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General abstract 

The black scabbardfish is a deep water species that supports commercial fisheries across a 

large area of the NE Atlantic shelf. The life history of black scabbardfish is poorly understood 

and a major unresolved issue is population structure.  In this study it was used a combination of 

methodologies to get further knowledge in the life history and population structure of A. carbo 

over its wide distribution range in the Northeast Atlantic. The new knowledge acquired during 

this study, will increase our ability to better manage this species in the NE Atlantic. 

It has been postulated that fish caught to the west of the British Isles are pre-adults that migrate 

further south (to Madeira) for spawning, implying a single panmictic population. In this study, 

specimens of Aphanopus carbo were sampled between September 2008 and May 2010 from 

two different areas: NW Scotland (French trawlers and deep water surveys) and Madeira 

Islands (longliners commercial landings). Geographical differences in reproductive state of 

scabbardfish were evident, supportive of a north-south migration theory. In the northern area, all 

specimens found were immature, while in Madeira all maturity stages were observed. In 

Madeira, spawning occurred during the fourth quarter, with peak maturity in October (males) 

and in November (females).  

The age of this species has proven difficult and has led to different and contradictory age and 

growth estimates. For this study, we used two reading interpretations to determine age and 

estimate the growth parameters. To the west of the British Isles, specimens reached a lower 

maximum age and had a higher growth rate than those caught off Madeira. These differences 

are consistent with the theory of a single population of black scabbardfish in the NE Atlantic, 

highly segregate, with smaller, immature and younger fish caught to the west of the British Isles 

and bigger and mature caught in Madeira Islands. 

The feeding ecology showed strong evidence that the diet of black scabbardfish is associated 

with the spawning migration of blue whiting, which may support a northerly feeding migration 

theory for black scabbardfish. The stable isotope analyses in the muscle of black scabbardfish 

identified that black scabbardfish feeds on species with epipelagic and benthopelagic affinities. 

Comparison with stable isotope analysis in Madeira samples indicated that black scabbardfish 
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feed at a similar trophic level and has the same trophic niche width in both areas, assuming 

similar baseline isotope compositions.  

Otolith stable isotopes (oxygen - δ
18

O and nitrogen - δ
15

N) analyses were used as a tool to 

clarify migratory behaviour. Otolith isotope ratios can provide insight into whether adults caught 

around Madeira fed in an isotopically depleted northerly ecosystem (NW Scotland) during their 

pre-adult period and then migrate towards south to spawn.  Overall, the results support a south-

north migration of pre adult fish from spawning areas around Madeira and a north-south 

migration from the west of Scotland to the spawning areas.   

Given its life cycle there is an urgent need that the management process recognizes the 

existence of a continuous widely distributed stock of black scabbardfish between the west of the 

British Isles and Madeira. The results highlight large scale dispersal in this species which needs 

to be treated as a highly migratory species and be managed as a single population. 
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1.1  Deep sea fisheries 

Continental shelves have supported the great fisheries of the world for more than 500 years 

(Haedrich et al., 2001), but an overly aggressive fishing effort during the 1980s led to the 

decline and collapse of continental shelf fisheries in many places. Some populations in the 

Northwest Atlantic, such as the northern cod (Gadus morhua) reached such low levels that the 

fishery totally closed in 1992 (Kurlansky, 1997).  

In the last 50 years, as traditional fisheries in continental shelf waters declined, distant water 

fleets developed to exploit less accessible deep water species (Morato et al., 2006).  More 

powerful and more sophisticated fishing and navigation gear were developed to reach and 

exploit the deep water resources (Haedrich et al., 2001; Roberts, 2012). The global expansion 

of fisheries, particularly by the Soviets in the late 1960s, soon uncovered deep-water habitats, 

such as seamounts, with substantial aggregations of benthopelagic fishes (Koslow et al., 2000). 

Thereafter, deep water fisheries quickly expanded, partly because of the improving markets, but 

mostly due to overfishing and increased management restrictions on the continental shelf fish 

stocks (Gordon, 2001; Large et al., 2003). In contrast to the continental shelf fisheries, the deep 

water fisheries were largely unexploited and unregulated.  

After the first years of rapid expansion and high catch rates, several deep water fisheries 

displayed patterns of steep decline (Lorance and Dupouy, 2001). Concerns over the 

vulnerability and sustainability of deep water stocks arose because they are generally perceived 

as long lived, slow growing, with a high age at maturity and low fecundity (Koslow et al., 2000; 

Gordon, 2001; Andrews et al., 2009). The ecological characteristics of these fish make them 

vulnerable to over-exploitation and slow to recover from it (Clark, 2001; Morato et al., 2006). 

During decades, the deep water fisheries developed and increased without programmes in 

place to collect biological and fisheries data. Although biological studies on deep water species 

have increased during the last decade  (Kelly et al., 1997; Allain and Lorance, 2000; Allain, 

2001; Neat and Burns, 2010), our understanding of the population dynamics of deep sea 

species and the impacts of fishing on these resources are still considerably behind exploitation 

(Large et al., 2003).  
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Although biological studies of deep-water species have increased during the last decade, 

knowledge of biological processes such as growth, feeding, maturation and fecundity still lags 

behind that of commercially exploited shelf-based species. Also, little is known about 

recruitment processes, stock identity, fish migration (Large et al., 2003) and the long term 

ecological implications of deep water fisheries are still very unclear (Koslow et al., 2000). 

Gordon et al. (1995) pointed out  that, although the continental slopes only comprise something 

like 8.8% of the ocean bottom, they are among the most complex and dynamic parts of the 

deep sea. Because so many species on the slope have over-lapping depth distributions and 

because fishermen will target certain depths to maximize catch rates of target species, fishing is 

likely to impact on the entire fish community (Gordon et al., 1995). Therefore considerable 

biological and ecological knowledge is required in order to determine which species are 

sustainable to commercial fisheries and how they can be managed properly (Merrett and 

Haedrich, 1997). 

Black scabbardfish is a charismatic inhabitant of the continental slope and one of the main deep 

water commercial species in Europe, where it is captured by multi-species trawlers in the North 

of Europe and small scale longliners in Portugal and the Madeira Islands. Despite the 

commercial interest in black scabbardfish, biological studies are relatively sparse and spatially 

confined to the southern Northeast Atlantic. Since the effects of fishing on black scabbardfish 

are unknown, more research into the biology, population structure it is required. It is the purpose 

of this study to further the knowledge of the biology and life history of black scabbard in the wide 

range of its distribution in NE Atlantic. The new knowledge acquired during this study, will thus 

increase our ability to better manage this species in the NE Atlantic. 

1.2  Black Scabbardfish, Aphanopus carbo Lowe 1839 

The black scabbardfish, Aphanopus carbo Lowe, 1839 is a deep sea species belonging to the 

order Perciformes and family Trichiuridae (Nakamura and Parin, 1993). It has an extremely 

elongate and compressed body. The coloration of its body is black with a metallic lustre. The 

mouth is large and armed with rows of very sharp teeth. The large black eyes comprise almost 

one-half of the length of the snout. The dorsal fin is low, but long. Behind the anal opening there 

are two spines, the posterior one is represented as a hard bone spike. The pectoral fins are 
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relatively small and the lateral line is well marked (Zilanov and Shepel, 1975; Nakamura and 

Parin, 1993) (Fig. 1). 

 

Fig. 1 Black scabbardfish, Aphanopus carbo. 

 

1.3  Distribution 

In the North Atlantic, black scabbard has been reported from Iceland (Magnússon and 

Magnússon, 1995) to the Canary Islands and Bojador Cape (Uiblein et al., 1996) including the 

mid-Atlantic Ridge, the islands of Madeira, Azores and numerous submarine banks and 

seamounts (Zilanov and Shepel, 1975; Nakamura and Parin, 1993; Uiblein et al., 1996; 

Vinnichenko, 2002; Vinnichenko and Bokhanov, 2006) (Fig. 2). There are also occurrences of 

the species reported from the Indian and Pacific Oceans, although these reports need to be 

confirmed (Piotrovskiy, 1981).  

Black scabbardfish  belongs to the benthopelagic category of deep-water fishes, in which the 

fish are more proximate to the demersal fishes of the continental shelf and live close to the 

bottom (Nakamura and Parin, 1993; Gordon, 2001; Bordalo-Machado and Figueiredo, 2008). In 

the study carried out by Menezes et al. (2006) in the Azores Archipelago, A. carbo is one of the 

typical species in the deep mid-slope assemblage.  

It has been recorded at a variety of depths, depending on geographical locations; from 200 m 

around the British Isles (Tucker, 1956; Bordalo-Machado et al., 2001) to 1800m south of 

Madeira (Bordalo-Machado et al., 2001). In a recent study by Pajuelo et al. (2008) in the Canary 

Islands, A. carbo has been located at 2300m deep. In the north of Europe, it is more commonly 

found from 500 to 800 m (Mauchline and Gordon, 1984); between 800 and 1200 m off the 

Portuguese shelf (Anon., 2008) and from 800 to 1300 m in the waters around Madeira  

(Morales-Nin and Sena-Carvalho, 1996).  
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Fig. 2 Distribution map for Aphanopus carbo (Black scabbardfish) (Adapted from Fishbase (Froese and 

Pauly, 2006). 

 

1.4  The fishery of Aphanopus carbo in the NE Atlantic 

1.4.1 Madeira Island  

The fishery for black scabbardfish in Madeira is an ancient fishery, being one of the oldest deep 

water fisheries in the world. The first historical record dates back to the seventeenth century. 

For centuries this fishery, which only supplied the local markets, seemed to be sustainable. 

However, since the onset of exports, the fishery expanded and the landings have decreased 

considerably (Haedrich et al., 2001; Alves, 2003). For several decades, this was the only fishery 

targeting black scabbardfish in NE Atlantic (Bordalo-Machado and Figueiredo, 2008) and to this 

day, it has great economic and social importance to Madeira since it represents an important 

component in the local diet (Bebianno et al., 2007). 

From 1980 to 1986, several prospective surveys were carried out by the Instituto Português de 

Investigação das Pescas e do Mar (IPIMAR)  to prospect new fishing grounds in the eastern 

Atlantic for black scabbardfish and to introduce new fishing gear and technology (Martins and 

Ferreira, 1995; Pajuelo et al., 2008). The improvements in the fishing gear and methods during 

the 1980’s, resulted in the replacement of the vertical drop-lines (Fig. 3a) by the mid-water 

horizontal drifting longlines (Fig. 3b), which is set in the water column usually at depths of 

1000m.  This method is still used today and the changes are mainly related with the increase in 
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the number of hooks per set. The bait used to catch black scabbardfish is squid (Omnastrephes 

sp.) or horse mackerel (Trachurus picturatus) and mackerel (Scomber japonicus).  

 

Fig. 3 a) Drifting vertical longline used until 1980’s; B) Drifting horizontal longline used nowadays to 

capture A. carbo in Madeira (adapted from Reis et al.(2001)) 

 

Between 1998-2000, the Madeiran black scabbardfish fleet comprised ca. 40 boats with 

artisanal characteristics, on average 13m in length and with a low engine power (Reis et al., 

2001) (Fig. 4). In more recent years, the fleet size decreased to around 30 boats, with no 

significant difference in their technical characteristics (Bordalo-Machado et al., 2009). The 

number of fishing days per trip is around 5 to 7 days and the vessels conduct several hauls 

during each trip. The number of days per fishing trip increased in the last few years because 

fishermen are fishing new fishing grounds located further south of Madeira, near the Canary 

Islands (Bordalo-Machado et al., 2009).   
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Fig. 4 Some of the Madeira black scabbardfish longliner fleet. 

 

During the 1980’s, due to the improvements in the fishing gear and in the fleet, a dramatic 

increase in the landings of black scabbardfish in Madeira was observed. In 1998, the landings 

reached a maximum value of 4430 tonnes and steadily decreased to 2922 tonnes in 2007, 

corresponding to €5,351,000 in 1998 to €7,715,000 in 2007 (Reis et al., 2001, Bordalo-

Machado et al., 2009). 

It is known that the black scabbardfish fishery in Madeira is composed of two sympatric 

species, A. carbo and A. intermedius (Biscoito et al., 2011). However, the proportion of each 

species in the total landings is unknown. In the last 4 years, an effort has been made to 

discriminate both species in monthly sampling programme (Sara Reis, pers. comm.)  

1.4.2 Portuguese continental slope (ICES Areas IX) 

In Portuguese continental waters, the commercial exploitation of black scabbardfish started in 

1983. This fishery involves an artisanal fleet, composed of small vessels, with length generally 

below 12 m and an engine power ca. 96kw. The number of vessels has been decreasing since 

1986, from 28 vessels to 20 vessels in 2008 (Bordalo-Machado et al., 2009).  

The fishing method and gear used by the continental fishermen was modified from the Madeiran 

traditional drifting longline in order to catch the species in continental shelf waters – setting a 

horizontal bottom longline, where alternating floats and weights occur at constant intervals on 
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the main line (Bordalo-Machado and Figueiredo, 2008). The bait normally used is the sardine 

(Sardina pilchardus) (Martins et al., 1989; Bordalo-Machado and Figueiredo, 2008). 

The vessels leave the port at dusk and at the fishing ground two activities take place: 1) a newly 

baited longline is deployed into to sea and 2) the longline previously deployed (usually the day 

before), is recovered with the aid of a hauling winch. The fishing activity takes place on hard 

bottom substrate along the Portuguese slope (with depth ranging from 800 to 1450 m) around 

the centre of the mainland Portugal and landed into Sesimbra port (Martins et al., 1989; 

Bordalo-Machado and Figueiredo, 2008). 

