFα (Kuru et al. 2003; Porreca et al. 1999), IL-1β (Evans et al. 2009), IL-6 

(Messina et al. 2011; Rufo et al. 2011) and IL-17 (De Pasquale et al. 2012).  

 

Whilst cytokines have a well characterized role in the response of tissues to infection, these 

signaling molecules also have neuromodulatory actions. In addition to immune cells, neurons, 

glia and the endothelial cells of the microvasculature in the CNS secrete cytokines and also 

express receptors for these immune mediators. There is significant crosstalk between the 

immune and nervous systems, as cytokines can have indirect effects on neuronal activity by 

stimulating secretion of neuromodulatory molecules from glia or endothelial cells (Allan and 

Rothwell 2001; Montgomery and Bowers 2012). Moreover, they can bind directly to 

receptors on neurons, where their neuromodulatory actions can subsequently influence 

cognitive function. The hippocampus, a structure upon which the acquisition of new 

declarative memories is absolutely dependent, expresses receptors for IL-1β (Gardoni et al. 

2011), TNFα (Sairanen et al. 2001), and IL-6 (Schobitz et al. 1993).  
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Cytokines can promote neurite outgrowth, neurogenesis and neuronal survival, in addition to 

being able to regulate synaptic transmission and synaptic plasticity (Marin and Kipnis 2013). 

However, chronically elevated levels of inflammatory cytokines can result in neuronal 

dysfunction. For example, IL-1 (Terrando et al. 2010) and IL-6 (Sparkman et al. 2006) have 

been implicated in lipopolysaccharide (LPS) -evoked cognitive dysfunction and TNF receptor 

1 facilitates memory deficits associated with sepsis (Calsavara et al. 2015; Haslett et al. 

2002). IL-17 is also a central regulator of CNS inflammatory responses and works 

synergistically with TNF and IL-1 under inflammatory conditions (Gaffen 2009). It is 

upregulated in hippocampal neurons following stimulation with LPS, indicating a role for it 

in neuroinflammation and the associated cognitive impairment (Sun et al. 2015). Disease 

states associated with such pathophysiology include epilepsy, stress-related disorders and 

neurodegenerative diseases (Allan et al. 2005; Glass et al. 2010; Griffin 2006; Nguyen et al. 

1998; Vezzani et al. 2011). As neuro-immune interactions promote homeostasis of the 

nervous system (Marin and Kipnis 2013), chronic inflammation may also be a contributory 

factor in cognitive dysfunction exhibited by dystrophin-deficient DMD patients. 

 

Expression of dystrophin in the CNS. 

The dystrophin gene has many independent, and tissue-specific, promoters for brain and 

skeletal muscle cells (Blake et al. 2002). Within the brain, dystrophin expression is only one 

tenth of that found in muscle. However, brain tissue exhibits much greater variability in the 

protein products that are generated from the dystrophin gene. Included are the full length 

protein (Dp427), which this review will focus on, and shorter proteins (Dp71, Dp260, Dp140 

and Dp116) (Gorecki and Barnard 1995). Quantitatively, Dp71 is the main dystrophin gene 

product in the brain and its location, around perivascular astrocyte endfeet (Haenggi et al. 

2004; Tadayoni et al. 2012), suggest a role in blood brain barrier (BBB) function (Amiry-
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Moghaddam et al. 2004), which may be a consideration in the ability of peripheral 

inflammatory molecules gaining access to the brain.  

 

In the CNS, Dp427 is only found in neurons, and only within specific regions of the brain 

such as the hippocampus, amygdala, cerebellar Purkinje cells and neocortex (Anderson et al. 

2002; Bies et al. 1992; Chamberlain et al. 1988; Chelly et al. 1990; Comim et al. 2011; 

Cyrulnik and Hinton 2008; Knuesel et al. 2000; Lidov 1996; Sekiguchi et al. 2009). Similar 

to its function in striated muscle, dystrophin in neurons and glia associates with the DAPC of 

membrane-spanning proteins that link the intracellular cytoskeleton to the extracellular 

matrix. However, the DAPC in the brain is unlikely to act as a mechanotransducer as it does 

in skeletal muscle (Hendriksen et al. 2015). Further, several variants of brain DAPC exist due 

to both the variety of CNS dystrophin protein products and the fact that they can also 

associate with DAPC components which are absent from skeletal muscle cells, such as β-

dystrobrevin, ε-sarcoglycan, and the γ-syntrophins (Waite et al. 2012; Waite et al. 2009). It is 

likely however, that this interaction of Dp427 with the DAPC in neurons does play a critical 

role in the formation and maintenance of new synaptic connections (Rodius et al. 1997).  

 

Changes in the structure and function of dystrophic brains 

DMD patients 

Considerable debate continues as to whether loss of Dp427 alters the architecture of DMD 

brains, with some investigators noting relatively minor changes in DMD brains (al-Qudah et 

al. 1990; Bresolin et al. 1994; Dubowitz and Crome 1969; Rae et al. 1998) and others 

reporting a range of brain abnormalities including neuronal loss, neurofibrillary tangles, 

dendritic changes and cortical atrophy (Itoh et al. 1999; Jagadha and Becker 1988; Lv et al. 

2011; Rosman 1970; Rosman and Kakulas 1966; Septien et al. 1991; Yoshioka et al. 1980). 
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Indeed, no clear correlations have been made between the different types of brain 

abnormalities observed in DMD patients and the degree of intellectual impairment suffered. 

Moreover, investigations into possible biochemical and neuromodulatory mechanisms 

underlying the dystrophin-associated cognitive deficits in human DMD are relatively limited. 

The brains of DMD boys have been reported to be hypometabolic in their use of glucose 

(Bresolin et al. 1994; Lee et al. 2002), a phenomenon which occurs in other conditions with 

known associated cognitive deficits, and may be related to reduced synaptic activity (Jueptner 

and Weiller 1995).  

 

Mdx mice 

The functional role of specific proteins within the CNS is usually made much easier with the 

development of transgenic knockin or knockout mouse models. Therefore, the fortuitous 

generation of the mdx mouse (Bulfield et al. 1984), which is deficient in Dp427 (Blake and 

Kroger 2000) due to a nonsense mutation occurring in exon 23 of the dystrophin gene 

(Arechavala-Gomeza et al. 2010), provided an opportunity for more functional studies on 

DMD to be carried out. Mdx mice are genetically comparable to human DMD and 

recapitulate striated muscle dysfunction, where skeletal muscle fibres progress through cycles 

of degeneration and regeneration until functional myofibres are replaced by collagen and 

adipocytes. Degeneration and regeneration of myofibres is associated with muscle 

inflammation (Grounds et al. 2008), but fibrosis and loss of limb muscle function is not as 

severe in mdx mice as in humans (Dangain & Vrbova 1984; Coulton et al. 1988), possibly 

due to compensatory mechanisms (Manning and O'Malley 2015). Nonetheless, consistent 

with human studies (al-Qudah et al. 1990; Bresolin et al. 1994; Dubowitz and Crome 1969; 

Rae et al. 1998), most studies in mdx mice failed to note any gross abnormalities in brain 

structure (Bulfield et al. 1984; Miranda et al. 2009; Torres and Duchen 1987; Yoshihara et al. 
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2003). However, changes in cell number, size and/or shape were noted in regions of the 

cerebral cortex and brainstem of mdx mice (Carretta et al. 2004; Carretta et al. 2001; Carretta 

et al. 2003; Minciacchi et al. 2010; Sbriccoli et al. 1995) and enlargement of the lateral 

ventricles, possibly due to grey matter atrophy has also been reported (Xu et al. 2015).  

Similar to findings in DMD patients, muscle levels of IL-6, TNFα and IL-1β are elevated in 

mdx mice (Huang et al. 2009; Huynh et al. 2013; Kurek et al. 1996), however changes in 

circulating or CNS levels of inflammatory mediators in this mouse model has not yet been 

reported.  

 

Hippocampal dysfunction in mdx mice 

The neurobehavioral profile of mdx mice is characterised by deficits in cognitive function 

(Chaussenot et al. 2015; Muntoni et al. 1991; Perronnet et al. 2012; Vaillend et al. 2004; 

Vaillend et al. 1995), behaviors which are linked to dysregulation of hippocampal and 

amygdalar function. For example, the mdx mouse exhibits deficits in its capacity to learn and 

store spatial memories relative to controls (Vaillend et al. 2004; Vaillend et al. 1995) and it 

also displays deficiencies in associative learning as well as in general processes of memory 

consolidation which are dependent upon both the hippocampus and the amygdala 

(Chaussenot et al. 2015). Changes in long- and short-term memory formation and 

consolidation have been associated with altered synapse morphology and plasticity linked to 

a loss of Dp427 (Miranda et al. 2009; Vaillend et al. 2004; Vaillend et al. 1995). 

Interestingly, other in vivo and in vitro hippocampal-dependent functions, such as spatial 

learning, CA1 NMDA-dependent long term potentiation (LTP), and its converse, long term 

depression (LTD), have either been found to be intact (Sesay et al. 1996) or actually 

enhanced relative to controls (Dallerac et al. 2011; Vaillend and Billard 2002; Vaillend et al. 

1998; Vaillend et al. 2004; Vaillend et al. 1999).  
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Dysregulated synaptic receptor clustering in the mdx mouse 

GABAA receptors 

Within the hippocampus, alterations in the number and localisation of several receptor types 

having been noted in the absence of Dp427. Dp427 is exclusively expressed post-synaptically 

in dense puncta on neuronal cell membranes of hippocampal inhibitory synapses (Brunig et 

al. 2002; Kim et al. 1992; Knuesel et al. 2000; Knuesel et al. 1999; Levi et al. 2002; 

Sakamoto et al. 2008). Here, through its interaction with components of the DAPC, it makes 

a crucial contribution to synapse structure and function (for reviews see Haenggi and Fritschy 

2006; Hendriksen et al. 2015; Perronnet and Vaillend 2010; Waite et al. 2012). This is likely 

to be facilitated through interactions between the syntrophin-dystrobrevin sub complex 

(Compton et al. 2005; Matsumura et al. 1992), β-dystroglycan and the synaptic cell-adhesion 

molecules, neurexin and neuroligin (Craig and Kang 2007; Graf et al. 2004; Kang et al. 2008; 

Sudhof 2008; Sugita et al. 2001; Waite et al. 2012; Zhang et al. 2010), all of which may be 

critically involved in anchoring GABAergic (for review see Fritschy et al. 2012), and other 

neurotransmitter receptors or channels, in place at specific points in the post-synaptic 

membrane (Krasowska et al. 2014). Thus, loss of dystrophin leads to the generation of 

malformed synapses (Knuesel et al. 1999; Knuesel et al. 2001; Kueh et al. 2008; Miranda et 

al. 2011; Miranda et al. 2009), which will significantly alter how affected neurons respond to 

afferent stimuli (Graciotti et al. 2008). This will inevitably disrupt the precise and 

coordinated spatiotemporal and stratified neural network activity that is critical for normal 

hippocampal function and cognition (for review see Cohen et al. 2015). 

 

This feature of dystrophin function has been particularly well described for inhibitory 2 

subunit-containing GABAA receptors in CA1 and CA3 regions of the hippocampus (Knuesel 
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et al. 1999; Knuesel et al. 2001). Indeed, the fact that GABAA receptor clustering in dendritic 

and pyramidal layers of mdx mice can be restored to normal levels by administering specific 

antisense oligonucleotides, established for the first time a direct link between receptor 

clustering and Dp427 expression (Vaillend et al. 2010). Furthermore, the proposed cellular 

correlate of new memory formation, NMDA-dependent LTP, can be restored in mdx mice 

using the same treatment. This evidence supports the suggestion that clustering of 

GABAergic neurotransmitter receptors at inhibitory synapses is essential for normal neuronal 

excitability and synaptic transmission (Dallerac et al. 2011).  

 

More recently, the Wnt intracellular signalling pathway has emerged as an important player in 

the development and maintenance of normal neuronal structures within the CNS as well as in 

modulating synaptic plasticity and cognitive function (for reviews see Inestrosa and Arenas 

2010; Oliva et al. 2013). Significantly, Fuenzalida et al. (2016) demonstrated that the 

aforementioned deficiency in GABAergic signalling within hippocampal CA1 neurons of 

mdx mice can be restored by stimulating the non-canonical Wnt-5a pathway, which serves to 

increase the number of inhibitory synapses and GABAA receptors in CA1 without any 

attendant increase in GABA release probability or release sites.  

 

Nicotinic acetylcholine receptors (nAChRs) 

Alterations in the expression, distribution and function of other receptor subtypes have also 

been noted in dystrophic brains. For example, behavioral studies reporting a reduced response 

to nicotine in a passive avoidance memory task, suggested altered nAChR expression or 

responsivity (Coccurello et al. 2002), work that has been supported by in vitro research 

demonstrating a reduction of hippocampal 3 nAChR mRNA (Wallis et al. 2004) and 7 

nAChR binding sites (Ghedini et al. 2012). However, these alterations, which would be 

expected to lead to decreased nicotinic cholinergic synaptic signalling, appear to be 
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compensated for by an upregulation in nAChR-mediated cholinergic transmission in the same 

brain region (Parames et al. 2014). However, the fact that the expression of hippocampal 

muscarinic receptors is unchanged in dystrophic mice (Yoshihara et al. 2003) indicates that 

dystrophin does not exert a generalised effect on the expression of all cholinergic receptor 

subtypes. Nonetheless, a reduction in acetylcholinesterase activity in the hippocampus of mdx 

mice may be illustrative of a non-receptor dependent form of compensation for an overall 

reduction in cholinergic signalling in the CNS of dystrophic mice (Cohen et al. 2015; Comim 

et al. 2011). 

 

Kainic acid (KA)/AMPA receptors 

Yoshihara et al (2003) demonstrated that KA/AMPA receptor density was significantly 

reduced in several brain regions, including the hippocampus, in the mdx mice relative to WT 

animals. However this may reflect another homeostatic compensatory mechanism, this time 

for increased glutamatergic input (Miranda et al. 2011; Miranda et al. 2009).  

 

In the context of this review it is interesting to note that changes in neuromodulatory 

cytokines such as IL-6, IL-1β and TNFα are known to effect both pre-synaptic and post-

synaptic channels and receptors (Vezzani and Viviani 2015). Indeed, as previously 

mentioned, circulating levels of these proinflammatory cytokines are elevated in DMD 

patients (Chahbouni et al. 2010) but, as yet there is no evidence that brain levels of these 

neuromodulatory cytokines are altered. 

 

Changes in hippocampal synaptic function in mdx mice 

Consistent with reduction in the size and number, but not function (Kueh et al., 2008), of 

post-synaptically-localised neuronal GABAA receptor clusters in mdx mice (Anderson et al. 



13 
 

2002; Knuesel et al. 1999; Knuesel et al. 2001; Kueh et al. 2011; Kueh et al. 2008; Vaillend 

et al. 2010), one might expect reduced inhibitory input to the neuron to be manifested as a 

measurable increase in overall neuronal excitability in affected regions of the brain. However, 

the picture emerging from electrophysiological studies is not quite so straightforward.  

Whilst NMDA-induced Schaffer collateral - CA1 LTP in mdx hippocampus is abnormally 

enhanced in a bicuculline-sensitive manner which would tally with reduced inhibitory input 

onto the CA1 neurons (but see Sesay et al. 1996; Vaillend et al. 1998; Vaillend et al. 2004; 

Vaillend et al. 1999), a significant increase in the frequency of spontaneous miniature 

inhibitory post-synaptic currents (mIPSCs) has been recorded from mdx CA1 hippocampal 

neurons. This is likely due to increased neurotransmitter release probability from somatic 

inhibitory synapses contacting CA1 pyramidal neurons (Graciotti et al. 2008), due to an 

increased number of inhibitory synapses innervating the mdx CA1 neurons (Miranda et al. 

2009; Perronnet and Vaillend 2010). This suggestion was supported by a contemporaneous 

study by Del Tongo et al. (2009) in which a significant increase in the number of 

parvalbumin-expressing GABAergic interneurons in the dorsal hippocampus of the mdx 

mouse was observed.  

 

The increase in hippocampal GABAergic innervation associated with absence of dystrophin 

may have arisen as a systemic compensation for impaired GABAergic synaptic clustering and 

function but still appears to be insufficient to fully restore GABA concentrations within the 

hippocampus (Xu et al. 2015). Graciotti et al. (2008) speculated that an increase in inhibitory 

transmitter release specifically onto CA1 neurons may also occur via a retrograde signalling 

system, possibly involving pre-synaptically expressed scaffolding proteins such as neurexins 

(Craig and Kang 2007; Kang et al. 2008; Pilgram et al. 2010; Sudhof 2008; Sugita et al. 

2001; Zhang et al. 2010). Not only do neurexins form direct structural links with the DAPC, 
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which, in turn, facilitates the post-synaptic clustering of GABAA receptors (Fritschy et al. 

2012; Graf et al. 2004; Krasowska et al. 2014; Kueh et al. 2008), but they also modulate pre-

synaptic release of neurotransmitters and vesicle cycling (Futai et al. 2007; Olsen et al. 2006; 

Sugita et al. 2001; Tanaka et al. 2000). Evidence for such a retrograde signalling mechanism 

has emerged from studies on Drosophila, where dystrophin isoforms retrogradely regulate 

pre-synaptic transmitter release from both inhibitory as well as excitatory synapses 

(Bogdanik et al. 2008; Fradkin et al. 2008; van der Plas et al. 2006; Wairkar et al. 2008). 

However, conclusive evidence for the existence of such a retrograde signalling mechanism 

occurring specifically at mammalian inhibitory synapses, where Dp427 is exclusively 

expressed, remains elusive. Tantalisingly, Vaillend and colleagues have demonstrated that 

dystrophin loss affects pre-synaptic ultrastructural organisation in hippocampal excitatory 

glutamatergic synapses, by increasing not only the size of their PSDs (Miranda et al. 2009) 

but also the density of docked vesicles (Miranda et al. 2011). Such a change in the density of 

docked vesicles, possibly in conjunction with reduced dendritic inhibition (Vaillend and 

Billard 2002; Vaillend et al. 1999), is likely to alter excitatory synapse physiology and may 

account for the facilitated induction of NMDA-dependent LTP observed at Schaffer 

collateral-CA1 synapses in mdx mice (Vaillend and Billard 2002). Moreover, such a 

potentiation of excitatory output could, at least partially, account for the increase in mIPSC 

frequency observed in CA1 of mdx mice (Graciotti et al. 2008) as it is well established that 

hippocampal inhibitory interneurons are directly innervated by glutamatergic excitatory 

projections emanating from the pyramidal cell layer (Gulyas et al. 1993; McBain and 

Dingledine 1993). It is as yet unclear how a cytoskeletal protein expressed exclusively at 

inhibitory CA1 synapses can exert such an effect on excitatory synapses, but dysregulation of 

calcium homeostasis (Hopf and Steinhardt 1992; Tuckett et al. 2015), defective brain 

vascular permeability (Goodnough et al. 2014; Nico et al. 2004) and/or dysbindin 
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relocalization (Miranda et al. 2011) have been posited as possible mechanisms for this 

phenomenon.  

 

A role for immune molecules in synaptic transmission 

Although not yet investigated in dystrophin-deficient models, it is interesting to note that 

receptors for immune molecules in the CNS have expression patterns that bear similarities to 

the synaptic receptors discussed previously. The major histocompatibility complex class I 

(MHCI) is a complex molecule which provides the cellular signature that allows the immune 

system to differentiate between self and non-self. MHCI is expressed in neurons (Corriveau 

et al. 1998) of the thalamus, hippocampus, cortex and cerebellum (Marin and Kipnis 2013), 

the latter three showing overlap with brain regions expressing DP427 (Anderson et al. 2002; 

Bies et al. 1992; Chamberlain et al. 1988; Chelly et al. 1990; Comim et al. 2011; Cyrulnik 

and Hinton 2008; Knuesel et al. 2000; Lidov 1996; Sekiguchi et al. 2009). MHCI is 

upregulated in skeletal muscle from muscular dystrophy patients (Nagappa et al. 2013) but it 

is not yet known if there are changes in expression of this immune molecule in the CNS of 

DMD patients. However, MHCI has been detected clustered at the post-synaptic density of 

synapses of hippocampal neurons, (Goddard et al. 2007), the site of expression of post-

synaptic receptors which are altered in dystrophic hippocampal neurons. Furthermore, 

hippocampal neurons from a MHCI knockout mouse display enhanced synaptic plasticity and 

potentiated LTP (Goddard et al. 2007; Huh et al. 2000), features which bear a striking 

similarity to those reported in mdx mice (Dallerac et al. 2011; Vaillend and Billard 2002; 

Vaillend et al. 1998; Vaillend et al. 2004; Vaillend et al. 1999).  