More than 95% of the landings of black scabbardfish from the continental slope are into 

Sesimbra port. The first landing records of the black scabbardfish longline fleet in mainland 

Portugal was a total of 69 t at the end of 1983 (Martins et al., 1989). During 1984 – 1989, 

landings rapidly increased from 676 to 3828 t. Between 1990 and 1993, landings showed the 

largest increase, up to 4520 t, but decreased to nearly 3400 t in 1994. Between 1995 and 2000, 

the landings showed a decreasing tendency, from more than 4000 t to 2500 t (Fig. 5). Since 

then, the catches of black scabbardfish from the Portuguese coast are fairly constant, around  

2500 t (Bordalo-Machado and Figueiredo, 2008). 

 

 
Fig. 5 Annual landings of black scabbardfish into mainland Portugal since the beginning of the fishery 

(adapted from Bordalo-Machado and Figueiredo, 2008). 
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Despite the differences in the fleet size and the fishing regime, the annual landings of black 

scabbardfish have been similar in Madeira and the Portuguese mainland in the last years 4 

years (since 2008), with figures around 3000 tonnes.  

1.4.3 North and west of Scotland and Ireland (ICES Areas VI, VII, Vb and 

XIIb) 

In the north of Europe, the main fishing grounds for black scabbardfish are north and west off 

the British Isles (ICES Subareas V, VI and VII) and around Iceland (ICES Subarea Va) (See 

Fig.6). The species has been mainly captured by French, Faroese, Spanish and Icelandic 

trawlers since the early 1990’s (Bordalo-Machado and Figueiredo, 2008; ICES, 2008) and is 

one of the main deep water species captured by the mixed trawl fishery. In addition to black 

scabbard, this fishery also captures roundnose grenadier (Coryphaenoides rupestris), deep-sea 

sharks (C. coelolepis, C. squamosus), blue ling (Molva dypterigea), ling (Mova molva), saite 

(Pollachius virens) and monkfish (Lophius piscatorius). 

 
Fig. 6 Fishing areas used by the International Council for the Exploration of the Sea (ICES). 
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In the early years (1990s’) the French trawlers landings represented more than 75% of the total 

landings from the north of Europe, but since 2006 the Faroese and Spanish fleets have 

increased their relative contribution for the total landings (Fig. 7).  

The French deepwater mixed trawl fisheries (Fig. 8) operates mainly in sub‐areas VI and VII 

targeting roundnose grenadier, black scabbardfish, blue ling and deepwater sharks. In the early 

80’s the French fishery started to operate in these areas targeting the blue ling (Molva 

dypterygia) and the by catch of species such C. rupestris, A. carbo and deep water sharks were 

discarded (Gordon, 2001; Lorance and Dupouy, 2001). It was only in 1989 that these species 

began to be landed as a result of a marketing initiative by the French industry (Gordon, 2001). 

 

 

The Faroese fleet mainly operates on the slope around the Faroe Bank (ICES subarea Vb) and 

in  recent years there has been an increased effort in this ICES subarea, with a corresponding 

increase in  landings (ICES, 2012).  

The ICES division with the highest landings is division VI (Scottish and Irish slope), accounting 

for 72% of the total landings from the north of Europe. The French multi-species trawlers 

account for almost 90% of the combined landings from this area (Fig. 9). From the beginning of 

 
Fig. 7 Relative contribution by France, Spain and the Faroes to the annual landings for the ICES subareas (Vb, 

XIIb, VI and VIII) (adapted from ICES, 2012). 
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1990s’ until 2001, the landings of black scabbardfish from the ICES division VI showed an 

accentuated increase, from 1023 tonnes in 1990 to 5057 tonnes in 2001. Since then until 2005 

the landings suffered a reduction to 2850 tonnes. In 2006, there was a peak in landings (6527 

tonnes) followed by a subsequent decrease to around 2270 tonnes (ICES, 2012) (Fig. 9).  

Over recent years, the landings of black scabbardfish from the north of Europe have declined, 

but landings of other deepwater species (roundnose grenadier, orange roughy, and deepwater 

sharks) have declined to a greater extent. As a result, black scabbardfish is now landed in 

comparable quantities to blue ling and roundnose grenadier and more than deepwater sharks 

and grenadier (ICES, 2008) and is one of the most important deep water species landed in 

Europe. 

 
Fig. 8 French deepwater trawlers at Lochinver port, Scotland.  

 

 

 
 

Fig. 9 Total landings (tonnes) of black scabbardfish in ICES areas Vb, VI, VII and XII. (ICES, 2012). 
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1.4.4 Other Areas including Azores (ICES Areas; I, II, X, XIV, IIIa and Va)  

The black scabbardfish fishery in these areas has occurred sporadically or at very low levels, 

which may be related with low abundances in those areas (ICES, 2012). 

In the islands of the Azores (ICES Subarea X), an experimental fishery targeting black 

scabbardfish started in 1998 using just one vessel and the fishery was closely monitored by on-

board observers. Since then, the number of vessels has increased and the landings have 

increased significantly in the last years (Machete et al., 2011). 

Between 1991 and 2001, the landings in this subarea have been very variable, mainly as a 

result of exploratory fishery surveys carried out in this area during those years and between 

2008 and 2012, an increasing commercial interest for the exploitation of this species has been 

observed. The fishing fleet is similar to the Madeira fleet, predominated by small vessels, <12 

m, using mainly traditional bottom longlines (Machete et al., 2011; ICES, 2012). The catches 

from Subarea X have fluctuated greatly over the years, mainly as a result of Portuguese 

exploratory surveys carried out in this area (ICES, 2006) (Fig 10).  

 
 

Fig. 10 Total landings (tonnes) of black scabbardfish in ICES areas I, II, IV, X and XIV. (ICES, 2012). 

Figure 11 shows the overall landings (tonnes) reported in Portugal (mainland, Madeira and 

Azores) and northern Europe (ICES subareas II, IV, V, VI and VII combined) (Gordo, 2009). In 

Portuguese slope waters, an increase in landings occurred between 1988 and 1993, followed 

by a slight decrease until 2000. Since then the landings are stable around 2700 tonnes. The 
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Madeira landings were marked by an increase in the first decade, reaching 4430 tonnes in 

1998, followed by a decrease, reaching 2900 tonnes in 2007, and at the same levels until 2011. 

In the north of Europe, the landings showed an accentuated increase until 2002, followed by a 

decrease and a new increase in 2006. Since then, the landings have been decreasing reaching 

the 3000 tonnes in 2011 (Gordo, 2009, ICES, 2012). 

 

Fig. 11 Total landings (tonnes) reported in Portugal and north Europe between 1988 and 2007 (from 

Gordo, 2009). 

1.5 Assessment, Management and Advice 

Black scabbardfish has been one the main commercial deep-water species landed in Europe 

over the last 10 years, which makes it one of the most important among the various deep-water 

species that are covered by the ICES Working Group on the Biology and Assessment of Deep-

sea Fisheries Resources (WGDEEP). The stability of the landings in the last decade in  ICES 

Division IXa (Portugal slope) and in Madeira, the decrease in the northern Europe areas and the 

lack of information on black scabbardfish led ICES to establish (arbitrarily) the existence of a 

single stock in the NE Atlantic (Gordo et al., 2009). However, because of the different nature of 

the fisheries in the northern and southern areas and the lack of information on migration, the 

stock has traditionally been divided into three management units: a “northern component”, a 

“southern component” and “other areas” for management purposes. The northern component 

comprises fish exploited by trawl fisheries in Subareas V, VI, VII and XII, the southern 

component being exploited by longline fishery in Subarea IX and VIII and the “Other areas” 
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comprises subareas I, II, IIIa, IV, X, Va and XIV where only small catches have been taken 

(ICES, 2012).  

The scientific advice produced by ICES on the exploitation status of black scabbardfish has 

been used as the key source for establishing member states’ biannual quota regimes for this 

species (Bordalo-Machado and Figueiredo, 2008). 

The assessment of black scabbardfish is based on catch trend-based assessments, using 

landings data from the assessment unit distribution area. The available information is 

inadequate to evaluate spawning stock or fishing mortality, so the state of the stock is unknown.  

Since 2003, management of black scabbardfish by EU vessels fishing in EU and international 

waters includes a combination of Total Allowable Catch (TAC) and a licensing system. From 

2008 the TAC has been decreasing in all ICES areas and restrictions in fishing effort have been 

increasing (Table 1). The TAC in 2012 for the northern, southern and “other areas” components 

are: 2179, 3348 and 9 tonnes, respectively.  The Irish TAC for black scabbardfish has also 

decreased and for 2012 the TAC is 62 tonnes (Anon., 2011). In the southern areas (subareas 

IX) the CPUE evolution does not indicate any clear trends, and  ICES recommendations 

changed, from a status quo exploitation level in 2006 to a constrain on the landings to 3348 

tonnes in 2012 (ICES, 2012).  

Currently, the black scabbardfish fishery in Madeira and the Canary Islands is managed based 

on the biennial CECAF (Fishery Committee for the Eastern Central Atlantic)  scientific advice, 

which in turn is based on the ICES advice for the ICES Division IX (Sara Reis pers comm.). 
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Table 1 Summary of advice for different assessment units of black scabbardfish in the Northeast Atlantic 

(adapted from ICES, 2012) 

 

 

1.6 Stock discrimination 

The concept of the “stock” is fundamental to fisheries management. Stocks are arbitrary groups 

of fish large enough to be essentially self-reproducing, with members of each group having 

similar life history characteristics and are available for exploitation in a given area. To manage a 

fishery effectively, it is important to understand the stock structure of a species and how fishing 

effort and mortality is distributed. There are many techniques which can be used for stock 

identification and stock discrimination, e.g., catch data, tag recoveries, meristics, 

morphometrics, parasites, mitochondrial DNA, elemental composition of otoliths, stable isotope 

measurements, otolith microstructure (Begg and Waldman, 1999). The uncertainties in stock 

structure led researchers to carry out several studies, using different approaches to identify the 

stock structure of black scabbardfish in the NE Atlantic.    
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1.6.1 Otolith microchemistry 

The advances in analytical techniques have led to the use of otolith microchemistry as an aid to 

discriminate stocks. Its use relies on the assumption that otoliths incorporate elements from the 

environment throughout the life of the fish and may provide a useful record of the environment 

to which the fish was exposed (Campana, 1999). If black scabbardfish carries out large scale 

migrations, it would pass through and reside in several different water masses. The chemical 

signature of the otolith would reflect these differing phases of the life cycle (Santos, 2000; Swan 

et al., 2003). If the fish in a stock are all derived from the same spawning area and have shared 

a common nursery ground, differences in chemical composition of the whole otolith associated 

with the migration to other areas might be relatively small.  

Based on these principles, Swan et al., 2003 collected otoliths from six different locations 

throughout the NE Atlantic: Reykjanes Ridge, Hatton Bank, Rockall Bank, Mid-Atlantic Ridge, 

Madeira and the Portuguese mainland and the elemental concentrations were determined. The 

hypothesis tested was that there is a single stock of A. carbo in the northeast Atlantic and that 

spawning occurs in the Southern areas, especially in Madeira. The results showed that there 

were only small differences between overall chemical signatures of the otoliths from the 

different locations, consistent with the single stock hypothesis. However, the authors considered 

the results inconclusive. Despite being a useful tool, microchemical analysis of otoliths needs to 

be developed in conjunction with others methods used for stock discrimination, such as 

genetics, morphometrics and otolith shape analysis (Santos, 2000; Swan et al., 2003).  

1.6.2 Genetics 

In order to investigate the population structure of A. carbo in NE Atlantic, different genetic 

techniques can be used. In the study carried out by Quinta et al., (2004) mitochondrial DNA 

variation in part of the cytochrome b gene was examined. The results obtained in this study 

suggest that the black scabbardfish population in the NE Atlantic is genetically structured and 

can be divided into two groups, one from the eastern Atlantic (Portuguese slope and Hatton 

Bank) and the other from around the Madeira Archipelago (Quinta et al., 2004).  

The study carried out by Stefanni and Knutsen (2007) used a phylogeographical approach 

using molecular markers to investigate the history and structure of A. carbo. Two distinct groups 
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were identified from complete sequences of the control region and partial sequences of 

cytochrome b. In one of these groups, all sequences from the Mid-Atlantic Ridge, Portuguese 

slope and Madeira were clustered together. The other group constituted all the sequences from 

the southern Pico Island (Azores). The rest of the samples (Sedlo and Seine Seamounts, 

Azores islands, Condor and Princess Alice banks) had sequences represented in both groups. 

These results suggest that the divergence between the two groups coincides with geological 

events that might cause a split in the original population of black scabbardfish. Once the climate 

conditions and sea level were restored, the two separate populations came into contact again, 

leaving traces of the historical events in the non-recombinant mtDNA genes. An alternative 

hypothesis suggested is that two species of scabbardfish are present. The outcome from the 

comparison of the same mtDNA regions of the closely related A. intermedius from Angola 

clustered with one of the groups (from the southern coast of Pico Island). Therefore, these two 

species may have overlapping distribution ranges and are found sympatrically in the Azores 

(Stefanni and Knutsen, 2007). 

1.6.3 Other techniques for stock discrimination 

Besides molecular techniques and otolith microchemistry there are other methods that can be 

applied for population discrimination. During the project APHACARBO the stock structure of 

black scabbardfish in southern northeast Atlantic (Madeira, Azores and Portugal mainland) was 

investigated using a holistic approach. The factors examined included life history parameters, 

otolith shape analysis, parasites, landing patterns and contaminants (mercury and cadmium). 

The majority of results revealed the existence of different stocks of black scabbardfish in the 

study area, but not in a consistent way.  