 

Cytokines represent another class of immune molecules which are crucial to the homeostatic 

function of the nervous system and, given the chronic elevations in their secretion in 
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dystrophinopathies, they are discussed below in relation to their potential role in the changes 

in hippocampal structure and function in dystrophic neurons.  

 

Role of cytokines in hippocampal function 

IL-1β 

IL-1β is crucial for the generation of NMDA-dependent LTP in hippocampal CA1 neurons 

(Schneider et al. 1998), and reduced signalling through the IL-1 receptors results in impaired 

learning (Goshen et al. 2007). However, overexpression, or elevated levels of IL-1β also 

results in memory deficits (Moore et al. 2009) and decreased synaptic strength (Ross et al. 

2003). In terms of its effects on post-synaptic receptors, IL-1β can increase the surface 

expression of hippocampal GABAA receptors and potentiate GABA-evoked inhibitory 

currents (Wang et al. 2012), features that have been observed in mdx hippocampal neurons 

(Graciotti et al. 2008). A relationship between IL-1β and cholinergic signalling in the 

hippocampus has also been postulated as IL-1β caused a reduction in extracellular 

acetylcholine in this brain region (Rada et al. 1991) an effect that was also correlated with 

memory defects (Taepavarapruk and Song 2010). This could perhaps be compared to the 

reduced sensitivity of the mdx hippocampus to cholinergic agonists (Coccurello et al. 2002) 

due to decreased nAChR binding sites (Ghedini et al. 2012)  

 

IL-6 

Local increases in hippocampal IL-6 are observed following intense synaptic or neuronal 

activity such as that induced by LTP protocols (Balschun et al. 2004; Jankowsky et al. 2000). 

However, in contrast to the effects of IL-1β, Balschun et al. found that inhibition of IL-6-

mediated signalling in ‘healthy’ brains actually improved long-term memory, suggesting a 

possible negative regulatory role for IL-6 on LTP by limiting memory acquisition (Balschun 
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et al. 2004; Li et al. 1997). These findings correlate with in vivo behavioral studies which 

have demonstrated that neutralisation of IL-6 improved long term spatial memory in rats 

(Balschun et al. 2004), and that IL-6 knockout mice displayed an enhanced capacity for 

learning and memory (Braida et al. 2004). However, conversely, another study found that 

hippocampus-dependent learning was impaired in IL-6 knockout mice (Baier et al. 2009). 

Over-expression of IL-6 results in alterations in both inhibitory and excitatory synapses, and 

abnormal dendritic spine formation. These structural alterations are associated with 

impairments in cognitive abilities and deficits in learning, similar to symptoms exhibited by 

individuals with autism (Wei et al. 2012). This is an interesting finding as a significant 

number of boys with DMD also display behaviors on the autistic spectrum (Banihani et al. 

2015). 

 

Prenatal exposure to IL-6 in rats leads to increased levels of IL-6 in the hippocampus which 

are associated with altered expression of NMDA and GABAA receptors and deficits in spatial 

learning (Samuelsson et al. 2006). This has led to the proposal that exposure to pathological 

levels of IL-6 during critical stages of neurodevelopment may contribute to deficits in 

cognitive function. Although it is currently unknown if IL-6 is elevated locally in brain 

regions such as the hippocampus in mdx mice, given that elevated IL-6 levels are a hallmark 

of dystrophin-deficiency and are elevated in mdx plasma (Pelosi et al. 2015), it is possible 

that this may be a factor in dystrophinopathy-associated hippocampal dysfunction.  

 

TNFα 

TNFα concentration is elevated in both DMD patients and in mdx mice, with glial cells 

representing a likely sources of endogenous TNF (Stellwagen and Malenka 2006). 

Interestingly, in an mdx IL-6 mouse, where IL-6 levels are elevated, TNFα levels are also 
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potentiated (Pelosi et al. 2015). Activation of hippocampal TNF 1 receptors increases the 

frequency and amplitude of mEPSCs, which stimulates an increase in the expression of 

AMPA receptors and an overall increase in synaptic strength (Beattie et al. 2002; Dummer et 

al. 2002). Weakening of inhibitory synaptic input also contributes to the excitatory effects of 

TNFα on hippocampal neurons, which may be due to a persistent decrease of inhibitory 

synaptic strength caused by downregulation of membrane expressed GABAA receptors 

(Pribiag and Stellwagen 2013). While not consistent with the changes in electrophysiological 

properties of dystrophin deficient hippocampal neurons, it remains to be elucidated whether 

this inflammatory molecule may have a compensatory role in cognitive dysfunction in 

dystrophinopathies.  

 

Other possible contributory factors in DMD-related cognitive dysfunction 

Nitric oxide (NO) 

In a manner similar to that proposed for elevated levels of peripherally-released cytokines 

altering hippocampal function, others have discovered that peripherally released NO, which 

is decreased in DMD, also exerts neuromodulatory effects. DMD patients and mdx mice 

display up to an 80% reduction of nitric oxide synthase (NOS) activity as loss of dystrophin 

leads to a secondary loss of nNOS from muscle (Brenman et al. 1995; Chang et al. 1996). As 

muscle is the primary source for systemic NO, and this is reduced in DMD patients, Deng 

and colleagues investigated if this impacted upon hippocampal neurogenesis in the mdx 

mouse. Adult neurogenesis within the hippocampus is a proposed means by which alterations 

in synaptic plasticity and memory formation may occur. They found that neurogenesis was 

disrupted in mdx hippocampal tissue (Deng et al. 2009). However, normal neurogenesis was 

restored by increasing muscle, and subsequently serum, NO levels (Deng et al. 2009), 
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evidence that further supports the potential role of peripheral molecules in hippocampal 

dysfunction in dystrophinopathies. 

 

Mitochondrial dysfunction  

Loss of dystrophin in skeletal muscle results in structurally unstable fibres which are more 

porous to the extracellular environment resulting in excessive influx of calcium. Poor calcium 

handling and subsequent activation of proteases and/or lipases leads to calcium overload in 

the cellular mitochondria and subsequent muscle degeneration. As mitochondrial ATP is 

crucial to a myriad of physiological functions, dysregulation of cellular energy homeostasis is 

likely to contribute to dystrophinopathy-associated pathophysiology, including impaired 

intracellular calcium signalling in skeletal muscle and in the brain (Timpani et al. 2015). 

Tracey et al. (1996) found evidence of raised inorganic phosphate ratio, relative to ATP, 

phosphocreatine and phosphomonomers, in DMD brains (Tracey et al. 1995) and there is also 

evidence that the concentration of choline-containing compounds is increased in DMD brains 

(Kato et al. 1997; Rae et al. 1998), which is usually interpreted as being due to increased 

membrane turnover and degradation, or decreased membrane stability, also seen in a number 

of other brain disorders (Anderson et al. 2002). Although in contrast, a more recent study 

showed a deficit in total choline in the brains of DMD patients (Kreis et al. 2011).  

 

The mdx mouse has raised hippocampal choline-containing compounds (Rae et al. 2002; Xu 

et al. 2015), inorganic phosphate, pH and reduced total creatine (Tracey et al. 1996). The fact 

that these metabolic changes are also detected in muscle (Tracey et al. 1996) suggest bio-

energetic similarities in other tissues that lack dystrophin. Uptake of glucose in mdx mice is 

increased relative to controls, reflecting an increase in metabolism, a finding which may 

indicate increased brain activity due to decreased GABA-evoked inhibition (Rae et al. 2002). 
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The fact that the GABA agonist muscimol, had a reduced dampening effect on glucose 

metabolism in mdx brains (Rae et al. 2002) is consistent with this theory in addition to the 

reduction and abnormal clustering of synaptically-located GABAA receptors in the 

hippocampus, cerebellum, amygdala and cerebral cortex (Knuesel et al. 1999; Knuesel et al. 

2001; Kueh et al. 2011; Kueh et al. 2008; Perronnet and Vaillend 2010; Sekiguchi et al. 

2009). A recent study has demonstrated a significant deficit in the amount  of GABA within 

the hippocampal region of mdx mice and raised concentrations of the anti-oxidant molecule 

glutathione (Xu et al. 2015), a likely compensatory development against the increased 

quantity of reactive oxygen species produced by increased metabolism.  

 

Such alterations in cellular metabolism, energy requirements and redox status in mdx brain 

tissue might also be expected to influence neuronal responses to hypoxia in dystrophic brain 

tissue. And indeed, this has proved to the case, with CA1 hippocampal neurons displaying 

particular sensitivity to hypoxic insults, with greater and more rapidly developing decreases 

in synaptic transmission relative to control brain slices at Schaffer collateral – CA1 synapses 

(Godfraind et al. 2000; Mehler et al. 1992). This altered response to hypoxia of mdx mouse 

hippocampal neurons may be due to a combination of factors including reduced GABAA 

receptor clustering in dystrophic neurons, as GABAA receptor activation exacerbates oxygen-

glucose deprivation-induced neuronal injury (Muir et al. 1996). However, Godfraind et al., 

(2000) hypothesised that the more rapid failure of nerve conduction in the dystrophic tissue 

under hypoxic conditions was due to ‘excessive leakiness’ of nerves and poor regulation of 

ionic homeostasis, possibly due to Na-K and/or calcium ATPase activity. Disrupted cellular 

calcium ATPase activity, with a knock on effect on cellular calcium homeostasis, has been 

well described in dystrophic muscle and also seems to be mirrored in certain neural tissues. 

Although studies have not shown that elevated intracellular calcium levels or the number of 
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calcium-positive neurons were actually associated with frank neuronal loss per se in the mdx 

mouse (Tuckett et al 2014), modulation of synaptic plasticity (both LTP and LTD) is a 

calcium-dependent process that is absolutely contingent upon tight spatiotemporal control of 

intracellular neuronal calcium concentration (for review see Baker et al. 2013; Malenka and 

Bear 2004). Therefore, any dysregulation of calcium homeostasis or calcium signalling 

pathways would undoubtedly disrupt both short- and long-term plasticity in affected neurons 

and may at least partially account for some of the cognitive deficits observed in the mdx 

mice.  