The age and growth study by Vieira et al. (2009) and the landings analysis (Bordalo-Machado et 

al., 2009), concluded that there were two separate stocks between the Madeira Islands and 

Portugal. The first based on the differences of the mean length per age group and the latter 

based on differences of the landings times series analysis between the two areas. However, the 

authors did not exclude the hypothesis that the differences found are due to horizontal 

migrations of the species to the spawning grounds. 
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On the other hand, otolith shape analysis (Farias et al., 2009), parasites (Santos et al., 2009) 

and mercury level (Costa et al., 2009) results revealed the existence of three separate stocks: 

Madeira, Azores and the Portuguese mainland. The otolith shape variation analysis showed 

significant differences between the three areas. The parasite analysis revealed that the fish 

from Madeira had a higher number of metazoan species, followed by those caught in 

Portuguese slope and the Azores (Santos et al., 2009). Some of the parasite species found 

were exclusive to each area and this technique can be used to discriminate black scabbardfish 

from the three areas (Gordo et al., 2009). Finally, the mercury level also suggested the 

existence of three stocks, showing significant differences on the mean mercury level on the 

tissues (gonads, liver and muscle) among the areas under study. 

1.7 Biology of Aphanopus carbo  

The knowledge on the biological aspects of black scabbardfish in the NE Atlantic and on the 

connectivity between the north and south components is very limited and the most 

comprehensive studies have been spatially confined to the southern Northeast Atlantic.  

1.7.1 Size structure 

The studies carried out so far on black scabbardfish showed that the individual size of black 

scabbardfish ranged from 60 cm (in Rockall Trough) to 150 cm (Madeira waters). Small 

individuals are caught in northern regions (Rockall Trough, Hatton Bank), intermediate size fish 

in the Azores and Sesimbra regions (mid latitudes), with a mean length around 106 cm (Martins 

et al., 1989; ICES, 2008), and the larger ones are caught in southern regions (Canary and 

Madeira Islands) (Anon., 2000; Santos, 2000; Reis et al., 2001; Pajuelo et al., 2008). The 

spatial analysis of length data from different geographical areas showed that significant 

differences between the north and the south length distributions occurred and those could be 

caused by two distinct phenomena acting alone or together: 1) the two corresponding 

populations are different; the southern one is larger than the northern one and, 2) the two 

fishing gears exploit different parts of the population: the bottom longline, the larger individuals 

and the bottom trawl, the smaller ones (Santos, 2000).  
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1.7.2 Reproduction 

Since the 1950’s the Soviet research vessels made several deep water surveys in the North 

East Atlantic, mainly in the seamounts around the Azores. During these years a lot of biological 

information was collected from several deep water fishes (Vinnichenko, 2002). Regarding the 

black scabbardfish, they observed that spawning is intermittent, in the North Azores area it is 

protracted from November to April, on the South Azores banks, from March to August (Zilanov 

and Shepel, 1975; Vinnichenko, 2002).   

Despite the increasing commercial interest in the black scabbardfish, little is known about its life 

cycle. The existing contributions on the reproduction usually allude to a short analysis of 

maturity and to the size range of captured specimens. In the waters to the north of the British 

Isles, the majority of caught specimens were immature or in an intermediate stage of maturity 

(Kelly et al., 1998) and there is only a reference to two individuals caught at the Porcupine Bank 

in January with ripe gonads (Enrich, 1983). However, Nakamura and Parin (1993) observed 

specimens in the spawning condition west of the British Isles from November to April at depths 

from 700 to 900 m. Specimens in a spent condition were found in Icelandic waters between 

January and March (Magnússon and Magnússon, 1995), suggesting that the species may also 

reproduce in northern areas. No spawners were ever observed off the Portuguese coast 

(Machado et al., 1998; Anon., 2000; Bordalo-Machado et al., 2001; Figueiredo et al., 2003). 

During a 3-year project (1998- 2000; BASBLACK) the sexual maturity was examined in 

different areas of the NE Atlantic (Portugal mainland, Madeira, Azores, NW Scotland, and 

Rockall Trough). In the NW of Scotland, samples were only collected in September, and 

individuals were either in maturity stages I or II (see Table 2). The majority of males were 

immature, while most of the females were developing (stage II). In Portugal, samples were 

taken throughout the year and the majority of individuals from both sexes were also in immature 

and developing stages. From July onwards, most individuals began their gonadal development 

reaching maturity stage II in August. However, between December and April, the majority of 

females in developing stage showed a clear increase in the incidence of atresia in early-

developed oocytes. This suggests that although the specimens are potentially capable of 

reproducing, they do not enter into a spawning process and remain in a resting phase. Possible 
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reasons for this could be related to insufficient energy reserves for a successful reproduction 

(Figueiredo et al., 2003). 

In contrast to the other areas, all the maturity stages were found in the Madeira archipelago for 

both sexes. Developing specimens were found all year around, being more common between 

March and April. Pre-spawning males appeared mostly in May, while pre-spawning females 

appeared later in July. Spawning fish occurred mainly from September to December (females) 

and from August to December (males) (Anon., 2000; Bordalo-Machado et al., 2001; Figueiredo 

et al., 2003). The estimated length at first maturity for females was about 1028 mm (Figueiredo 

et al., 2003). 

Table 2. Maturity stages for Aphanopus carbo (Adapted from (Gordo et al., 2000)). 

Reproductive stage

FEMALE

I Immature / Resting Ovaries small, transparent or translucid. No oocytes can be seen the naked eye

II Developing Ovaries larger and thicker, whitish or pinkish in colour. Small opaque oocytes can be seen with the naked eyes

III Pre-spawning Ovaries thicker, ocupying almost the whole body cavity. Large opaque oocytes fill the whole ovary

IV Spawning

V Post-spwaning Ovaries reduced in size and reddish in colour. Residual eggs can be seen with the naked eye.

MALE

I Immature / Resting Testes very small, firm and pinkish in colour

II Developing Testes white-pinkish in colour and larger than in previous stage

III Pre-spawning

IV Spawning Testes white in colour. Sperm can be extruded very easily after a sligth pressure on the abdomen

V Post-spwaning Testes reddish in colour. Residual sperm can be observed especially in the sperm duct

Stage description

Ovaries occupy the whole body cavity. Hydrated oocytes dominate and will be easily extrude under a sligth 

pressure on the abdomen

Testes white in colour and ocupying a large part of the body cavity. Sperm can be extruded after a pressure on 

the abdomen

 

 

Pajuelo et al. (2008) studied the reproductive biology of black scabbardfish in the Canary 

Islands and the results of the spawning season were the same as in Madeira, that is, in the third 

and fourth quarter of the year. Size at 50% maturity is reached when males are 1095 mm and 

females 1144 mm. However, in this study, the authors did not distinguish between A. carbo and 

A. intermedius, that exist sympatrically in Canary Islands. 

As part of a latter project – APHACARBO-, a comprehensive study on reproductive strategies of 

black scabbardfish have been carried out in the southern Northeast Atlantic: Portuguese slope, 

and Madeira, where the authors investigated the reproductive cycle and fecundity of black 

scabbard (Neves et al., 2009). This study confirmed the non-existence of spawners in the 
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Portuguese continental slope and the only spawning grounds for black scabbardfish were found 

in Madeira. The study also revealed that this species had a determinant fecundity, which means 

that the total fecundity prior to the onset of spawning is considered equivalent to the potential 

annual fecundity, after correcting for atretic losses (Murua and Saborido-Rey, 2003). The 

authors also hypothesized that the fact that there were no spawners in the Portuguese slope 

may be due to continuously poor nutrition condition that prevents the continuity of 

gametogenesis (Neves et al., 2009).   

1.7.3 Growth 

The knowledge of the growth pattern of this species is not well known and age determination 

presents big difficulties and contradictions. 

The first study concerning the ageing and growth of black scabbardfish was made by Morales-

Nin and Sena-Carvalho (1996). The sampling took place between 1986 and 1988 from landings 

of the commercial long-line fishery in Madeira. Black scabbardfish was considered to have a 

fast growth rate and attained a maximum age of 8 years. The estimated von Bertalanffy growth 

parameters for males were: L∞= 1553 mm; K= 0.155; t0= -3.265 and for females were: L∞= 1420 

mm; K= 0.269; t0= -2.079. The males grow at a slightly slower rate than females and 

consequently have a lower growth coefficient and a higher asymptotic length. 

The occurrence of opaque margins, corresponding to periods of fast growth, in all the otoliths 

read was greatest during October, decreasing from November to January. This seems to be 

related to the spawning period, which in this species is from November to December.  

The study carried out by Kelly et al. (1998), with sectioned otoliths, revealed that black 

scabbardfish had a much slower growth rate and attained a maximum age of 32 years. In an 

attempt to overcome the discrepancies found in the previous study, Morales-Nin et al. (2002) 

study had the aim to calibrate the age determinations, establish common otolith reading 

methodologies and attempt to validate the age readings exploring the feasibility of semi-direct 

methods. Different methodologies on preparation of the otoliths were tested: whole otoliths; 

burned otoliths and sectioned otoliths. From the three techniques, the authors stated that the 

best method was to use whole otoliths, since in the sectioned otoliths it was difficult to define 
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the true increments, because the false rings became more evident.  The maximum age was 

determined to be 12 years. One of the main problems as evidenced by these authors was the 

interpretation of the first increment due to the variability in the morphology of the nucleus.  

In the study with black scabbardfish from the Canary Islands, Pajuelo et al. (2008), using 

burned whole otoliths, estimated age ranged between 2 and 8 years for males and between 2 

and 12 years for females (no significant differences were found between sexes). The growth 

parameters obtained in this study were for males: L∞= 1410 mm; K= 0.263; t0 = -3.507 and for 

females: L∞= 1483 mm; K= 0.196; t0 = -4.647.  

The latest study on age and growth of black scabbardfish from Madeira, Azores and Portugal, 

the maximum recorded age was 15 years, and the sectioned otoliths proved to be the best 

method for ageing (Vieira et al., 2009). The differences among the published age estimates are 

the result of the features of the black scabbardfish otoliths, which have poor contrast between 

the alternating dark and light zones, and a confusing sequence of narrow zones, which can 

either be counted singly or grouped. But also on the preparation and interpretation of the 

periodic features in the calcified structures, which can vary markedly among readers and 

laboratories (Campana, 2001). 

1.7.4 Feeding 

The available information on the diet of black scabbardfish is confined to general comments on 

the stomachs contents from specimens collected from the Hatton Bank (Du Buit, 1978), the 

Rockall Trough (Mauchline and Gordon, 1984), west of the British isles (Zilanov and Shepel, 

1975) and Portugal (Santos, 2000), but without any detailed description or interpretation. The 

lack of studies is due to the difficulty to obtain samples, since the majority of individuals 

captured have everted or empty stomachs due to varying pressure. 

Mauchline and Gordon (1984) examined the stomachs from specimens caught in the Rockall 

Trough and on the Hatton Bank. From the 148 stomachs examined, only 48 contained food. 

The diet of A. carbo was dominated by fish and the only other organisms presented were 

remains of squid. A high proportion of the fish was in the form of unidentified fragments but blue 
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whiting (Microsmesistius poutassou), deep-water rockling (Antonogadus macrphtalmus), 

argentine (Argentina silus) and unidentified scombrids were identified as prey items.  

In Madeira, the few stomachs with food content, the prey items identified were described as a 

meso- and bathypelagic oceanic species. The cephalopod group was the best represented, 

followed by crustaceans and teleost fish (Santos, 2000). 

1.8 Bioaccumulation studies  

The black scabbardfish as a top predator, can accumulate some toxic metals (mercury, 

cadmium, lead, zinc and copper) in its tissues through its diet (Afonso et al., 2007). This species 

represents an important component of local diet and is one of the most important species 

caught in Madeira Archipelago and because of that this species has been thoroughly examined, 

due to human health concerns (Bebianno et al., 2007). 

In the studies carried out by Afonso et al. (2007) and Costa et al. (2009), levels of mercury, 

cadmium and lead in some tissues (muscle, liver and skin) of black scabbardfish caught in 

Madeira, Azores and Portuguese slope were quantified. The general results suggested that this 

species has high levels of mercury, cadmium and lead, especially in the liver and gonads 

(Costa et al., 2009). However, the levels of these metals in the muscle do not represent a risk 

for human consumption if the liver is excluded and the edible part is consumed with moderation 

(Bebianno et al., 2007). 
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General objectives of this study, with notes on the thesis style 

Despite the high commercial importance of black scabbardfish in the Madeira Islands and 

northern Europe, there is still a lack of knowledge on the life history and stock structure of this 

species in NE Atlantic, especially in understanding the connectivity between the individuals 

captured in the northern waters (ICES subarea VI) and Madeira. The general concerns about 

the sustainability of deep water resources and the urgent need to enhance our understanding of 

the life history and ecology of Aphanopus carbo in NE Atlantic constitute the basis for this study.  

This study combines for the first time data collected throughout the year from the west of Ireland 

and Scotland and the Madeira Islands and uses a combination of methodologies to get further 

knowledge in the life history and population structure of A. carbo over its wide distribution range 

in the Northeast Atlantic.  

The objectives of the present study were: 

1) Study the reproductive dynamics and, thus, the life cycle of black scabbardfish 

from the west of British Isles and Madeira Islands and discuss the management 

implications of the findings (Chapter 2); 

2) Investigate the age and growth of black scabbardfish from the west of the British 

Isles and Madeira using two reading interpretations. The growth for each interpretation 

was analysed by fitting to the von Bertalanffy growth model and the difference and the 

effects on the estimated growth parameters were examined taking into account the bias 

and precision between the readings. The growth model parameters were also 

compared between the fish caught west of the British Isles and the specimens from 

Madeira (Chapter 3); 

3) Examine the diet composition, feeding strategy and, thereby the trophic ecology 

of black scabbardfish in two areas of NE Atlantic. Classic stomach examination was 

augmented by stable isotope analysis. While the stomach contents provide information 

on the composition of recent meals, stable isotope compositions integrate the 
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signatures of different prey consumed over a longer period, and can be used to infer 

trophic level and discriminate sources of food between the two areas (Chapter 4). 

4) Investigate whether fish from the two different areas are likely to form independent 

populations, or whether some degree of population connectivity exists at some stage 

of the life cycle. By examining the ratios of stable isotopes (oxygen and carbon) in 

three different regions of the otolith (core, middle and edge) fish movements and 

metabolic activity during these three life stages were tracked (Chapter 5).  

5) Investigate the trends in distribution, abundance and size structure of black 

scabbardfish off the west of the British Isles, compiling data  from the Scottish and Irish 

time series deep water trawl surveys (Chapter 6); 

 

Each chapter of this thesis has been written in a paper-style format, suitable and appropriate to 

be published in a scientific journal. Each chapter constitutes a complete study (although 

references to other chapters are included), and can be read independently of others. At the 

beginning of each chapter, information is given regarding the publication status, list of co-

authors and the complete reference to the journal where it has been published or submitted. 

Some of the chapters are still being prepared for submission to scientific journals and therefore 

are classified as “in preparation”. Tables and figures appear in the text inside each chapter. 
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Abstract 

 

Black scabbardfish is a deep water species of high commercial interest in the NE Atlantic; 

however the life history and stock structure is poorly understood. For this study, specimens 

were collected from commercial trawls off NW Scotland and longliners from the Madeira Islands, 

between September 2008 and May 2010. Geographical differences in the reproductive state of 

scabbardfish were evident and are consistent with the theory of a north-south migration. Only 

immature specimens were found in the northern area, while in Madeira all maturity stages were 

observed, with the peak spawning in October-November. Consistently, the gonadosomatic 

index (GSI) showed an increase throughout the year, reaching a maximum in October and 

November for males and females, respectively; while for the northern area the GSI values had 

low variability. Oocyte development was described and characterized for each maturity stage. 

Histology revealed that black scabbardfish is total spawner, has a determinate fecundity and the 

oocytes show a group-synchronous development. Distinguishing resting from developing 

females was resolved by measuring ovarian wall thickness. The geographical quasi-complete 

separation of the immature and mature individuals necessitated the use of a novel bias-

reduction GLM in the estimation of LC50 when using samples from Madeira. Estimated length 

at maturity (LC50) for both sexes was significantly higher when data from both areas were 

combined (Females = 1156mm, Males = 1098mm) than just using the Madeira dataset 

(Females = 1110mm, Males = 1010mm). The results highlight large scale dispersal in this 

species which needs to be treated as a highly migratory species and be managed as a single 

population. 
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1. Introduction 

Understanding the reproductive biology and the life cycle of black scabbardfish (Aphanopus 

carbo Lowe, 1839) is intricate due to the wide distribution of this species in the NE Atlantic. It is 

distributed from Iceland (1995) to the Canary Islands and Bojador Cape in the Western Sahara 

(Pajuelo et al., 2008; Uiblein et al., 1996) including the islands of Madeira, the Azores and 

numerous submarine banks and seamounts (Nakamura and Parin, 1993; Zilanov and Shepel, 

1975). Black scabbardfish belongs to the benthopelagic category of deep-water fishes, living 

close to the bottom along the continental slope and occurs mainly at depths from 700 to 1300m 

(Bordalo-Machado et al., 2001; Bridger, 1978; Enrich, 1983; Figueiredo et al., 2003).      

Previous preliminary studies in the NW of Scotland comprise a short analysis of maturity and 

the size range of captured specimens, showing that the majority the specimens were immature 

(Kelly et al., 1998; Figueiredro et al., 2003). There is reference to only two individuals caught on 

the Porcupine Bank in “ripe” condition (Enrich, 1983) and individuals in spent condition were 

found in the Reykjanes Ridge between January and March (Magnússon and Magnússon, 1995) 

suggesting that this species may also reproduce in the northern areas. However all of these 

studies lack temporal replication and histological validation of the maturation process. 

The most comprehensive studies on reproductive strategies of black scabbardfish have been 

spatially confined to the southern Northeast Atlantic: Portugal, Madeira and Canary Islands, 

where the authors investigated the reproductive cycle (Bordalo-Machado et al., 2001; 

Figueiredo et al., 2003; Pajuelo et al., 2008), fecundity (Neves et al., 2009) and the maturity 

ogive for females of black scabbardfish was estimated (Figueiredo et al., 2003). In these 

studies, no spawners were found off the Portuguese continental slope (Figueiredo et al., 2003) 

and the only spawning grounds for black scabbardfish were found in Madeira and Canary 

Islands (Figueiredo et al., 2003; Neves et al., 2009; Pajuelo et al., 2008).   

It has been postulated that black scabbardfish does not complete its life cycle in one 

geographical area, large-scale migrations occur and the fish caught to the west of the British 

Isles are pre-adults that migrate further south (possibly to Madeira) as they reach maturity and 

spawn (ICES, 2011). However due to the lack of information on some aspects of the biology, 
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there is still a lack of scientific evidence to support this theory of a single stock. One of the main 

limitations of previous studies on reproduction of black scabbardfish is the lack of understanding 

of the connectivity between the specimens caught to the West of the British Isles and the ones 

from the Madeira Islands. 

Black scabbardfish is an economically important deep water species that has been traditionally 

exploited in Portuguese waters by longliners. The first known artisanal handline fishery for this 

species started around the Madeira Islands (Haedrich et al., 2001) and since 1983, the 

exploitation of black scabbardfish expanded to the Portuguese continental waters (Gordon et 

al., 2003; Gordon, 2001). Black scabbardfish is the most important fishery resource in Madeira 

and one of the most valuable deep water species landed in Portugal (Bordalo-Machado et al., 

2009). In the North of Europe, the species has been mostly captured around the British Isles 

(ICES Subareas V, VI and VII) and Iceland (ICES Subarea Va), mainly by French, Icelandic and 

Spanish trawlers (ICES, 2011) since the early 1990’s, following the development of a multi-

species deep-water fishery (ICES, 2008). In the early years of these fisheries, black 

scabbardfish was mostly discarded as no market had developed for the species, but it 

subsequently became one of the main target deep-water species (Bordalo-Machado and 

Figueiredo, 2008). The total landings of black scabbardfish for the ICES Subareas V, VI and VII 

showed a peak in 2006, with landings reaching 8,000 tonnes, decreasing afterwards to levels 

around 3,000 tonnes (ICES, 2012). The reduction of catch limitations (TACs) and fishing effort 

since 2006 might have also contributed for the decreasing landing trends (Neat and Burns, 

2010). 

Currently the black scabbardfish fishery is managed following biennial advice from ICES 

providing advice for the NE Atlantic fishery - and CECAF (Fishery Committee for the Eastern 

Central Atlantic) providing advice for the Madeira longline fishery. However, there is still a lack 

of knowledge on stock structure of black scabbardfish over its geographical distribution, so the 

state of the stock is unknown (ICES, 2012). 

The aim of this paper is to increase understanding of the connectivity, the reproductive 

dynamics and, thus, the life cycle of black scabbardfish in the NE Atlantic, combining for the first 

time, data collected throughout the year from West of the British Isles and the Madeira Islands.  
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In this context we will investigate 1) the reproductive cycle of black scabbardfish in both areas, 

2) characterize the oocyte development and dynamics throughout gonadal development, 3) 

determine the intensity and prevalence of atretic oocytes throughout the year in both areas, 4) 

the variations of gonad and liver weight with season and maturity stages and 5) determine the 

size at maturity for males and females. The management implications of these findings are then 

discussed. 

2. Material and Methods 

2.1 Sampling 

 

Samples were collected from a monthly sampling programme, conducted between June 2009 

and May 2010, from commercial French trawlers operating to the West of the British Isles and 

on a fortnightly sampling programme, between April 2009 and February 2010, from landings of 

the commercial longline fishery in Madeira Archipelago (Portugal) (See Appendix I, Table 1). 

Additional samples were obtained from scientific deepwater bottom trawl surveys: Marine 

Institute Deep water Survey, carried out on board R/V Celtic Explorer, in September 2008 and 

December 2009; Marine Scotland Deep water survey, on board R/V Scotia, in September 2009 

and the French IBTS (International Groundfish Survey - EVHOE 2009) survey, conducted by 

IFREMER, on board R/V Thalassa off the Biscay Bay, in October 2009 (Fig.1). Details of data 

acquisition are provided in Appendix I - Table 2. 

Since the early 1990’s a second species of the genus Aphanopus - A. intermedius – has been 

recognised in the southern NE Atlantic (Madeira and Azores). This species is morphologically 

similar to A. carbo and can only be differentiated by counting the vertebrae and the dorsal fin 

spines (Nakamura and Parin, 1993). To ensure that only A. carbo was sampled, all the 

specimens from Madeira were morphologically analysed to discriminate both species, following 

the study carried out by (Biscoito et al., 2011). To determine the presence or absence of both 

species to the West of the British Isles and Bay of Biscay samples, a preliminary meristics study 

was carried out on 250 specimens, and the results indicated that in these areas only 

Aphanopus carbo was present. 
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Fig 1. Map with the locations where the samples of black scabbardfish used for this study were collected. 

 

For the purpose of the study of the reproductive cycle, a total of 2145 fish were sampled from 

the area to the West of the British Isles, and 409 specimens from Madeira were analysed. Each 

specimen was measured - total length (LT, mm), weighed – total and gutted weights (g) and 

sexed (Table 2). The liver and gonads were weighed to 0.1g using an electronic balance and 

the maturity stages were assigned by macroscopic examination using a modified maturity scale 

adapted by Gordo et al. (2000) (Table 1).  
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Table 1. Description of females and males maturity stages for black scabbardfish (adapted from Gordo et al., 2000) 

Female

I Immature Ovaries small, transparent. No oocytes can be seen with naked eye. Previtellogenic oocytes in different stages of development

IIa Developing

IIb Resting Ovaries pinkish, with thick wall. Early-vitellogenic and atretic oocytes present. 

III Pre-spawning

IV Spawning

V Post-spawning Ovaries flaccid and reddish in colour with residual eggs. Post ovulatory follicles present

Males

I Immature Firm testes with laminar aspect, translucent. Spermatogonia dominate.

IIa Developing

III Pre-spawning

IV Spawning Testes white and big Sperm is easily extruded after silght pressure. Collecting and sperm ducts full with spermatozoa.

V Post-spawning Testes flaccid with haemotthagic aspect. No spermatogenesis; some residual spermatozoa.

Ovaries occupy the whole abdominal cavity, with the hyaline oocytes easily extruding under pressure. Oocytes up to 1500μm, completely 

hidrated.

Testes white-pinkish in colour and larger than previous stage. Seminiferous tubules become distinguishable. Spermatocytes 

predominate

Testes hite in colour. Sperm can be extruded after pressure on the abodomen. Spermatids predominate, spermatozoa already present.

Stage descriptionMaturity stage

Ovaries larger and thicker, whitish or pinkish in coulour. Small opaque oocyte can be seen with naked eye. Appearance of cortical alveoli 

in the oocytes.

Ovaries thicker, yellowish in colour, occupying alomost the whole abdominal cavity. Large opaque oocytes are easily distinguisable. 

Oocytes characterize by the presence of yolk globules

 

2.2 Histological procedures 

 

Of the total fish sampled, a sub-sample of 650 gonads was used for histological analysis, 350 

were female (250 from specimens captured to the West of the British Isles and 150 from 

Madeira) and 250 were male (150 from West of the British Isles and 100 from Madeira). The 

gonads were fixed in Davidson’s Solution for 48-72 hours, depending on their size and 

thickness, and preserved in 70% ethanol prior to histological analysis.  

Transverse slices of about 1cm thick were taken from the middle, anterior and posterior regions 

of the gonads, dehydrated through a series of ethanols and embedded in wax using a Shandon 

Citadell 1000 and Tissues-Tek® TEC. At least three sections, 5μm thick, were cut from each 

region using a Leica RM 2235 microtom and stained with Haematoxylin and Eosin by a Leica 

Autostainer XL.  

To determine whether the development in the middle region of the gonads was representative 

of the whole gonad, 50 additional sections from the anterior and posterior ends were analysed 

and compared with the middle section. Since no differences were observed between regions, 

the analysis continued using only the middle region of the gonads. Each slide was examined 

under a Nikon Eclipse 80 at x40, x100 and x200 magnification. The sex and the maturity stage 
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were determined without prior knowledge of the length and macroscopic stage of the specimen. 

The criteria for the microscopic identification of different maturity stages and post ovalutory 

follicles (POFs) were adapted from Gordo et al. (2000). 

A minimum of 1,000 oocytes were randomly selected from section and the diameter was 

measured on the horizontal axis. Only those oocytes clearly sectioned through the nucleus were 

measured. To distinguish between immature and resting females, the thickness of the ovarian 

wall was measured in three places in each section using the NIS Element BR 2.10 software.   

2.3 Data analysis 

 

Sex ratio 

The sex ratio was calculated for each depth strata and length class (50 mm length classes). 

Chi-squared tests were used to examine the differences between observed sex ratios and the 

expected ratio of equal numbers of each sex along depth strata and length class (Zar, 2010). 

Reproductive cycle 

The reproductive cycle was examined based on the monthly evolution in the percent frequency 

of the maturity stages for both sexes in each area. 

To study the oocyte dynamics at each maturity stage, the percentage of previtellogenic, early 

vitellogenic, vitellogenic, mature, atretic oocytes and post ovalutory follicles (POFs) were 

calculated by counting 300 - 350 total ovarian follicles in each ovary section. Oocyte 

development was described and characterized for each maturity stage using a modified maturity 

scale developed by Gordo et al. (2000). 