 

Matrix Metalloproteinases  

Matrix metalloproteinases (MMPs) are a large family of zinc-dependent extracellular and 

membrane-bound endopeptidases that can cause proteolysis of selected components of the 

extracellular matrix in skeletal muscle. MMP-9 is one member of the family that is expressed 

at low levels under basal conditions but which can be induced by numerous factors, including 

inflammatory cytokines (Hu et al. 2007). MMP-9 is also important in synaptic plasticity, 

thereby contributing to learning and memory. For example, MMP-9 knockout mice exhibited 

deficits in particular components of CA1 LTP and spatial learning (Nagy et al. 2006). 

Furthermore, pharmacological inhibition of MMP-9 resulted in destabilization of LTP 

(Wojtowicz and Mozrzymas 2010). MMP-9 is a key molecule in the regulation of dendritic 

spine morphology and has been implicated in several neurological disorders (Stawarski et al. 

2014). In the context of the dystrophinopathies, MMP-9 is elevated in mdx skeletal muscle 

(Kherif et al. 1999; Li et al. 2009). Thus, MMP-9 represents a possible molecule, possibly 

secondary to raised cytokine levels, which could be an important contributory factor in 

hippocampal dysfunction in DMD patients. 
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Stress  

Immune cells respond not only to tissue damage and infection by secreting cytokines, but 

also to stress, both physical and psychological in nature. Thus, stress may also indirectly 

contribute to inflammatory-related hippocampal dysfunction in DMD patients. However, the 

hippocampus is also directly affected by stress factors and is, in fact, susceptible to damage 

by acute psychological stress, resulting in difficulties in memory retrieval and the acquisition 

and storage of new memories (Sapolsky 1996). In DMD patients the contributory effects of 

chronic corticosteroid exposure on behavior is controversial. Long-term treatment with 

corticosteroids, used in DMD to suppress chronic inflammation, is associated with changes in 

mood, memory and attention (Brown et al. 2008), although not all studies detected such 

changes (Banihani et al. 2015). Nonetheless, DMD patients do exhibit an increased incidence 

of anxiety and depression (Banihani et al. 2015; Fitzpatrick et al. 1986; Pangalila et al. 2015). 

Mdx (Manning et al. 2014) and also mdx3cv (Vaillend and Ungerer 1999) mice, which lack 

Dp427, Dp71 and Dp140 display stress-related behaviors comparable to symptoms of 

depression and anxiety, although not all behavioral assessments detected signs of anxiety in 

dystrophic mice (Sekiguchi et al. 2009). Enhanced freezing behavior in response to restraint 

stress, which is not painful but induces a psychological stress, was also observed in mdx mice 

but it should be noted that this was not associated with any change in corticosteroid levels 

(Yamamoto et al. 2010). Nonetheless, we have observed the efficacy of the tricyclic anti-

depressant, amitriptyline in alleviating depressive and anxiety-like behaviors displayed by 

mdx mice, changes that were linked to altered levels of hippocampal neurotransmitters 

(Manning et al. 2014). It remains to be seen if loss of dystrophin from the CNS contributes 

directly to a heightened stress responses or if these effects are secondary to the disease itself. 

Moreover, further research must be carried out to determine if cross talk between the stress 

axis and the immune system are important in cognitive dysfunction in DMD.  
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Conclusions 

DMD is a devastating disease characterized by a progressive loss of physical function and 

premature death in affected boys. Despite the continuing absence of an effective cure, 

palliative treatments, including prednisone and respiratory ventilation, are extending the life 

expectancy and life quality of patients. As such, investigation into the cognitive deficits and 

co-morbid CNS disorders associated with loss of dystrophin from neurons in the CNS is an 

emerging area of research. Boys with DMD exhibit non-progressing cognitive dysfunction, 

with deficits in verbal, short-term and working memory. In the genetically comparable 

dystrophin-deficient mdx mouse model of DMD, specific deficits in synaptogenesis and 

channel clustering at synapses is evident and deficits in some, but not all, types of learning 

and memory have been identified. Key changes underlying hippocampal dysfunction in 

dystrophin-deficient models are alterations in the number and clustering of post-synaptic 

receptors. The absence of dystrophin results in malformed and dysfunctional synapses which 

are likely to disturb the precise and coordinated neural network activity crucial to the 

formation and consolidation of memories in the hippocampus. Indeed, loss of inhibitory input 

in the mdx hippocampus was associated with abnormally enhanced NMDA-induced Schaffer 

collateral - CA1 LTP, which was sensitive to a GABAA antagonist. It is as yet unclear how 

enhanced LTP in a dystrophin-deficient hippocampus results in deficits in learning and 

memory. However, other studies have revealed that loss of neuronal dystrophin is associated 

with alterations in cellular metabolism, energy requirements and redox status, resulting in 

hippocampal neurons being particularly vulnerable to hypoxic insults, all of which may 

contribute to hippocampal dysfunction. Furthermore, psychological stress can negatively 

impact upon hippocampal function resulting in difficulties in memory retrieval and the 

storage of new memories. We have also identified the potential importance of inflammatory 
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mediators, which are chronically elevated in peripheral tissue and plasma of DMD patients 

and mdx mice, in hippocampal function. Key pro-inflammatory cytokines such as IL-1β, 

TNFα and IL-6 exert neuronmodulatory effects on the hippocampus and have been linked to 

altered capacities for learning and the formation of memories. This novel research avenue 

may reveal the importance of neuroimmune interactions in the CNS of dystrophin-deficient 

patients. Whilst this is a research area still in its infancy, our understanding of both normal 

cognitive function in healthy brains, as well as specific cognitive deficits in the brains of 

those suffering from DMD will be improved by continuing research in this field.  

  



25 
 

References 

al-Qudah AA, Kobayashi J, Chuang S, Dennis M, and Ray P. Etiology of intellectual impairment in 
Duchenne muscular dystrophy. Pediatr Neurol 6: 57-59, 1990. 
Allan SM, and Rothwell NJ. Cytokines and acute neurodegeneration. Nature reviews 2: 734-744, 
2001. 
Allan SM, Tyrrell PJ, and Rothwell NJ. Interleukin-1 and neuronal injury. Nature reviews Immunology 
5: 629-640, 2005. 
Amiry-Moghaddam M, Frydenlund DS, and Ottersen OP. Anchoring of aquaporin-4 in brain: 
molecular mechanisms and implications for the physiology and pathophysiology of water transport. 
Neuroscience 129: 999-1010, 2004. 
Anderson JE, Ovalle WK, and Bressler BH. Electron microscopic and autoradiographic 
characterization of hindlimb muscle regeneration in the mdx mouse. The Anatomical record 219: 
243-257, 1987. 
Anderson JL, Head SI, Rae C, and Morley JW. Brain function in Duchenne muscular dystrophy. Brain 
: a journal of neurology 125: 4-13, 2002. 
Arechavala-Gomeza V, Kinali M, Feng L, Guglieri M, Edge G, Main M, Hunt D, Lehovsky J, Straub V, 
Bushby K, Sewry CA, Morgan JE, and Muntoni F. Revertant fibres and dystrophin traces in Duchenne 
muscular dystrophy: implication for clinical trials. Neuromuscular disorders : NMD 20: 295-301, 2010. 
Baker KD, Edwards TM, and Rickard NS. The role of intracellular calcium stores in synaptic plasticity 
and memory consolidation. Neuroscience & Biobehavioral Reviews 37: 1211-1239, 2013. 
Balschun D, Wetzel W, Del Rey A, Pitossi F, Schneider H, Zuschratter W, and Besedovsky HO. 
Interleukin-6: a cytokine to forget. FASEB J 18: 1788-1790, 2004. 
Banihani R, Smile S, Yoon G, Dupuis A, Mosleh M, Snider A, and McAdam L. Cognitive and 
Neurobehavioral Profile in Boys With Duchenne Muscular Dystrophy. Journal of child neurology 30: 
1472-1482, 2015. 
Barbujani G, Russo A, Danieli GA, Spiegler AW, Borkowska J, and Petrusewicz IH. Segregation 
analysis of 1885 DMD families: significant departure from the expected proportion of sporadic cases. 
Hum Genet 84: 522-526, 1990. 
Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, and 
Malenka RC. Control of synaptic strength by glial TNFalpha. Science (New York, NY 295: 2282-2285, 
2002. 
Bies RD, Phelps SF, Cortez MD, Roberts R, Caskey CT, and Chamberlain JS. Human and murine 
dystrophin mRNA transcripts are differentially expressed during skeletal muscle, heart, and brain 
development. Nucleic acids research 20: 1725-1731, 1992. 
Blake DJ, and Kroger S. The neurobiology of duchenne muscular dystrophy: learning lessons from 
muscle? Trends in neurosciences 23: 92-99, 2000. 
Blake DJ, Weir A, Newey SE, and Davies KE. Function and genetics of dystrophin and dystrophin-
related proteins in muscle. Physiological reviews 82: 291-329, 2002. 
Bogdanik L, Framery B, Frolich A, Franco B, Mornet D, Bockaert J, Sigrist SJ, Grau Y, and Parmentier 
ML. Muscle dystroglycan organizes the postsynapse and regulates presynaptic neurotransmitter 
release at the Drosophila neuromuscular junction. PLoS One 3: e2084, 2008. 
Braida D, Sacerdote P, Panerai AE, Bianchi M, Aloisi AM, Iosue S, and Sala M. Cognitive function in 
young and adult IL (interleukin)-6 deficient mice. Behavioural brain research 153: 423-429, 2004. 
Brenman JE, Chao DS, Xia H, Aldape K, and Bredt DS. Nitric oxide synthase complexed with 
dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82: 
743-752, 1995. 
Bresolin N, Castelli E, Comi GP, Felisari G, Bardoni A, Perani D, Grassi F, Turconi A, Mazzucchelli F, 
Gallotti D, and et al. Cognitive impairment in Duchenne muscular dystrophy. Neuromuscul Disord 4: 
359-369, 1994. 