Atretic oocytes and the postovulatory follicles were classified according to Hunter and Macewicz 

(1984) and Ganias (2011), respectively. The prevalence of atretic oocytes was determined as 

the number of female fish with atretic oocytes as a proportion of the total female fish. The 

relative intensity of atresia was calculated, for each month and maturity stage, as the 

percentage of atretic oocytes in the total number of oocytes present in an individual ovary 

section.  
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2.4 Wall thickness 

 

The ovarian wall thickness was compared between maturity stages using the non-parametric 

Tuckey-Type pairwise test (Zar, 2010). To investigate the variation of the ovarian wall thickness 

(WTij) with total length (TLi) and maturity stage (Mi), the data were analysed using generalized 

least squares (gls), with “nmle” package within statistical software R 2.9.2.(R Development Core 

Team, 2011). 

The initial model was: 

ijjMiTLjMijWT  , (Eq. 1) 

where WTij is the wall thickness of the ith observation in maturity stage j; α is as intercept; TL is 

total length (mm); M is the maturity stage and ε are the random residuals, which are normally 

distributed. Exploratory analysis indicated that the residuals plots for constant variance models 

showed violations of homogeneity, requiring the use of different variance structures that allow 

the residual spread to vary with respect to total length and maturity stage (Zuur et al., 2007). 

The model was optimized by first looking for the optimal random structure (among candidate 

variance structures including: homoscedastic errors, by-group heteroscedasticity, power 

function of total length and a combination of by-group and power function of total length), and 

then for the optimal fixed structure, using Akaike Information Criterion, AICc.  Once the optimal 

model was found, in terms of the random structure, further selection was applied by rejecting 

any remaining non-significant explanatory variables (Zuur et al., 2007). 

2.5 Hepatosomatic and Gonadosomatic indexes  

 

To assess temporal changes in female and male reproductive condition, the gonadosomatic 

(GSI) and hepatosomatic (HSI) indexes were calculated in each area. The GSI was calculated 

as, GSI = (GW x 100) / GutW,  

where, GW is the gonadal weight (g) and GutW is the gutted weight (g). 

The hepatosomatic index (HSI) calculated as: HSI = (LW x 100) / GutW,  
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where LW is the liver weight (g) and GutW is the gutted weight (g).  

The variation of these indexes was analyzed amongst months and maturity stages using non-

parametric Kruskal-Wallis tests (H) followed by a non-parametric post-hoc Nemenyi test.  Mann-

Whitney (U) test was used to test for differences between sexes.  

2.6 Size at maturity 

 

The Kolmogorov-Smirnov (KS) two sample test was used to test for significant differences in the 

length frequencies by sex and area (W British Isles and Madeira) (H0: No difference in length 

frequencies between males and females or the W British Isles and Madeira).  

Based on the fraction of mature specimens by length class (10 mm), the maturity ogive and 

length-at-first maturity (LC50%) were estimated. Specimens in stages I and II-a were considered 

immature and individuals in subsequent stages (III, IV, V and II-b) were considered mature (see 

Table 3). 

Due to the nature of the data in each area – West of the British Isles and Madeira – it was 

necessary to have a different approach to the estimation of the maturity ogive for black 

scabbardfish. Data revealed that the Northern area specimens were all immature (Stages I and 

II-a) and the Madeira specimens were mostly mature (only 9 and 14 immature females and 

males were sampled, respectively). First, the maturity ogive was fitted for both sexes separately, 

using only the Madeira dataset (Females n = 200 and Males n = 198) using a bias-reduction 

GLM (BRGLM, (Kosmidis, 2007) with the binomial family and a logit link. BRGLM penalizes the 

maximum likelihood and is useful in cases of complete or quasi-complete separation in the data 

(Firth, 1993). Complete separation arose in the Madeira female data as the largest immature 

fish was 1085mm and the smallest mature fish was 1107mm. Such separated data cannot be fit 

within a regular GLM framework (Heinze and Schemper, 2002). 

A second maturity ogive for each sex was fitted with the combined datasets – West of the 

British Isles and Madeira (Females n = 1411 and Males n = 1114) – using a binomial GLM. Both 

maturity ogives and length-at-first maturity estimated were compared visually by inspecting the 
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overlap of the confidence intervals over total length. The models mentioned above were 

estimated using the software R 2.9.2 (R Development Core Team, 2011). 

3. Results 

3.1 Sex ratio 

The sex ratio in the northern area was biased towards females (
2
 = 41.33, df = 1, p < 0.05), 

with a sex ratio of 1: 1.32 (M: F). Females predominated throughout the year, except in July. It 

was only possible to examine the variation of sex ratio per depth strata for the specimens 

sampled during the deep water trawl surveys in the northern area. Females significantly 

outnumbered males in all depth strata except the deepest (>1200m depth) where the sex ratio 

was 2.2:1 (M: F), but sample size was very small (Table 2). 

For the Madeira specimens, the overall sex ratio was not significantly different from 1: 1 (M: F) 

(
2
 = 0.02, df = 1, p > 0.05). However, the sex ratio of black scabbardfish commercially sampled 

in Madeira varied seasonally. Males outnumbered females throughout the year, except in April 

and November.   

Table 2. Sex ratio per depth strata in the black scabbardfish captured during the deep-water trawl surveys 

off the West of the British Isles 

Depth strata Females Males Sex ratio Chi-squared

<700 147 71 1: 0.48 26.50*

800 - 900 237 187 1: 0.79 5.90*

901-1099 651 547 1: 0.84 9.03*

1100 - 1199 167 106 1: 0.63 13.63*

>1200 11 5 1: 0.45 2.25

* Χ
2 

> Χ
2
 (0.05, 1) = 3.84  

 

3.2 Reproductive cycle 

All the specimens captured to the West of the British Isles were immature. Only the first two 

maturity stages (I and II-a) were observed (Fig. 2). Males and females were predominantly in 

stage I throughout the year, except in April, when 70% of females sampled were developing 

(stage II-a).   
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Fig 2. Monthly percentages of maturity stages of black scabbardfish from West of British Isles: females (a) 

and males (b). 

 

In Madeira, all maturity stages were observed in both sexes (Fig. 3), although immature 

specimens were recorded very rarely (only 1.7% of the fish captured was immature). There was 

a clear reproductive cycle, with the majority of the females (95%) in the post-spawning (Stage 

V) or resting stage (Stage II-b) in February. Between April and July, most of the females were in 

the maturing / resting stage (stage II-b) and the main spawning period was determined to be 

between October and November, with pre-spawning (Stage III) and spawning (Stage IV) 

females prevailing (Fig. 3a). In males, the pre-spawning stage (III) occurred throughout the 

year, with a clear prevalence in February and between July and October. Spawning males 

(stage IV) started to occur in July and become more abundant in October and November, 

whereas post-spawning males mainly occurred between November and February (Fig. 3b). 
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Fig 3. Monthly percentages of maturity stages of black scabbardfish from Madeira Islands: females (a) 

and males (b). 

3.3 Gonad microscopic development  

 

Females 

Stage I – Immature female  

This stage is characterized by the existence of previtellogenic oocytes in different growth 

phases, with chromatin nucleolar and/or perinucleolar, creating a mosaic appearance (Fig. 4a). 

In this stage, the ovary was formed exclusively with previtellogenic oocytes (Fig. 5). These 

oocytes appeared gathered in nests, set in the ovarian lamella and presented a single big 
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nucleus in a central position (Fig. 4a). As the development progresses, some of theses oocytes 

presented an increase of volume and the nucleoli became more numerous and migrated to the 

edge of the nucleus. The diameter of the previtellogenic oocytes varied between 33 and 189 μm 

(diameter average = 93 μm, S.E. = 0.63) (Fig. 6). In the most advanced phase of development 

some vitellogenic oocytes started to appear, but in very low frequencies to assign the ovaries to 

maturity stage IIa.  

Stage IIa - Developing, immature female  

The ovaries presented a higher proportion of vitellogenic oocytes, among the typical stage I 

oocytes (Fig. 4b- photo). Previtellogenic oocytes were still predominant (75% of the total 

oocytes), but in a lower proportion than the stage I (Fig. 5). The early-vitellogenic oocytes were 

characterized by the appearance of the cortical alveoli in the cytoplasm which made an increase 

of volume. The oocytes diameter ranged from 100 to 370μm (diameter average = 200μm, S.E. = 

1.61) (Fig. 6) and the nucleus/cell ratio decreased. The follicular layer of the oocytes became 

more conspicuous, with the three layers (theca, granulosa and radiate) already visible.  

The following stages were only encountered in females caught off Madeira Islands.  

Stage III – Pre spawning female 

The general appearance of the ovary revealed the formation of big vitellogenic oocytes, but 

previtellogenic oocytes still occurred in great numbers (Fig. 5). The ovarian lamella lost their 

conspicuous contour. The vitellogenic oocytes increased remarkably in size, attaining diameters 

ranging between 250 and 1000μm (diameter average = 700μm, S.E. = 7.5) (Fig. 6). The oocytes 

in this stage were characterized by the presence of lipid vesicles and deposit of protein granules 

in the cytoplasm. These round structures were small in the beginning giving the cytoplasm the 

appearance of a mosaic. The nucleus lost the round shape and decreased in size. The follicular 

layer became thicker and very distinctive (Fig. 4c).  
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Stage IV – Spawning female  

The ovaries in this stage were very large, occupying almost all the abdominal cavity. The 

prevailed oocytes were fully mature and completely hydrated (Fig. 5). The yolk droplets fused 

with the lipid vesicles, forming a homogeneous layer. The diameter of the mature oocytes varied 

between 520 and 1250μm (average diameter = 972μm, S.E. = 7.5) (Fig. 6). The nucleus 

migrated towards the animal pole and in some cases had already disintegrated. In some 

samples was observed some atretic oocytes and postovulatory follicles (Fig. 4d). 

Stage V – Spent  

The ovaries presented different levels of flaccidity and very thick ovarian walls. In this stage, the 

ovaries were highly disorganised and cordon-like structures among new oocytes were 

observed, which correspond to postovulatory follicles. It was observed a high percentage of 

atretic oocytes (Fig. 4e). Most of oocytes were in pre-vitellogenic and early-vitellogenic stage 

(Fig. 5).  

The stage IIb – Mature, resting female  

This is the later stage of development after a spawning episode. The ovaries reabsorbed most 

of POFs and recommence the development of new oocytes for the next reproductive season 

(Fig. 4f). The internal structure of the ovary is more organized than the previous stage; the 

ovarian lamellae are again noticeable and most of the oocytes are in a pre-vitellogenic stage 

(Fig. 5). This stage is distinguishable from the stage II-a due to the general internal structure of 

the ovary, the presence of a higher percentage of atretic oocytes, and a much thicker ovarian 

wall. 

Note: For detailed description on the male gonad development of Aphanopus carbo see 

Appendix II. 
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Fig 4 – Ovary development stages of Aphanopus carbo: (a) immature – stage I; (b) developing female 

– stage IIa; (c) Pre-spawning female – stage III; (d) Spawning female – stage IV; (e) Post-spawning 

female – stage V; (f) Resting female – stage IIb. PO, previtellogenic oocytes; EVO, early-vitellogenic 

oocytes; VO, vitellogenic oocytes; HO, hydrated oocyte; LD, Lipid droplet; POFs, postovulatory follicles; 

AO, atretic oocytes; W, ovarian wall. 

 

 

 

(c) (d) 

(e) (f) 

(a) (b) 



54 

 

 

 

 

 

Fig 5 . Frequency of ovarian follicles in the ovaries at each ovarian maturity stage. AO- Atretic 

oocytes; StI – previtellogenic oocytes; St IIa – early-vitellogenic oocytes; St III – vitellogenic 

oocytes; St IV – hydrated oocytes; POFs -  and post ovalutory follicles 



55 

 

 

Fig 6. Frequency distribution of oocyte size (in μm) of black scabbardfish, in each maturity stage 

 

3.4 Atresia  

 

The specimens caught to the West of the British Isles showed atretic oocytes among the 

previtellogenic and early vitellogenic oocytes. Atretic oocytes were only identified in the early-

vitellogenic oocytes and the prevalence of atresia was higher in stage II-a females, where the 

majority of ovaries in this stage showed atretic oocytes (65%).  

Throughout the year the females in stage I presented low relative intensity of atretic oocytes, 

with an average of 1.7% of atresia in most of the months (ranging from 0.3% to 3.4%). The 

stage II-a females showed higher relative intensity of atresia along the year, with higher values 

observed in April, ranging between 4.2% and 16.2% of atretic oocytes (average = 8.0%) (Fig.7).  

 

For the specimens sampled in Madeira atresia was present in all maturity stages. The mean 

relative intensity of atresia presented higher values in the stage V - Spent (average intensity of 

atresia = 6.3%), ranging between 2.2% and 16.1%. The pre-spawning (III) and spawning (IV) 

females showed atresia oocytes also, varying between 2.1% and 8.8% in pre-spawning ovaries 

and between 1.8% and 6.5% for spawning females (Fig. 8).  
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Fig 7. Intensity (%) of atresia (Mean, minimum and maximum) in stages I and IIa females caught off West 

of British Isles. 

 

 

Fig 8. Intensity of atresia (%) in each maturity stage from females caught off Madeira islands 
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3.5 Wall thickness 

 

Ovarian wall thickness increased with maturation. Females in stages I and IIa had a very thin 

ovarian wall, with no significant differences between them (Tukey-type pairwise comparisons, p 

= 0.523), varying between 33 and 200μm. The pre-spawning and spawning females showed a 

thicker wall relative to the immature fish, attaining 270μm in some cases, but the difference was 

not significant (Tukey-type pairwise comparisons, p = 0.876). In the last two maturity stages, V 

and IIb, the ovarian wall was typically thicker. In stage V, the wall thickness ranged between 

498 and 1050μm and in the stage IIb the wall decreased in thickness, varying between 261 and 

888μm (Fig. 9). Females in developing (Stage IIa) had significantly thinner ovarian walls than 

females in the resting stage (Stage IIb) (Tukey-type pairwise comparisons, p<0.05). 
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Fig. 9. Wall thickness (in μm) in each maturity stage. Middle line: mean; box: Standard error; Whisker: 

Min-Max. 
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The final model that allowed the residuals to vary with respect to total length and maturity stage 

was:  

fMatstage)|TL=~ormvarPower(fweights,ijjMatstageiTLjMThickness_Wall  Eq. (2), 

where )||,0N(~
22 j

iij TL


   

This model had the lowest AIC and is therefore selected as the optimal model (Table 3). Table 4   

lists the estimates of the fixed effects obtained by fitting the wall thickness data using Eq. (2). 

Table 3 Residual standard errors and AIC values for the linear model and the extended GLS models using 

various variance structures to select the optimal model for the variance of the wall thickness. GLS, 

Generalized Linear Squares model; TL, Total length; MatStage, maturity stage 

Model 
Residual stantard 

error 
AIC 

Linear model 93.213 9851.54 

GLS, VarFixed (~TL) 2.642 9746.28 

GLS, VarIdent (~MatStage) 22.557 8885.92 

GLS,VarExp (form= ~TL) 0.303 9170.06 

GLS, VarPower (form=~TL|fMatStage) 0.295 8883.13 

GLS, VarComb (varIdent (form=~1|MatStage), 
varExp (form= ~TL) 11.956 8884.13 

 

 

Table 4 The estimates of the of the fixed effects parameters by fitting Eq. (12) to the wall thickness data 

for black scabbardfish. * significant differences, p < 0.05 

Parameters Value S.E. t -value p - value

Stage I 39.637 16.054 2.469 0.014*

TL 0.03 0.017 1.798 0.073

Stage IIa -82.238 37.101 -2.216 0.027*

Stage IIb -542.994 410.832 -1.321 0.186

Stage III -156.074 115.555 -1.350 0.177

Stage IV -442.162 162.889 -2.714 0.007*

Stage V 1366.521 341.591 4.000 0.0001*

TL: Stage IIa 0.102 0.036 2.842 0.004*

TL: Stage IIa 0.726 0.324 2.240 0.025*

TL: Stage III 0.216 0.091 2.346 0.019*

TL: Stage IV 0.435 0.131 3.310 0.001*

TL: Stage V -0.659 0.266 -2.476 0.013*
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3.6 Hepatosomatic and Gonadosomatic index 

 

The GSI for the specimens captured off the West of the British Isles were very low and with 

small variations for both sexes throughout the year, showing no evidence of reproductive 

behaviour. Female GSI attained higher values (U = 432.34, p< 0.05) ranging from 0.02 to 0.99 

(mean GSI = 0.35, S.D = 0.11) than males and with higher values in April and September. The 

male GSI values ranged from 0.01 to 0.79 (mean GSI = 0.08, S.D. = 0.07), with a very small 

variation throughout the year (Fig.10). Although the GSI values for both sexes did not show 

evident variations throughout the year, significant differences among months were found 

(H(11,792) = 97.54, p<0.05 for females and H(11,524) = 36.88, p < 0.05 for males). 

The HSI values from the northern area specimens had the same trend throughout the year for 

both sexes, with no significant differences between males and females (U = 345.78, p= 0.79). 

However, the monthly evolution of the HSI values presented significant differences (H(11,794) = 

97.54, p <0.05) among the months, with higher values being observed between January and 

May (values ranging from 1.2 to 1.9) (Fig. 10).  

 

Fig. 10 Monthly changes in the GSI and HSI values for males and females of black scabbardfish caught in 

the west of the British isles. Each GSI and HSI value represented by the mean ± SE (error bars) 
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The GSI values for females sampled in Madeira showed low values between February and July 

(mean GSI < 2), progressively increasing in the following months, peaking in November (mean 

GSI =8.53, S.D. = 5.22), indicating that the reproductive activity takes place in the last quarter of 

the year (Fig. 11) (H (4,191) = 6.20, p < 0.001). The male GSI values were lower, ranging from 

1.35 to 2.75. The highest GSI values in males were recorded in October (mean GSI = 2.75, S.D 

= 1.51), indicating that males are reproductively active earlier in the year than females. The HSI 

values from the Madeira specimens showed the same increasing trend as HSI throughout the 

year for both sexes, with females having significantly higher values than males (U = 234.67, p < 

0.05) (Fig. 11). The average female HSI values varied between 0.83 in February and 1.91 in 

November, with significant difference among months (H(4,205)= 32.73, p<0.05). The average 

male HSI values ranged from 0.65 in February and 0.87 in October (H(4,191) = 27.71, p <0.05). 

 

 

Fig. 11 Monthly changes in the GSI and HSI values for males and females of black scabbardfish caught 

in Madeira Islands. Each GSI and HSI value represented by the mean ± SE (error bars) 
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Significant differences were observed between maturity stages (H(5,200)= 74.09, p < 0.001). HSI 

increased from immature individuals (0.57 ± 0.13) to pre-spawning ones (1.42 ± 0.34), 

decreasing in the following stages (Fig. 12). 

 

Fig. 12 Mean values ± standard error of HSI in relation to ovary developmental stages of black 

scabbardfish caught off Madeira Islands 

 

3.7 Size structure 

 

Length data were collected from 2126 and 406 specimens from west of the British Isles and 

Madeira, respectively. In the northern region, the length range for females was 710 – 1300 mm 

(meanTL = 955 cm; S.E. = 2.51) and for males was from 620 to 1170 mm (mean TL = 923 mm; 

S. E. = 2.54). Overall, the specimens captured off Madeira Islands were bigger than the ones 

caught in the northern area. The total length for females ranged from 1060 to 1410 mm (mean 

TL = 1210mm; S.E. = 4.74) with males ranging from 630 to 1270 mm (mean TL = 1150 mm; 

S.E. = 3.95). Results of the Kolmogorov-Smirnov two sample test indicated a significant 

difference (p < 0.05) in length frequency distributions between sexes and areas (Fig. 13).  The 

length frequencies showed that females in both areas attained greater total lengths than males. 



62 

 

 

 

Fig. 13 Length-frequency distribution of males and females of Aphanopus carbo sampled off western of 

the British Isles and Madeira 

 

3.8 Size at maturity 

 

Based on the estimates obtained with the bias-reduction GLM (BRGLM, binomial family) 

approach using only the Madeira dataset, the estimated size at 50% maturity (LC50%), was 

1110mm for females and 1010mm for males (Fig. 14 a and b).  

When we combined both datasets - West of the British Isles and Madeira – the LC50% estimated 

based on the logistic regression (GLM, binomial family) was significantly higher than the 

previous estimations, 1156mm females and 1098mm for males (Fig. 14 a and b).The maturity 

ogive parameters for each sex and model are presented in Table 7. 
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Fig. 14 Estimated proportion mature at length for a) female and b) male black scabbardfish (P[mature] = 1 

/ 1 + exp [(a – b x TL)]
-1

) using a regression fit (binomial GLM, logit link function) for combined (West of 

British Isles and Madeira) data– thick line- and 95% confidence intervals – dark grey shadow; and the bias 

reduction method (binomial BRGLM, logit link function) for Madeira data – dashed line- and 95% 

confidence intervals – light grey shadow 
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4 Discussion 

 

The results obtained in this study on the reproductive cycle and oocyte development are 

consistent with the existence of a wide ranging, likely panmitic population of black scabbardfish 

in the NE Atlantic. The analysis of the data from two distinct geographic regions corroborates 

that the fish caught off the west of the British Isles are pre-adults that undertake large scale 

north - south migrations towards to the Madeira and Canaries Islands where they reach maturity 

and spawn (Figueiredo et al., 2003; Pajuelo et al., 2008). This study highlights the importance of 

understanding the life cycle and the migratory pattern of A. carbo in the NE Atlantic and 

emphasizes the need for a deeper look at this species to understand the migration and stock 

structure using other tools, such stable isotope analysis from otoliths and genetics. 

Based on our macroscopic and histological results, the specimens caught to the West of 

Scotland were immature throughout the year. Previous studies in the same region also found 

only immature specimens (Figueiredo et al., 2003; Kelly et al., 1998), but those studies did not 

carry out systematic annual monthly sampling. However, Magnússon and Magnússon (1995) 

observed spent specimens and one spawning fish around Icelandic waters in March 1993. In 

that study, the maturity scale used was not presented, the observations were not histologically 

validated and the maturity stages could have been wrongly assigned. 

The lack of gonadal development throughout the year, confirmed by the constant values of GSI, 

suggest that the fish leave the northern region prior to/once gonads start to develop into the 

early-vitellogenic stage and likely migrate southwards to proceed with maturation and spawning. 

Table 5 Parameters of binomial GLM (for combined data) and Bias-reduction GLM model (for Madeira 

data) of length-at 50% maturity for black scabbardfish 

a (S.E.) b (S.E.) df Res. Var. a (S.E.) b (S.E.) df Res. Var.

1098 -46.51 0.04 1113 230.61 1156 -53.66 0.04 1149 128.17

(3.88) (0.004) (5.73) (0.005)

1010 -24.81 0.02 199 72.14 1110 -59.55 0.05 125 10.27

(6.19) (0.005) (18.15) (0.016)

Combined 

data

Madeira

Ogive type LC50% 

(mm)

LC50% 

(mm)

Ogive parametersOgive parameters

Males Females
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The high level of atresia in the pre-vitellogenic oocytes, especially in April, confirms the lack of 

appropriate conditions; environmental, physiological and/or ecological to proceed with the 

maturation process ( Rideout et al., 2005; Jørgensen et al., 2006).  

The “decision” of migrate has to be a trade-off between the potential benefit of reproduction and 

the costs of migration and natural and fisheries-induced mortalities (Jørgensen et al., 2006).  

A factor that might trigger the migration and affect the intensity of atresia is the shift in the diet 

composition throughout the year. The diet of black scabbardfish is predominated by blue whiting 

(Micromesistius poutassou) in the first quarter of the year, and then it changes to a less 

nutritional diet, composed of cephalopods and crustaceans from the second quarter onwards 

(Ribeiro Santos et al., in review Chapter 3). The change in the diet composition of black 

scabbardfish is linked to blue whiting migration pattern, which undertakes long distance 

migrations from the spawning grounds to the west of the British Isles to the feeding grounds in 

the Norwegian Sea by the end of April (Bailey, 1982; Was et al., 2008). This change in the diet 

composition may result in a decrease in the black scabbardfish’s condition to proceed with 

maturation and trigger the migration, but the specimens with poorer condition remain in the 

northern area and eventually enter into an atretic process and do not spawn, at least that year.  

Spawning “omissions” due to scarce prey availability have been suggested for other species, 

such as cod Gadus morhua (Oganesyan, 1993) and orange roughy Hoplostethus atlanticus 

(Bell et al., 1992). The study from Jørgensen et al. (2006) stated that a long and energy-costly 

migration makes skipped spawning an attractive option, because the saved energy if invested in 

growth, leads to a large increase in future fecundity. It seems that black scabbardfish goes 

through an intense feeding activity on blue whiting between January and April, to prepare for 

their migration, and the fish with better nutritional conditions migrate towards the south to 

progress with maturation and spawning.  

Other factors that might interrupt the gamete development in the northern area are 

environmental (e.g. cold water temperature) and ecological and physiological (Jørgensen et al., 

2006). Although the distribution of eggs and larvae of black scabbardfish is unknown, it is 

postulated that they have a pelagic distribution ( Vinnichenko, 2002; Quinta et al., 2004). The 

migration towards southern waters could increase reproductive success, due to warmer surface 
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waters, lower productivity and consequently a lower density of pelagic planktivores than the 

northern waters. Finding the location of the occurrence of the larvae will facilitate the 

understanding of the migratory pattern and spawning ecology of black scabbardfish in the NE 

Atlantic. 

Long scale migrations between the feeding and spawning grounds are commonly found among 

several fish species, such as Atlantic cod (Robichaud and Rose, 2001), North Sea plaice 

Pleuronectes platessa (Hunter et al., 2003),  blue whiting M. poutassou (Was et al., 2008), 

Atlantic bluefin tuna Thunnus thynnus (Fromentin and Powers, 2005), Greenland halibut 

Reinhardtius hippoglossoides (Walsh and Bowering, 1981). However, the absence of bigger 

sizes and spent and/or mature fish in the northern samples suggest that black scabbardfish 

migration is a single life event and that they do not return to the feeding grounds off the west of 

Scotland after they spawn. This kind of migration is very common for diadromous semelparous 

species (e.g. salmon), but not for oceanic iteroparous species. The fact that black scabbardfish 

do not migrate back to the feeding grounds to the West of the British Isles may be related with 

the energetic costs of migration and, as part of the individuals growth trajectory, once they 

reach a certain size most of the energy is allocated to reproduction, as observed from an 

energy-allocation life history model on the Atlantic cod (Jørgensen et al., 2006).   

Previous studies on reproduction of black scabbardfish in Portugal and Madeira (Bordalo-

Machado et al., 2001; Figueiredo et al., 2003; Neves et al., 2009) revealed a total absence of 

mature specimens on the Portuguese shelf, and it is postulated that the individuals with better 

condition migrate towards southern areas (Madeira and Canary Islands) to spawn and the fish 

in poorer condition remain off the Portuguese coast; the reproductive development is 

interrupted, as they increase in length but never spawn, remaining immature (Neves et al., 

2009).  