26 
 

Brown ES, Wolfshohl J, Shad MU, Vazquez M, and Osuji IJ. Attenuation of the effects of 
corticosteroids on declarative memory with lamotrigine. Neuropsychopharmacology 33: 2376-2383, 
2008. 
Brunig I, Suter A, Knuesel I, Luscher B, and Fritschy JM. GABAergic terminals are required for 
postsynaptic clustering of dystrophin but not of GABA(A) receptors and gephyrin. J Neurosci 22: 
4805-4813, 2002. 
Bulfield G, Siller WG, Wight PA, and Moore KJ. X chromosome-linked muscular dystrophy (mdx) in 
the mouse. Proc Natl Acad Sci U S A 81: 1189-1192, 1984. 
Calsavara AC, Soriani FM, Vieira LQ, Costa PA, Rachid MA, and Teixeira AL. TNFR1 absence protects 
against memory deficit induced by sepsis possibly through over-expression of hippocampal BDNF. 
Metabolic brain disease 30: 669-678, 2015. 
Carretta D, Santarelli M, Sbriccoli A, Pinto F, Catini C, and Minciacchi D. Spatial analysis reveals 
alterations of parvalbumin- and calbindin-positive local circuit neurons in the cerebral cortex of 
mutant mdx mice. Brain Res 1016: 1-11, 2004. 
Carretta D, Santarelli M, Vanni D, Carrai R, Sbriccoli A, Pinto F, and Minciacchi D. The organisation 
of spinal projecting brainstem neurons in an animal model of muscular dystrophy. A retrograde 
tracing study on mdx mutant mice. Brain Res 895: 213-222, 2001. 
Carretta D, Santarelli M, Vanni D, Ciabatti S, Sbriccoli A, Pinto F, and Minciacchi D. Cortical and 
brainstem neurons containing calcium-binding proteins in a murine model of Duchenne's muscular 
dystrophy: selective changes in the sensorimotor cortex. The Journal of comparative neurology 456: 
48-59, 2003. 
Chahbouni M, Escames G, Venegas C, Sevilla B, Garcia JA, Lopez LC, Munoz-Hoyos A, Molina-
Carballo A, and Acuna-Castroviejo D. Melatonin treatment normalizes plasma pro-inflammatory 
cytokines and nitrosative/oxidative stress in patients suffering from Duchenne muscular dystrophy. 
Journal of pineal research 48: 282-289, 2010. 
Chamberlain JS, Pearlman JA, Muzny DM, Gibbs RA, Ranier JE, Caskey CT, and Reeves AA. 
Expression of the murine Duchenne muscular dystrophy gene in muscle and brain. Science (New 
York, NY) 239: 1416-1418, 1988. 
Chang WJ, Iannaccone ST, Lau KS, Masters BS, McCabe TJ, McMillan K, Padre RC, Spencer MJ, 
Tidball JG, and Stull JT. Neuronal nitric oxide synthase and dystrophin-deficient muscular dystrophy. 
Proceedings of the National Academy of Sciences of the United States of America 93: 9142-9147, 
1996. 
Chaussenot R, Edeline JM, Le Bec B, El Massioui N, Laroche S, and Vaillend C. Cognitive dysfunction 
in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from 
sensory to executive processes. Neurobiology of learning and memory 124: 111-122, 2015. 
Chelly J, Hamard G, Koulakoff A, Kaplan JC, Kahn A, and Berwald-Netter Y. Dystrophin gene 
transcribed from different promoters in neuronal and glial cells. Nature 344: 64-65, 1990. 
Coccurello R, Castellano C, Paggi P, Mele A, and Oliverio A. Genetically dystrophic mdx/mdx mice 
exhibit decreased response to nicotine in passive avoidance. Neuroreport 13: 1219-1222, 2002. 
Cohen EJ, Quarta E, Fulgenzi G, and Minciacchi D. Acetylcholine, GABA and neuronal networks: A 
working hypothesis for compensations in the dystrophic brain. Brain Research Bulletin 110: 1-13, 
2015. 
Comim CM, Moraz T, Abreu I, Fraga DB, Ghedim FV, Mildner N, Tuon L, Vainzof M, Zugno AI, and 
Quevedo J. Reduction of acethylcolinesterase activity in the brain of mdx mice. Neuromuscul Disord 
21: 359-362, 2011. 
Corriveau RA, Huh GS, and Shatz CJ. Regulation of class I MHC gene expression in the developing 
and mature CNS by neural activity. Neuron 21: 505-520, 1998. 
Craig AM, and Kang Y. Neurexin-neuroligin signaling in synapse development. Current opinion in 
neurobiology 17: 43-52, 2007. 
Cyrulnik SE, and Hinton VJ. Duchenne muscular dystrophy: a cerebellar disorder? Neuroscience and 
biobehavioral reviews 32: 486-496, 2008. 



27 
 

Dallerac G, Perronnet C, Chagneau C, Leblanc-Veyrac P, Samson-Desvignes N, Peltekian E, Danos O, 
Garcia L, Laroche S, Billard JM, and Vaillend C. Rescue of a dystrophin-like protein by exon skipping 
normalizes synaptic plasticity in the hippocampus of the mdx mouse. Neurobiol Dis 43: 635-641, 
2011. 
de Brouwer AP, Nabuurs SB, Verhaart IE, Oudakker AR, Hordijk R, Yntema HG, Hordijk-Hos JM, 
Voesenek K, de Vries BB, van Essen T, Chen W, Hu H, Chelly J, den Dunnen JT, Kalscheuer VM, 
Aartsma-Rus AM, Hamel BC, van Bokhoven H, and Kleefstra T. A 3-base pair deletion, 
c.9711_9713del, in DMD results in intellectual disability without muscular dystrophy. Eur J Hum 
Genet 22: 480-485, 2014. 
De Paepe B, and De Bleecker JL. Cytokines and chemokines as regulators of skeletal muscle 
inflammation: presenting the case of Duchenne muscular dystrophy. Mediators of inflammation 
2013: 540370, 2013. 
De Pasquale L, D'Amico A, Verardo M, Petrini S, Bertini E, and De Benedetti F. Increased muscle 
expression of interleukin-17 in Duchenne muscular dystrophy. Neurology 78: 1309-1314, 2012. 
Del Tongo C, Carretta D, Fulgenzi G, Catini C, and Minciacchi D. Parvalbumin-positive GABAergic 
interneurons are increased in the dorsal hippocampus of the dystrophic mdx mouse. Acta 
neuropathologica 118: 803-812, 2009. 
Deng B, Glanzman D, and Tidball JG. Nitric oxide generated by muscle corrects defects in 
hippocampal neurogenesis and neural differentiation caused by muscular dystrophy. The Journal of 
physiology 587: 1769-1778, 2009. 
Dubowitz V, and Crome L. The central nervous system in Duchenne muscular dystrophy. Brain 92: 
805-808, 1969. 
Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA, and Theofilopoulos 
AN. T cell homeostatic proliferation elicits effective antitumor autoimmunity. The Journal of clinical 
investigation 110: 185-192, 2002. 
Evans NP, Misyak SA, Robertson JL, Bassaganya-Riera J, and Grange RW. Immune-mediated 
mechanisms potentially regulate the disease time-course of duchenne muscular dystrophy and 
provide targets for therapeutic intervention. PM & R : the journal of injury, function, and 
rehabilitation 1: 755-768, 2009. 
Felisari G, Martinelli Boneschi F, Bardoni A, Sironi M, Comi GP, Robotti M, Turconi AC, Lai M, 
Corrao G, and Bresolin N. Loss of Dp140 dystrophin isoform and intellectual impairment in 
Duchenne dystrophy. Neurology 55: 559-564, 2000. 
Fitzpatrick C, Barry C, and Garvey C. Psychiatric disorder among boys with Duchenne muscular 
dystrophy. Dev Med Child Neurol 28: 589-595, 1986. 
Fradkin LG, Baines RA, van der Plas MC, and Noordermeer JN. The dystrophin Dp186 isoform 
regulates neurotransmitter release at a central synapse in Drosophila. J Neurosci 28: 5105-5114, 
2008. 
Fritschy JM, Panzanelli P, and Tyagarajan SK. Molecular and functional heterogeneity of GABAergic 
synapses. Cellular and molecular life sciences : CMLS 69: 2485-2499, 2012. 
Fuenzalida M, Espinoza C, Perez MA, Tapia-Rojas C, Cuitino L, Brandan E, and Inestrosa NC. Wnt 
signaling pathway improves central inhibitory synaptic transmission in a mouse model of Duchenne 
muscular dystrophy. Neurobiol Dis 86: 109-120, 2016. 
Futai K, Kim MJ, Hashikawa T, Scheiffele P, Sheng M, and Hayashi Y. Retrograde modulation of 
presynaptic release probability through signaling mediated by PSD-95-neuroligin. Nature 
neuroscience 10: 186-195, 2007. 
Gaffen SL. Structure and signalling in the IL-17 receptor family. Nature reviews Immunology 9: 556-
567, 2009. 
Gardoni F, Boraso M, Zianni E, Corsini E, Galli CL, Cattabeni F, Marinovich M, Di Luca M, and Viviani 
B. Distribution of interleukin-1 receptor complex at the synaptic membrane driven by interleukin-
1beta and NMDA stimulation. Journal of neuroinflammation 8: 14, 2011. 