In the waters off Madeira, all maturity stages were observed, although very few immature 

specimens were caught. Possible explanations for the low number of immature specimens in 

the catches could be that they are not selected by the long-line gear, or they have a different 

vertical distribution where the fishing effort is applied or that, in fact there are very few immature 

black scabbardfish in Madeiran waters. The few immature fish might suggest that these fish 
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newly arrived back to Madeira or possibly some fish do not migrate and spend their whole life 

cycle in Madeira waters. 

The spawning season appears to be well defined, the reproductive cycle and GSI monthly 

variation indicate that the spawning season starts between September and October and finishes 

in December, which is in agreement with the findings of previous studies (Bordalo-Machado et 

al., 2001; Figueiredo et al., 2003; Neves et al., 2009). A decrease in monthly HSI values might 

be expected during the spawning season, as energy is redeployed into the gonad maturation. 

However, the converse was observed with a HSI peak at the beginning of the spawning season, 

in October, followed by a slight decrease in November, for both males and females. This could 

indicate that before the spawning season, the intake of energy from feeding is allocated and 

accumulated in the liver to be used in vitellogenesis and spermatogenesis during the spawning 

season as suggested by Sequeira et al (2012) for bluemouth Helicolenus dactylopterus. The 

HSI increased progressively from immature females to pre-spawning females (stage III), 

decreasing in the following maturity stages, also indicating that the hepatic reserves play an 

important role for the maturation process (Domínguez-Petit and Saborido-Rey, 2009). 

Regarding the oocyte dynamics, the existence of a hiatus in the oocyte diameter frequency 

distribution between pre / early vitellogenic and mature oocytes indicates that black 

scabbardfish has a determinate fecundity, which means that the total fecundity prior to the onset 

of spawning is considered equivalent to the potential annual fecundity, after correcting for atretic 

losses (Murua and Saborido-Rey, 2003).  

There are three types of oocyte development, i.e. synchronous, asynchronous and group-

synchronous, with the latter being the most common among teleosts. According to Wallace and 

Selman (1981) in the synchronous group type: “at least two populations of oocytes can be 

distinguished at some time: a fairly synchronous population of larger oocytes (clutch) and a 

more heterogeneous population of smaller oocytes from which the clutch is recruited” (Murua 

and Saborido-Rey, 2003; Wallace and Selman, 1981). According to our observations, black 

scabbardfish conforms to the group-synchronous pattern, as a clutch of oocytes develop and 

mature synchronously, which are clearly distinguished from the stock of smaller oocytes from 

which they recruit.  
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Tyler and Sumpter (1996) described two types of spawning patterns: total spawners, which 

refers to species where the whole clutch of yolk oocytes ovulates at once and the eggs are shed 

in a single event or short period; and batch spawners, where the yolk oocytes ovulate in several 

batches over a protracted period during the spawning season. According to our observations 

black scabbardfish is a total spawner, since the duration of the spawning stage (stage IV) is 

very short, supported by the fact that even at the peak of the spawning season (November) the 

proportion of females in stage IV did not exceed 20% of the total females sampled. In a 

comprehensive study on fecundity of black scabbardfish in Portugal and Madeira, Neves et al. 

(2009) reached to same conclusions. 

The reproductive strategy of black scabbardfish is different from some other deep water 

species, which in general present a protracted reproductive season, asynchrony and have 

indeterminate fecundity, such as Coryphaenoides rupestris (Allain, 2001; Kelly et al., 1996), 

Alepocephalus bardii (Allain, 2001; Morales-Nin et al., 1996), Lepidion eques (Rotllant et al., 

2002), Hymenocephalus italicus and Nezumia sclerohynchus (D'Onghia et al., 1999). These 

differences could be related with the necessity to synchronize the reproductive cycle of black 

scabbardfish with the surface primary production, so that the developing eggs float upwards and 

larvae are produce in food-rich waters, as was observed for other deep water fishes 

reproductive cycle (D'Onghia et al., 1999).  

The macroscopic assignment of maturity stages was sometimes difficult, because the 

differentiation between maturity stages is not always clear, especially between females in spent 

(stage V) and resting (stage II-b) stages and between females in developing (stage II-a) and 

resting condition (stage II-b). Microscopic analysis of gonads proved to be very useful in 

clarifying macroscopic issues, thus reducing the errors on maturity stage assignments. Previous 

studies (e.g. Figueiredo et al., 2003; Neves et al., 2009; Pajuelo et al., 2008) on the 

reproductive cycle of black scabbardfish failed to distinguish developing females that never 

spawned from resting females. From our perspective this differentiation is not just essential for 

better understanding the reproductive cycle, but in a stock management perspective, the lack of 

this differentiation can result in erroneous estimates of length at first maturity (LC50%) and have 

serious consequences for the larger part of the reproductive stock,  as was demonstrated by 
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Honji et al. (2006) for the Argentine hake (Merluccius hubbsi) and by Vitale et al. (2006) for cod. 

To distinguish resting/developing females it is necessary to validate the macroscopic 

observations with histological analysis. The measurement of the wall thickness could be a good 

mechanism to differentiate between immature and non-reproductive mature females, since the 

ovarian wall thickness was greater for resting females (stage II-b) than for developing immature 

females (stage II-a). This technique has been successfully used for other species, such as 

Atlantic cod (Rideout et al., 2000) and the winter flounder (Pleuronectes americanus) (Burton 

and Idler, 1984).  

Size segregation was observed between the specimens captured to the West of the British Isles 

and Madeira. The largest specimens were caught off the Madeira Islands (attaining 1450mm), 

while the smallest were captured to the West of the British Isles (~620mm). This was previously 

observed by other authors (Bordalo-Machado et al., 2001; Figueiredo et al., 2003; Santos, 

2000). The difference in the length- frequency distributions between the south and north might 

be related to the different fishing gear used in the different areas. The bottom longline fishery in 

Madeira exploits larger fish and the bottom trawl in northern waters exploits the smaller fish of 

the population. However, in the northern area, a large number of fish from the trawls were 

examined in this study; experimental fishing and surveys that operated over a wide depth range 

never recorded a fish bigger than 1250mm in length in this area, suggesting that there is 

geographical size segregation. This hypothesis is difficult to definitely prove without directed 

fishing using the same gear types in both areas.  We infer, based on the length-frequency 

distribution found and the reproductive cycle previously discussed, that this difference is more 

likely related with the life cycle and migration pattern of this species 

The present study revealed that black scabbardfish possesses a very particular maturation 

process, with a geographical quasi-complete separation of the immature and mature individuals. 

While in the northern area only immature specimens were sampled, in the Madeira Islands a 

very low number of immature specimens was sampled, with a low overlap along the size range, 

making it impossible to fit a binomial GLM to each dataset separately. To overcome this data 

structure, we choose to use the BRGLM function in the Madeira dataset, that penalizes the 

maximum likelihood estimate for cases of complete or quasi-complete separation of the 
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response variable (immature/mature) over the explanatory variable (total length) (Kosmidis and 

Firth, 2008). This function has been used in other ecological and ecotoxicology studies where 

there are binomial responses (Denton et al., 2009; McClellan et al., 2009; Senior and 

Nakagawa, 2011), but never, to our knowledge, in the estimation of maturity ogives. The length-

at-maturity estimated for females from Madeira using this function was 1110mm, and is larger 

than the estimations by Figueiredo et al. (~1028mm) (2003). This difference could be due to 

various factors: low numbers of immatures in the samples in the present study, or time of 

sampling, since in the previous study only samples from the reproductive season (between 

September and February) were used. Pajuelo et al. (2008) estimated LC50% for black 

scabbardfish in Canary Islands as 1114mm, however, the lack of differentiation between the two 

species of Aphanopus, A. intermedius and A. carbo, present in the waters around the Canary 

islands precludes any meaningful comparisons. 

When we added the immature specimens from the West of Scotland and estimated the maturity 

ogive with the combined data (Madeira and West of Scotland), the length-at-maturity was 

significantly higher than the ones calculated using only the Madeira dataset, for both sexes. The 

fact that we are introducing immature specimens from the northern area with the same lengths 

as some of the mature specimens in Madeira caused a shift of the curve to the right. 

Notwithstanding the geographical distance between the west of Scotland and Madeira, we 

consider it important to incorporate the immature species from the former location into the 

maturity ogive estimations, since our data strongly suggests that the life cycle of black 

scabbardfish is not completed in just one area. 

Currently, black scabbardfish is managed based on the biennial ICES and CECAF scientific 

advice According to the ICES scientific advice, the available information is inadequate to 

evaluate the spawning stock and fishing mortality, so the state of the stock is unknown (ICES, 

2010). From our perspective this lack of knowledge is because the only known spawning 

grounds for black scabbardfish – the Madeira and Canary islands, are outside the “jurisdiction” 

of ICES and the data from these areas are not considered nor integrated for the ICES 

assessment and advice. Species that transpose the barriers of the Regional Fishery Bodies 

need to be treated as highly migratory and effective management requires cooperation between 
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the States and/or the Regional Fishery Bodies where black scabbardfish is exploited. This 

cooperation involves inter alia, the standardisation of data collection, including reproductive 

material, exchange of biological, distribution and fishery (catches, landings, effort, etc) 

information. Understanding the logical connection between juveniles and spawning biomass 

and the effect of the migration behaviour within the distribution area is vital for the maintenance 

of the population (Secor, 1999; Trippel, 1999).  It is important that fish are able to grow to a 

reproductive size and are able to spawn before they are harvested. Harvesting of juveniles 

ultimately reduces the number of individuals that contribute to the spawning stock. It is vital to 

allow potential spawners to reproduce and produce viable offspring in order to maintain long 

term sustainable population’s levels. It is important to understand, not only the large scale 

distribution and migration, but the fine-scale dynamics of black scabbardfish in the NE Atlantic. 
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Appendix I 

Table 1. Overview of the data acquisition for the study on reproduction of black scabbardfish, Aphanopus carbo in the NE Atlantic 

Source Date Area ICES Area Depth range (m) Bottom time

Commercial French Trawlers June 09 - July 2010 Continental slope West of Scotland Area Via 750 - 1100 3 - 6 h

Irish Deep water survey 2008 September 2008 North and western Slopes of the Porcupine bank Area VII 500 - 1800 2 h

Irish Deep water survey 2009 December 2009 North and western Slopes of the Porcupine bank Area VII 500 - 1800 1 h

Scottish Deep water survey 2009 September 2009 Continental slope West of Scotland and Rosemary bank Area VIa 500 - 1800 1 h

French IBTS (EVHOE)2 2009 October 2009 Continental slope of Biscay Bay Area VIIIa 950 - 1400 1 h

Madeira longline landings April 09 - February 2010 Madeira Island ~ 1000 ~ 24 h
 

 

Table 2. Overview of data (no. of specimens) used for the study  

M F M F M F M F M F

French Trawlers June 09 - May 2010 447 600 448 596 447 600 399 549 558 409

Irish Deep water survey 08 Sept 2008 169 228 168 228 169 228 70 106 67 103

Irish Deep water survey 09 Dec 2009 89 99 89 99 89 99 1 15 7 16

Scottish Deep water survey 09 Sept 2009 164 253 181 253 181 253 74 160 158 111

French IBTS Oct 2009 30 32 30 32 30 32 16 27 29 31

Madeira longline landings May 2009 - Feb 2010 205 202 205 202 205 202 205 202 200 193

TOTAL 1104 1414 1121 1410 1121 1414 765 1059 1019 8632554

No fish 

sampled

189

440

62

409

Gonad weight (g) Liver weight (g)

1053

401

Total length (mm) Total weight (g) Maturity
Source Date

 



 

Appendix II 

 

This appendix contains additional information on the male gonad development of Aphanopus 

carbo.  Photographs of the testes development stages are also included. 

 

Male gonad microscopic development 

Stage I – Immature  

The testes in this stage are very small and have a laminar aspect, transparent or slightly pink. 

Microscopically they are characterized by the existence of spermatogonia cells with a prominent 

nucleus in the seminiferous tubules and a central empty lumen. In some cases, the 

seminiferous tubules are not clearly defined. Cells in a more advanced state of development 

can also be found: primary and secondary spermatocytes (Figure 11a).  

In stage II – Developing  

The testis are firm and with a whitish colour. The seminiferous tubules and the collecting ducts 

become more conspicuous. Cells in different stages of spermatogenesis are present in the 

seminiferous tubules: primary and secondary spermatocytes and spermatids (Figure 11b). In 

some cases is possible to observe the presence of spermatids and spermatozoa in the 

collecting ducts. 

As occurred with females, the males captured in West of British Isles were only in stages I and II 

of development. The following stages were only encountered in the specimens sampled in 

Madeira. 

The stage III – Maturing  

This stage is characterized by an increase in volume of the testis with a white / pink colour. The 

sperm duct is very conspicuous and full with sperm. The seminiferous tubules showed an 

intense spermatogenesis, with the presence of cells in different stages, but mainly spermatozoa 

cells (Figure 11c).  

Stage IV – Mature  

 At this stage the testes are white and the sperm is expelled with a slight pressure. The 

seminiferous tubules and the collecting ducts are completely full of spermatozoa (Figure 11d). 

Stage V – Spent 

The testes have a flaccid and haemorrhagic aspect. At this stage the testes revealed structural 

disorganization of the seminiferous tubules, with an empty appearance but with some residual 
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spermatozoa. The remaining spermatozoa enter into reabsorption and spermatogonia were also 

observed (Figure 11e). 

  

  

 

Figure A1 Testes development stages: (a) immature male – stage I; (b) developing male – stage II; (c) pre-

spawning males – stage III; (d) post-spawning male – stage V. SC, spermatocytes; SG, spermatogonia 

cells; L, lumen; SPT, spermatids cells; ST, seminiferous tubules; SP, spermatozoa cells; MS, mature 

sperm; EST, empty seminiferous tubules. 