28 
 

Ghedini PC, Avellar MC, De Lima TC, Lima-Landman MT, Lapa AJ, and Souccar C. Quantitative 
changes of nicotinic receptors in the hippocampus of dystrophin-deficient mice. Brain Res 1483: 96-
104, 2012. 
Glass CK, Saijo K, Winner B, Marchetto MC, and Gage FH. Mechanisms underlying inflammation in 
neurodegeneration. Cell 140: 918-934, 2010. 
Gloss D, Moxley RT, Ashwal S, and Oskoui M. Practice guideline update summary: Corticosteroid 
treatment of Duchenne muscular dystrophy Report of the Guideline Development Subcommittee of 
the American Academy of Neurology. Neurology 86: 465-472, 2016. 
Goddard CA, Butts DA, and Shatz CJ. Regulation of CNS synapses by neuronal MHC class I. 
Proceedings of the National Academy of Sciences of the United States of America 104: 6828-6833, 
2007. 
Godfraind JM, Tekkok SB, and Krnjevic K. Hypoxia on hippocampal slices from mice deficient in 
dystrophin (mdx) and isoforms (mdx3cv). J Cereb Blood Flow Metab 20: 145-152, 2000. 
Goodnough CL, Gao Y, Li X, Qutaish MQ, Goodnough LH, Molter J, Wilson D, Flask CA, and Yu X. 
Lack of dystrophin results in abnormal cerebral diffusion and perfusion in vivo. NeuroImage 102 Pt 2: 
809-816, 2014. 
Gorecki DC, and Barnard EA. Specific expression of G-dystrophin (Dp71) in the brain. Neuroreport 6: 
893-896, 1995. 
Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, and 
Yirmiya R. A dual role for interleukin-1 in hippocampal-dependent memory processes. 
Psychoneuroendocrinology 32: 1106-1115, 2007. 
Graciotti L, Minelli A, Minciacchi D, Procopio A, and Fulgenzi G. GABAergic miniature spontaneous 
activity is increased in the CA1 hippocampal region of dystrophic mdx mice. Neuromuscular 
Disorders 18: 220-226, 2008. 
Graf ER, Zhang X, Jin SX, Linhoff MW, and Craig AM. Neurexins induce differentiation of GABA and 
glutamate postsynaptic specializations via neuroligins. Cell 119: 1013-1026, 2004. 
Griffin WS. Inflammation and neurodegenerative diseases. The American journal of clinical nutrition 
83: 470S-474S, 2006. 
Gulyas AI, Miles R, Sik A, Toth K, Tamamaki N, and Freund TF. Hippocampal pyramidal cells excite 
inhibitory neurons through a single release site. Nature 366: 683-687, 1993. 
Haenggi T, and Fritschy JM. Role of dystrophin and utrophin for assembly and function of the 
dystrophin glycoprotein complex in non-muscle tissue. Cellular and molecular life sciences : CMLS 63: 
1614-1631, 2006. 
Haenggi T, Soontornmalai A, Schaub MC, and Fritschy JM. The role of utrophin and Dp71 for 
assembly of different dystrophin-associated protein complexes (DPCs) in the choroid plexus and 
microvasculature of the brain. Neuroscience 129: 403-413, 2004. 
Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, and Kunkel LM. 
Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal 
skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America 99: 
15000-15005, 2002. 
Hendriksen RGF, Hoogland G, Schipper S, Hendriksen JGM, Vles JSH, and Aalbers MW. A possible 
role of dystrophin in neuronal excitability: A review of the current literature. Neuroscience & 
Biobehavioral Reviews 51: 255-262, 2015. 
Hinton VJ, De Vivo DC, Nereo NE, Goldstein E, and Stern Y. Poor verbal working memory across 
intellectual level in boys with Duchenne dystrophy. Neurology 54: 2127-2132, 2000. 
Hinton VJ, De Vivo DC, Nereo NE, Goldstein E, and Stern Y. Selective deficits in verbal working 
memory associated with a known genetic etiology: the neuropsychological profile of duchenne 
muscular dystrophy. Journal of the International Neuropsychological Society : JINS 7: 45-54, 2001. 
Hinton VJ, Fee RJ, De Vivo DC, and Goldstein E. Poor facial affect recognition among boys with 
duchenne muscular dystrophy. Journal of autism and developmental disorders 37: 1925-1933, 2007. 



29 
 

Hinton VJ, Nereo NE, Fee RJ, and Cyrulnik SE. Social behavior problems in boys with Duchenne 
muscular dystrophy. Journal of developmental and behavioral pediatrics : JDBP 27: 470-476, 2006. 
Hopf FW, and Steinhardt RA. Regulation of intracellular free calcium in normal and dystrophic 
mouse cerebellar neurons. Brain Res 578: 49-54, 1992. 
Hu J, Van den Steen PE, Sang QX, and Opdenakker G. Matrix metalloproteinase inhibitors as 
therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 6: 480-498, 2007. 
Huang P, Zhao XS, Fields M, Ransohoff RM, and Zhou L. Imatinib attenuates skeletal muscle 
dystrophy in mdx mice. FASEB J 23: 2539-2548, 2009. 
Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, and Shatz CJ. Functional requirement for 
class I MHC in CNS development and plasticity. Science (New York, NY 290: 2155-2159, 2000. 
Huynh T, Uaesoontrachoon K, Quinn JL, Tatem KS, Heier CR, Van Der Meulen JH, Yu Q, Harris M, 
Nolan CJ, Haegeman G, Grounds MD, and Nagaraju K. Selective modulation through the 
glucocorticoid receptor ameliorates muscle pathology in mdx mice. The Journal of pathology 231: 
223-235, 2013. 
Inestrosa NC, and Arenas E. Emerging roles of Wnts in the adult nervous system. Nature reviews 
Neuroscience 11: 77-86, 2010. 
Itoh K, Jinnai K, Tada K, Hara K, Itoh H, and Takahashi K. Multifocal glial nodules in a case of 
Duchenne muscular dystrophy with severe mental retardation. Neuropathology 19: 322-327, 1999. 
Jagadha V, and Becker LE. Brain morphology in Duchenne muscular dystrophy: a Golgi study. Pediatr 
Neurol 4: 87-92, 1988. 
Jankowsky JL, Derrick BE, and Patterson PH. Cytokine responses to LTP induction in the rat 
hippocampus: a comparison of in vitro and in vivo techniques. Learning & memory 7: 400-412, 2000. 
Jueptner M, and Weiller C. Review: does measurement of regional cerebral blood flow reflect 
synaptic activity? Implications for PET and fMRI. NeuroImage 2: 148-156, 1995. 
Kang Y, Zhang X, Dobie F, Wu H, and Craig AM. Induction of GABAergic postsynaptic differentiation 
by alpha-neurexins. The Journal of biological chemistry 283: 2323-2334, 2008. 
Kato T, Nishina M, Matsushita K, Hori E, Akaboshi S, and Takashima S. Increased cerebral choline-
compounds in Duchenne muscular dystrophy. Neuroreport 8: 1435-1437, 1997. 
Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier JG, Verdiere-Sahuque M, Fardeau M, and 
Alameddine HS. Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a 
study in experimentally injured and mdx muscles. Dev Biol 205: 158-170, 1999. 
Kim TW, Wu K, Xu JL, and Black IB. Detection of dystrophin in the postsynaptic density of rat brain 
and deficiency in a mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 89: 
11642-11644, 1992. 
Knuesel I, Bornhauser BC, Zuellig RA, Heller F, Schaub MC, and Fritschy JM. Differential expression 
of utrophin and dystrophin in CNS neurons: an in situ hybridization and immunohistochemical study. 
The Journal of comparative neurology 422: 594-611, 2000. 
Knuesel I, Mastrocola M, Zuellig RA, Bornhauser B, Schaub MC, and Fritschy JM. Altered synaptic 
clustering of GABAA receptors in mice lacking dystrophin (mdx mice). The European journal of 
neuroscience 11: 4457-4462, 1999. 
Knuesel I, Zuellig RA, Schaub MC, and Fritschy JM. Alterations in dystrophin and utrophin 
expression parallel the reorganization of GABAergic synapses in a mouse model of temporal lobe 
epilepsy. The European journal of neuroscience 13: 1113-1124, 2001. 
Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, and Kunkel LM. Complete cloning of 
the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD 
gene in normal and affected individuals. Cell 50: 509-517, 1987. 
Krasowska E, Zablocki K, Gorecki DC, and Swinny JD. Aberrant location of inhibitory synaptic marker 
proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in 
duchenne muscular dystrophy. PloS one 9: e108364, 2014. 



30 
 

Kreis R, Wingeier K, Vermathen P, Giger E, Joncourt F, Zwygart K, Kaufmann F, Boesch C, and 
Steinlin M. Brain metabolite composition in relation to cognitive function and dystrophin mutations 
in boys with Duchenne muscular dystrophy. NMR in biomedicine 24: 253-262, 2011. 
Kueh SL, Dempster J, Head SI, and Morley JW. Reduced postsynaptic GABAA receptor number and 
enhanced gaboxadol induced change in holding currents in Purkinje cells of the dystrophin-deficient 
mdx mouse. Neurobiol Dis 43: 558-564, 2011. 
Kueh SL, Head SI, and Morley JW. GABA(A) receptor expression and inhibitory post-synaptic 
currents in cerebellar Purkinje cells in dystrophin-deficient mdx mice. Clinical and experimental 
pharmacology & physiology 35: 207-210, 2008. 
Kurek J, Bower J, Romanella M, and Austin L. Leukaemia inhibitory factor treatment stimulates 
muscle regeneration in the mdx mouse. Neuroscience letters 212: 167-170, 1996. 
Kuru S, Inukai A, Kato T, Liang Y, Kimura S, and Sobue G. Expression of tumor necrosis factor-alpha 
in regenerating muscle fibers in inflammatory and non-inflammatory myopathies. Acta 
neuropathologica 105: 217-224, 2003. 
Lee JS, Pfund Z, Juhasz C, Behen ME, Muzik O, Chugani DC, Nigro MA, and Chugani HT. Altered 
regional brain glucose metabolism in Duchenne muscular dystrophy: a pet study. Muscle & nerve 26: 
506-512, 2002. 
Levi S, Grady RM, Henry MD, Campbell KP, Sanes JR, and Craig AM. Dystroglycan is selectively 
associated with inhibitory GABAergic synapses but is dispensable for their differentiation. J Neurosci 
22: 4274-4285, 2002. 
Li AJ, Katafuchi T, Oda S, Hori T, and Oomura Y. Interleukin-6 inhibits long-term potentiation in rat 
hippocampal slices. Brain research 748: 30-38, 1997. 
Li H, Mittal A, Makonchuk DY, Bhatnagar S, and Kumar A. Matrix metalloproteinase-9 inhibition 
ameliorates pathogenesis and improves skeletal muscle regeneration in muscular dystrophy. Human 
molecular genetics 18: 2584-2598, 2009. 
Lidov HG. Dystrophin in the nervous system. Brain pathology 6: 63-77, 1996. 
Lidov HG, Byers TJ, and Kunkel LM. The distribution of dystrophin in the murine central nervous 
system: an immunocytochemical study. Neuroscience 54: 167-187, 1993. 
Lidov HG, Byers TJ, Watkins SC, and Kunkel LM. Localization of dystrophin to postsynaptic regions of 
central nervous system cortical neurons. Nature 348: 725-728, 1990. 
Lv SY, Zou QH, Cui JL, Zhao N, Hu J, Long XY, Sun YC, He J, Zhu CZ, He Y, and Zang YF. Decreased 
gray matter concentration and local synchronization of spontaneous activity in the motor cortex in 
Duchenne muscular dystrophy. AJNR American journal of neuroradiology 32: 2196-2200, 2011. 
Malenka RC, and Bear MF. LTP and LTD: an embarrassment of riches. Neuron 44: 5-21, 2004. 
Manning J, Kulbida R, Rai P, Jensen L, Bouma J, Singh SP, O'Malley D, and Yilmazer-Hanke D. 
Amitriptyline is efficacious in ameliorating muscle inflammation and depressive symptoms in the 
mdx mouse model of Duchenne muscular dystrophy. Experimental physiology 99: 1370-1386, 2014. 
Manning J, and O'Malley D. What has the mdx mouse model of Duchenne muscular dystrophy 
contributed to our understanding of this disease? Journal of muscle research and cell motility 36: 
155-167, 2015. 
Marin I, and Kipnis J. Learning and memory ... and the immune system. Learning & memory 20: 601-
606, 2013. 
McBain CJ, and Dingledine R. Heterogeneity of synaptic glutamate receptors on CA3 stratum 
radiatum interneurones of rat hippocampus. The Journal of physiology 462: 373-392, 1993. 
Mehler MF, Haas KZ, Kessler JA, and Stanton PK. Enhanced sensitivity of hippocampal pyramidal 
neurons from mdx mice to hypoxia-induced loss of synaptic transmission. Proc Natl Acad Sci U S A 
89: 2461-2465, 1992. 
Messina S, Vita GL, Aguennouz M, Sframeli M, Romeo S, Rodolico C, and Vita G. Activation of NF-
kappaB pathway in Duchenne muscular dystrophy: relation to age. Acta myologica : myopathies and 
cardiomyopathies : official journal of the Mediterranean Society of Myology / edited by the Gaetano 
Conte Academy for the study of striated muscle diseases 30: 16-23, 2011. 



31 
 

Minciacchi D, Del Tongo C, Carretta D, Nosi D, and Granato A. Alterations of the cortico-cortical 
network in sensori-motor areas of dystrophin deficient mice. Neuroscience 166: 1129-1139, 2010. 
Miranda R, Nudel U, Laroche S, and Vaillend C. Altered presynaptic ultrastructure in excitatory 
hippocampal synapses of mice lacking dystrophins Dp427 or Dp71. Neurobiol Dis 43: 134-141, 2011. 
Miranda R, Sebrie C, Degrouard J, Gillet B, Jaillard D, Laroche S, and Vaillend C. Reorganization of 
inhibitory synapses and increased PSD length of perforated excitatory synapses in hippocampal area 
CA1 of dystrophin-deficient mdx mice. Cerebral cortex 19: 876-888, 2009. 
Montgomery SL, and Bowers WJ. Tumor necrosis factor-alpha and the roles it plays in homeostatic 
and degenerative processes within the central nervous system. Journal of neuroimmune 
pharmacology : the official journal of the Society on NeuroImmune Pharmacology 7: 42-59, 2012. 
Moore AH, Wu M, Shaftel SS, Graham KA, and O'Banion MK. Sustained expression of interleukin-
1beta in mouse hippocampus impairs spatial memory. Neuroscience 164: 1484-1495, 2009. 
Muir JK, Lobner D, Monyer H, and Choi DW. GABAA receptor activation attenuates excitotoxicity 
but exacerbates oxygen-glucose deprivation-induced neuronal injury in vitro. J Cereb Blood Flow 
Metab 16: 1211-1218, 1996. 
Muntoni F, Mateddu A, and Serra G. Passive avoidance behaviour deficit in the mdx mouse. 
Neuromuscular disorders : NMD 1: 121-123, 1991. 
Nagappa M, Nalini A, and Narayanappa G. Major histocompatibility complex and inflammatory cell 
subtype expression in inflammatory myopathies and muscular dystrophies. Neurology India 61: 614-
621, 2013. 
Nagy V, Bozdagi O, Matynia A, Balcerzyk M, Okulski P, Dzwonek J, Costa RM, Silva AJ, Kaczmarek L, 
and Huntley GW. Matrix metalloproteinase-9 is required for hippocampal late-phase long-term 
potentiation and memory. J Neurosci 26: 1923-1934, 2006. 
Nardes F, Araujo AP, and Ribeiro MG. Mental retardation in Duchenne muscular dystrophy. J 
Pediatr (Rio J) 88: 6-16, 2012. 
Nguyen KT, Deak T, Owens SM, Kohno T, Fleshner M, Watkins LR, and Maier SF. Exposure to acute 
stress induces brain interleukin-1beta protein in the rat. J Neurosci 18: 2239-2246, 1998. 
Nico B, Paola Nicchia G, Frigeri A, Corsi P, Mangieri D, Ribatti D, Svelto M, and Roncali L. Altered 
blood-brain barrier development in dystrophic MDX mice. Neuroscience 125: 921-935, 2004. 
Oliva CA, Vargas JY, and Inestrosa NC. Wnts in adult brain: from synaptic plasticity to cognitive 
deficiencies. Frontiers in cellular neuroscience 7: 224, 2013. 
Olsen O, Moore KA, Nicoll RA, and Bredt DS. Synaptic transmission regulated by a presynaptic 
MALS/Liprin-alpha protein complex. Current opinion in cell biology 18: 223-227, 2006. 
Pangalila RF, van den Bos GA, Bartels B, Bergen M, Stam HJ, and Roebroeck ME. Prevalence of 
fatigue, pain, and affective disorders in adults with duchenne muscular dystrophy and their 
associations with quality of life. Archives of physical medicine and rehabilitation 96: 1242-1247, 
2015. 
Parames SF, Coletta-Yudice ED, Nogueira FM, Nering de Sousa MB, Hayashi MA, Lima-Landman 
MT, Lapa AJ, and Souccar C. Altered acetylcholine release in the hippocampus of dystrophin-
deficient mice. Neuroscience 269: 173-183, 2014. 
Pelosi L, Berardinelli MG, Forcina L, Spelta E, Rizzuto E, Nicoletti C, Camilli C, Testa E, Catizone A, 
De Benedetti F, and Musaro A. Increased levels of interleukin-6 exacerbate the dystrophic 
phenotype in mdx mice. Human molecular genetics 24: 6041-6053, 2015. 
Perronnet C, Chagneau C, Le Blanc P, Samson-Desvignes N, Mornet D, Laroche S, De La Porte S, and 
Vaillend C. Upregulation of brain utrophin does not rescue behavioral alterations in dystrophin-
deficient mice. Human molecular genetics 21: 2263-2276, 2012. 
Perronnet C, and Vaillend C. Dystrophins, utrophins, and associated scaffolding complexes: role in 
mammalian brain and implications for therapeutic strategies. Journal of biomedicine & 
biotechnology 2010: 849426, 2010. 
Pilgram GS, Potikanond S, Baines RA, Fradkin LG, and Noordermeer JN. The roles of the dystrophin-
associated glycoprotein complex at the synapse. Molecular neurobiology 41: 1-21, 2010. 



32 
 

Porreca E, Guglielmi MD, Uncini A, Di Gregorio P, Angelini A, Di Febbo C, Pierdomenico SD, 
Baccante G, and Cuccurullo F. Haemostatic abnormalities, cardiac involvement and serum tumor 
necrosis factor levels in X-linked dystrophic patients. Thrombosis and haemostasis 81: 543-546, 
1999. 
Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, and 
Andrade FH. A chronic inflammatory response dominates the skeletal muscle molecular signature in 
dystrophin-deficient mdx mice. Human molecular genetics 11: 263-272, 2002. 
Pribiag H, and Stellwagen D. TNF-alpha downregulates inhibitory neurotransmission through protein 
phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci 33: 15879-15893, 2013. 
Rada P, Mark GP, Vitek MP, Mangano RM, Blume AJ, Beer B, and Hoebel BG. Interleukin-1 beta 
decreases acetylcholine measured by microdialysis in the hippocampus of freely moving rats. Brain 
research 550: 287-290, 1991. 
Rae C, Griffin JL, Blair DH, Bothwell JH, Bubb WA, Maitland A, and Head S. Abnormalities in brain 
biochemistry associated with lack of dystrophin: studies of the mdx mouse. Neuromuscul Disord 12: 
121-129, 2002. 
Rae C, Scott RB, Thompson CH, Dixon RM, Dumughn I, Kemp GJ, Male A, Pike M, Styles P, and 
Radda GK. Brain biochemistry in Duchenne muscular dystrophy: a 1H magnetic resonance and 
neuropsychological study. Journal of the neurological sciences 160: 148-157, 1998. 
Rodius F, Claudepierre T, Rosas-Vargas H, Cisneros B, Montanez C, Dreyfus H, Mornet D, and 
Rendon A. Dystrophins in developing retina: Dp260 expression correlates with synaptic maturation. 
Neuroreport 8: 2383-2387, 1997. 
Rosman NP. The cerebral defect and myopathy in Duchenne muscular dystrophy. A comparative 
clinicopathological study. Neurology 20: 329-335, 1970. 
Rosman NP, and Kakulas BA. Mental deficiency associated with muscular dystrophy. A 
neuropathological study. Brain 89: 769-788, 1966. 
Ross FM, Allan SM, Rothwell NJ, and Verkhratsky A. A dual role for interleukin-1 in LTP in mouse 
hippocampal slices. Journal of neuroimmunology 144: 61-67, 2003. 
Rufo A, Del Fattore A, Capulli M, Carvello F, De Pasquale L, Ferrari S, Pierroz D, Morandi L, De 
Simone M, Rucci N, Bertini E, Bianchi ML, De Benedetti F, and Teti A. Mechanisms inducing low 
bone density in Duchenne muscular dystrophy in mice and humans. Journal of bone and mineral 
research : the official journal of the American Society for Bone and Mineral Research 26: 1891-1903, 
2011. 
Sairanen TR, Lindsberg PJ, Brenner M, Carpen O, and Siren A. Differential cellular expression of 
tumor necrosis factor-alpha and Type I tumor necrosis factor receptor after transient global 
forebrain ischemia. J Neurol Sci 186: 87-99, 2001. 
Sakamoto T, Arima T, Ishizaki M, Kawano R, Koide T, Uchida Y, Yamashita S, Kimura E, Hirano T, 
Maeda Y, and Uchino M. Regions downstream from the WW domain of dystrophin are important 
for binding to postsynaptic densities in the brain. Neuromuscul Disord 18: 382-388, 2008. 
Samuelsson AM, Jennische E, Hansson HA, and Holmang A. Prenatal exposure to interleukin-6 
results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and 
impaired spatial learning. American journal of physiology Regulatory, integrative and comparative 
physiology 290: R1345-1356, 2006. 
Sapolsky RM. Stress, Glucocorticoids, and Damage to the Nervous System: The Current State of 
Confusion. Stress (Amsterdam, Netherlands) 1: 1-19, 1996. 
Sbriccoli A, Santarelli M, Carretta D, Pinto F, Granato A, and Minciacchi D. Architectural changes of 
the cortico-spinal system in the dystrophin defective mdx mouse. Neurosci Lett 200: 53-56, 1995. 
Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, and Besedovsky HO. A neuromodulatory 
role of interleukin-1beta in the hippocampus. Proceedings of the National Academy of Sciences of 
the United States of America 95: 7778-7783, 1998. 
Schobitz B, de Kloet ER, Sutanto W, and Holsboer F. Cellular localization of interleukin 6 mRNA and 
interleukin 6 receptor mRNA in rat brain. The European journal of neuroscience 5: 1426-1435, 1993. 



33 
 

Sekiguchi M, Zushida K, Yoshida M, Maekawa M, Kamichi S, Yoshida M, Sahara Y, Yuasa S, Takeda 
S, and Wada K. A deficit of brain dystrophin impairs specific amygdala GABAergic transmission and 
enhances defensive behaviour in mice. Brain 132: 124-135, 2009. 
Septien L, Gras P, Borsotti JP, Giroud M, Nivelon JL, and Dumas R. [Mental development in 
Duchenne muscular dystrophy. Correlation of data of the brain scanner]. Pediatrie 46: 817-819, 
1991. 
Sesay AK, Errington ML, Levita L, and Bliss TV. Spatial learning and hippocampal long-term 
potentiation are not impaired in mdx mice. Neuroscience letters 211: 207-210, 1996. 
Snow WM, Anderson JE, and Jakobson LS. Neuropsychological and neurobehavioral functioning in 
Duchenne muscular dystrophy: a review. Neuroscience and biobehavioral reviews 37: 743-752, 2013. 
Sparkman NL, Buchanan JB, Heyen JR, Chen J, Beverly JL, and Johnson RW. Interleukin-6 facilitates 
lipopolysaccharide-induced disruption in working memory and expression of other proinflammatory 
cytokines in hippocampal neuronal cell layers. J Neurosci 26: 10709-10716, 2006. 
Stawarski M, Stefaniuk M, and Wlodarczyk J. Matrix metalloproteinase-9 involvement in the 
structural plasticity of dendritic spines. Front Neuroanat 8: 68, 2014. 
Stellwagen D, and Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature 440: 1054-
1059, 2006. 
Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455: 903-
911, 2008. 
Sugita S, Saito F, Tang J, Satz J, Campbell K, and Sudhof TC. A stoichiometric complex of neurexins 
and dystroglycan in brain. The Journal of cell biology 154: 435-445, 2001. 
Sun J, Zhang S, Zhang X, Zhang X, Dong H, and Qian Y. IL-17A is implicated in lipopolysaccharide-
induced neuroinflammation and cognitive impairment in aged rats via microglial activation. Journal 
of neuroinflammation 12: 165, 2015. 
Tadayoni R, Rendon A, Soria-Jasso LE, and Cisneros B. Dystrophin Dp71: the smallest but 
multifunctional product of the Duchenne muscular dystrophy gene. Molecular neurobiology 45: 43-
60, 2012. 
Taepavarapruk P, and Song C. Reductions of acetylcholine release and nerve growth factor 
expression are correlated with memory impairment induced by interleukin-1beta administrations: 
effects of omega-3 fatty acid EPA treatment. Journal of neurochemistry 112: 1054-1064, 2010. 
Tanaka H, Shan W, Phillips GR, Arndt K, Bozdagi O, Shapiro L, Huntley GW, Benson DL, and Colman 
DR. Molecular modification of N-cadherin in response to synaptic activity. Neuron 25: 93-107, 2000. 
Terrando N, Rei Fidalgo A, Vizcaychipi M, Cibelli M, Ma D, Monaco C, Feldmann M, and Maze M. 
The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive 
dysfunction. Critical care 14: R88, 2010. 
Timpani CA, Hayes A, and Rybalka E. Revisiting the dystrophin-ATP connection: How half a century 
of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. 
Medical hypotheses 85: 1021-1033, 2015. 
Torres LF, and Duchen LW. The mutant mdx: inherited myopathy in the mouse. Morphological 
studies of nerves, muscles and end-plates. Brain 110 ( Pt 2): 269-299, 1987. 
Tracey I, Dunn JF, and Radda GK. Brain metabolism is abnormal in the mdx model of Duchenne 
muscular dystrophy. Brain 119 ( Pt 3): 1039-1044, 1996. 
Tracey I, Scott RB, Thompson CH, Dunn JF, Barnes PR, Styles P, Kemp GJ, Rae CD, Pike M, and 
Radda GK. Brain abnormalities in Duchenne muscular dystrophy: phosphorus-31 magnetic 
resonance spectroscopy and neuropsychological study. Lancet (London, England) 345: 1260-1264, 
1995. 
Tuckett E, Gosetti T, Hayes A, Rybalka E, and Verghese E. Increased calcium in neurons in the 
cerebral cortex and cerebellum is not associated with cell loss in the mdx mouse model of Duchenne 
muscular dystrophy. Neuroreport 26: 785-790, 2015. 
Vaillend C, and Billard JM. Facilitated CA1 hippocampal synaptic plasticity in dystrophin-deficient 
mice: role for GABAA receptors? Hippocampus 12: 713-717, 2002. 



34 
 

Vaillend C, Billard JM, Claudepierre T, Rendon A, Dutar P, and Ungerer A. Spatial discrimination 
learning and CA1 hippocampal synaptic plasticity in mdx and mdx3cv mice lacking dystrophin gene 
products. Neuroscience 86: 53-66, 1998. 
Vaillend C, Billard JM, and Laroche S. Impaired long-term spatial and recognition memory and 
enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd(mdx) mouse. Neurobiol Dis 17: 10-
20, 2004. 
Vaillend C, Perronnet C, Ros C, Gruszczynski C, Goyenvalle A, Laroche S, Danos O, Garcia L, and 
Peltekian E. Rescue of a dystrophin-like protein by exon skipping in vivo restores GABAA-receptor 
clustering in the hippocampus of the mdx mouse. Molecular therapy : the journal of the American 
Society of Gene Therapy 18: 1683-1688, 2010. 
Vaillend C, Rendon A, Misslin R, and Ungerer A. Influence of dystrophin-gene mutation on mdx 
mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing 
tasks. Behavior genetics 25: 569-579, 1995. 
Vaillend C, and Ungerer A. Behavioral characterization of mdx3cv mice deficient in C-terminal 
dystrophins. Neuromuscul Disord 9: 296-304, 1999. 
Vaillend C, Ungerer A, and Billard JM. Facilitated NMDA receptor-mediated synaptic plasticity in the 
hippocampal CA1 area of dystrophin-deficient mice. Synapse 33: 59-70, 1999. 
van der Plas MC, Pilgram GS, Plomp JJ, de Jong A, Fradkin LG, and Noordermeer JN. Dystrophin is 
required for appropriate retrograde control of neurotransmitter release at the Drosophila 
neuromuscular junction. J Neurosci 26: 333-344, 2006. 
Vezzani A, Maroso M, Balosso S, Sanchez MA, and Bartfai T. IL-1 receptor/Toll-like receptor 
signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and 
seizures. Brain, behavior, and immunity 25: 1281-1289, 2011. 
Vezzani A, and Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact 
on neuronal excitability. Neuropharmacology 96: 70-82, 2015. 
Wairkar YP, Fradkin LG, Noordermeer JN, and DiAntonio A. Synaptic defects in a Drosophila model 
of congenital muscular dystrophy. J Neurosci 28: 3781-3789, 2008. 
Waite A, Brown SC, and Blake DJ. The dystrophin-glycoprotein complex in brain development and 
disease. Trends in neurosciences 35: 487-496, 2012. 
Waite A, Tinsley CL, Locke M, and Blake DJ. The neurobiology of the dystrophin-associated 
glycoprotein complex. Annals of medicine 41: 344-359, 2009. 
Wallis T, Bubb WA, McQuillan JA, Balcar VJ, and Rae C. For want of a nail. ramifications of a single 
gene deletion, dystrophin, in the brain of the mouse. Frontiers in bioscience : a journal and virtual 
library 9: 74-84, 2004. 
Wang DS, Zurek AA, Lecker I, Yu J, Abramian AM, Avramescu S, Davies PA, Moss SJ, Lu WY, and 
Orser BA. Memory deficits induced by inflammation are regulated by alpha5-subunit-containing 
GABAA receptors. Cell reports 2: 488-496, 2012. 
Wei H, Chadman KK, McCloskey DP, Sheikh AM, Malik M, Brown WT, and Li X. Brain IL-6 elevation 
causes neuronal circuitry imbalances and mediates autism-like behaviors. Biochimica et biophysica 
acta 1822: 831-842, 2012. 
Wojtowicz T, and Mozrzymas JW. Late phase of long-term potentiation in the mossy fiber-CA3 
hippocampal pathway is critically dependent on metalloproteinases activity. Hippocampus 20: 917-
921, 2010. 
Xu S, Shi D, Pratt SJ, Zhu W, Marshall A, and Lovering RM. Abnormalities in brain structure and 
biochemistry associated with mdx mice measured by in vivo MRI and high resolution localized (1)H 
MRS. Neuromuscul Disord 25: 764-772, 2015. 
Yamamoto K, Yamada D, Kabuta T, Takahashi A, Wada K, and Sekiguchi M. Reduction of abnormal 
behavioral response to brief restraint by information from other mice in dystrophin-deficient mdx 
mice. Neuromuscular disorders : NMD 20: 505-511, 2010. 
Yoshihara Y, Onodera H, Iinuma K, and itoyama Y. Abnormal kainic acid receptor density and 
reduced seizure susceptibility in dystrophin-deficient mdx mice. Neuroscience 117: 391-395, 2003. 



35 
 

Yoshioka M, Okuno T, Honda Y, and Nakano Y. Central nervous system involvement in progressive 
muscular dystrophy. Archives of disease in childhood 55: 589-594, 1980. 
Zhang C, Atasoy D, Arac D, Yang X, Fucillo MV, Robison AJ, Ko J, Brunger AT, and Sudhof TC. 
Neurexins physically and functionally interact with GABA(A) receptors. Neuron 66: 403-416, 2010. 

 