 

(a) (b) 

(c) (d) 

(e) 
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Abstract 

The black scabbardfish is a deep water species of high commercial interest in the NE Atlantic. 

In conjunction with stomach content data these methods made it possible to investigate the 

feeding strategy of black scabbardfish. Specimens were collected from commercial trawls to the 

West of the British Isles and from longliners operating near Madeira between September 2008 

and May 2010. Stomach content analysis was confined to samples from the northern area, 

because of a high number of empty stomachs from Madeira. Stable isotope analyses identified 

that black scabbardfish feeds on species with epipelagic and benthopelagic affinities. For the 

west of British Isles, the δN values were significantly different between seasons suggesting a 

change in the diet throughout the year. Black scabbardfish have higher δN and δC values 

compared with other co-occurring benthopelagic feeders and lower nitrogen values than the 

true benthic predators and/or scavengers. Comparison with stable isotope analysis in Madeira 

samples indicated that black scabbardfish feed at a similar trophic level and has the same 

trophic niche width in both areas, assuming similar baseline isotope compositions. The diet in 

the northern area comprised fish (68% N), crustaceans (22% N) and cephalopods (15% N) with 

blue whiting (Micromesistius poutassou) constituting 40% of the prey. Seasonal shifts in diet 

were observed, with a predominance of blue whiting (70%) in the first quarter of the year, 

shifting to a more diverse diet in the remainder of the year. These results indicate that the diet of 

black scabbardfish is closely linked with the seasonal migration of blue whiting and that they 

likely select prey in proportion to availability.  

This study demonstrates that the combined used of both methods can elucidate the trophic 

ecology of black scabbardfish, in situations where conventional methods alone provide 

insufficient data.  
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1. Introduction 

 

The Black scabbardfish (Aphanopus carbo Lowe, 1839) is a deep water fish, belonging to the 

family Trichiuridae. This species has a world-wide distribution, with records in the Atlantic from 

Iceland (Magnússon and Magnússon, 1995) to the Canary Islands (Uiblein et al., 1996), 

including the islands of Madeira, Azores and numerous submarine banks and seamounts 

(Zilanov and Shepel, 1975; Nakamura and Parin, 1993; Morales-Nin and Sena-Carvalho, 1996; 

Vinnichenko et al., 2005; Pajuelo et al., 2008). It belongs to the benthopelagic category of deep-

water fishes, living close to the bottom along the continental slope (Nakamura and Parin, 1993; 

Gordon, 2001; Bordalo-Machado and Figueiredo, 2008) and occurs at depths between 200m in 

the British Isles (Tucker, 1956; Bordalo-Machado et al., 2001; Bordalo-Machado and 

Figueiredo, 2008) to 1800m in the south of Madeira, being more commonly found between 800 

to 1200m (Bordalo-Machado et al., 2001).  

Black scabbardfish is an economically important deep water species that has been exploited in 

the eastern Atlantic, off the Madeira Islands, for centuries (Haedrich et al., 2001; Alves, 2003). 

Since 1983, the exploitation of black scabbardfish expanded to the Portuguese continental 

waters (Martins et al., 1989; Bordalo-Machado and Figueiredo, 2008). In the North of Europe, 

the species has been captured around the British Isles (ICES Subareas V, VI and VII) and 

Iceland (ICES Subarea Va), mainly by French, Icelandic and Spanish  trawlers (ICES, 2011) 

since the early 1990’s (ICES, 2008).   

Despite the wide distribution and commercial interest in black scabbardfish, biological studies 

are relatively sparse and have concentrated on distribution (Zilanov and Shepel, 1975; 

Piotrovskiy, 1981; Mauchline and Gordon, 1984c; Nakamura and Parin, 1993; Magnússon and 

Magnússon, 1995; Uiblein et al., 1996; Vinnichenko et al., 2005), anatomy (Bone, 1971), age 

and growth (Morales-Nin and Sena-Carvalho, 1996; Morales-Nin et al., 2002; Pajuelo et al., 

2008; Vieira et al., 2009) and reproduction (Bordalo-Machado et al., 2001; Figueiredo et al., 

2003; Pajuelo et al., 2008). The available information on the diet of black scabbardfish is 

confined to general comments on the stomachs contents from specimens collected from the 

Hatton Bank (Du Buit, 1978), the Rockall Trough (Mauchline and Gordon, 1984c), west of the 
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British isles (Zilanov and Shepel, 1975) and Portugal (Santos, 2000), but without any detailed 

description or interpretation. Overall, detailed diet studies of deep water species are very limited 

and scarce due to the difficulty of collecting samples and high rate of stomach eversion.  

Stable isotope analysis offers a complementary perspective to investigate the long term view of 

feeding relationships by accounting for all the sources of energy assimilated during a feeding 

season and the trophic position of an organism (Iken et al., 2001). The stable nitrogen isotope 

ratio (
15

N/
14

N) increases at every step in the food chain, thus indicating trophic level of a species 

(DeNiro and Epstein, 1981), while the carbon isotope ratio (
13

C/
12

C) may provide information on 

nutrients sources  (DeNiro and Epstein, 1978; Vander Zanden and Rasmussen, 2001). Benthic 

and benthopelagic fish may derive nutrients directly from the pelagic food web, or via the 

benthic food web. The benthic food web pathway contains more trophic steps between the 

primary production and fish production, thus fish supplied with nutrient from the benthic food 

sources will be relatively isotopically enriched (Iken et al., 2001; Drazen et al., 2008; Doyle et 

al., 2012) 

Although detailed interpretation of stable isotope data to infer diet composition is dependant on 

the knowledge of isotope signatures of the prey species, some inferences about patterns of 

variation in diet (e.g. ontogenetic variations) can be made in the absence of such information 

(Stowasser et al., 2009). Stomach content and stable isotopes analysis have been rarely 

applied to other deep water fish. The existing studies using both analyses are mainly focused 

on the dominant families of the deep sea: Macrouridae and Moridae (Mauchline and Gordon, 

1984a; Iken et al., 2001; Polunin et al., 2001; Drazen et al., 2008; Stowasser et al., 2009; 

Bergstad et al., 2010). 

In the present study, stable isotope and stomach contents analyses, were used to investigate 

the trophic ecology of black scabbardfish in two areas of NE Atlantic: West of British Isles and 

Madeira. As a consequence of limited recovery of stomach contents, especially from Madeira, 

classic stomach examination was augmented by stable isotope analysis. While the stomach 

contents provide information on the composition of recent meals, stable isotope compositions 

integrate the signatures of different prey consumed over a longer period, and can be used to 

infer trophic level and discriminate sources of food between the two areas. 
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2. Material and Methods 

2.1 Data acquisition 

 

The specimens of black scabbardfish used in this study were obtained from a monthly sampling 

programme, conducted between June 2009 and May 2010, from the commercial French 

trawlers operating off West of British Isles and from a quarterly sampling programme, between 

April 2009 and February 2010, from the longliners landings of the commercial catch in Madeira 

Archipelago (Portugal). Additional samples were obtained from scientific deepwater bottom 

trawl surveys: Marine Institute Deep water Survey, carried out on board R/V Celtic Explorer, in 

September 2008 and December 2009; Marine Scotland Deep water survey, on board R/V 

Scotia, in September 2009 and the French IBTS (International Groundfish Survey - EVHOE 

2009) survey, conducted by IFREMER, on board R/V Thalassa off the Biscay Bay, in October 

2009 (Fig. 1).  

 

Fig. 1. Map with the locations where the samples of black scabbardfish used for this study were collected. 
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Since the early 1990’s a second species of the genus Aphanopus- A. intermedius - has been 

recognised in the southern northeast Atlantic (Madeira and Azores) (Nakamura and Parin, 

1993). This species is morphologically similar to A. carbo and can only be differentiated by 

counting the vertebrae and the dorsal fin spines. To ensure that only A. carbo was sampled, all 

the specimens from Madeira were morphologically analysed to discriminate both species. To 

determine the presence of both species to the west of the British Isles and Bay of Biscay, a 

preliminary meristics study was carried out on 250 specimens, and the results indicated that in 

these areas only Aphanopus carbo was present. 

2.2 Stable isotope analysis 

For stable isotope analysis, samples of white muscle tissue were collected from the dorso-

lateral region of fish sampled of the west of the British Isles (n = 30) and in Madeira (n = 40), 

and frozen prior to freeze drying. The samples were randomly selected from the total muscle 

samples collected from the commercial French trawlers and Scottish and Irish surveys 

conducted in 2009.   Dried samples were powered with a pestle and mortar and a 0.8-1.0 mg 

sample was weighed into a tin capsule for the simultaneous determination of carbon and 

nitrogen ratios. C and N isotope ratios were measured by continuous-flow isotope ratio mass 

spectrometry (CF-IRMS) using a Costech (model ECS 4010) elemental analyser (EA) combined 

with a ThermoFinnigan Delta Plus XP mass spectrometer at the National Oceanography 

Centre, University of Southampton. Three laboratory standards were analysed for every 8–10 

unknown samples in each analytical sequence, allowing instrument drift to be corrected if 

required. Stable isotope ratios were expressed in δ notation as parts per thousand (‰) 

deviation from the international standards V-Pee dee belemnite (carbon) and AIR (nitrogen), 

according to the equation: 10001
standard

/R
sample

RX 













  

where X is 
15

N or 
13

C and R is the corresponding ratio 
15

N/
14

N or 
13

C/
12

C. The measurement 

precision of both δ
15

N and δ
13

C was estimated to be ≤0.3‰. 

δ
13

C ratios were corrected for lipid contents in the tissue using the equation developed by 

Hoffman and Sutton (2010):    bulkbulkbulk

13

protein

13 N:C/N:C3.76‰39.6CC   
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Stable isotopes differences between the two areas were examined using a linear regression 

model (LM) in R, using total weight (in grams) as a covariate. The total weight was log2-

transformed. 

Factors affecting δ
15

N and δ
13

C values in the muscle of black scabbardfish were analysed for 

each area separately, using LMs, since the two response variables were continuous and had a 

normal distribution. The explanatory variables considered were log2 (total weight), sex, and 

semester (1 – January to June; 2 – July to December). Effects of adding interaction terms were 

also considered. Variance in δ
15

N values was taken as a measure of trophic niche width 

(Bearhop et al., 2004) and homogeneity of variance was compared between the two areas: 

West of British Isles and Madeira using a variance ratio test (F-test). We recognize that this test 

assumes a constant variance in baseline δ
15

N values, and this assumption cannot be validated 

in this study. 

2.3 Diet analyses 

 

A total of 1994 A. carbo specimens were analysed for the purpose of this study (Table 1). Each 

specimen was measured - total length (TL, cm), weighed (total weight (TW, g)), sexed and 

maturity stage assessed by macroscopic examination using the maturity scale proposed by 

Gordo et al. (2000). The stomachs were classified as either everted, empty or with food 

contents. The stomachs with food contents were weighed (g), placed in a plastic bag and frozen 

for subsequent analysis 

Table 1. Summary of the data (no. of specimens) used for the feeding ecology study of black scabbardfish 

Empty Everted With food contents Total

Commercial French Trawlers June 09 - May 2010 1053 329 629 95 1053

Irish Deep water survey 08 Sept 2008 401 * * 10 10

Irish Deep water survey 09 Dec 2009 189 13 81 6 100

Scottish Deep water survey 09 Sept 2009 440 38 358 22 418

French IBTS (EVHOE) 2009 Oct 2009 62 * * 4 4

Madeira longline landings May 09 - Feb 2010 409 402 0 7 409

TOTAL 2554 782 1068 144 1994

Source
Stomachs analysed

No fish sampledDate
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In the laboratory, the prey items were careful separated, counted, weighed and whenever 

possible measured (Total length for fish (TL, mm), cephalothorax length (CL, mm) for shrimps 

and mantle length for squids (DML, mm)). Otoliths and bones were cleaned and stored dry and 

cephalopods beaks stored in 70% alcohol. The prey remains were identified to the lowest 

possible taxonomic level. The identification of fish, based on the hard structures (otoliths, 

premaxillae and vertebrae), followed the published guides (Härkönen, 1986; Watt et al., 1997; 

Moller, 2001; Campana, 2004; Girone et al., 2006; Tuset et al., 2008). The identification of 

cephalopods was based on the lower beaks, following Clarke (1986) and the shrimps were 

identified following Pohle (1988). 

The importance of each prey category was evaluated using the following quantitative indices: 

the percentage by number (%N): 

 100
S

S
N%

t

i  ,  

where Si is the number of prey from a specific category i and St is the total number of prey found 

in all the stomachs. 

The proportion in terms of weight (%W) of each prey category was calculated as: 

100
Wt

W
W% i  , 

where W i is the weight from a specific prey category i and Wt is the total weight of prey found in 

all the stomachs. 

The frequency of occurrence (%O) was calculated as 

100
N

N
O%

t

i  , 

where Ni is the number of stomachs with specific prey type i, Nt is the total number of stomachs 

with prey.  

The index of relative importance (IRI) and its standardized value (%IRI) were calculated as 
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 








n

1i

ii IRIIRI100IRI%

O%W%N%IRI
,  

where IRIi is the IRI value for each prey category i (Hyslop, 1980). 

When fragments were found, the number of individuals was determined as the lowest possible 

number of individuals from which fragments could have originated. When only hard structures 

were present in the stomachs, the numbers of fish and cephalopods were estimated from the 

number of otoliths and beaks, respectively.  

The %O, %N and %W values of each prey category were plotted following the method 

proposed by Cortés (1997), which allows an easy and adequate interpretation of prey 

importance in the diet predators. 

2.3.1 Estimation of prey size and weight  

 

To estimate original prey sizes, the length (from the rostrum to the posterior edge of the otolith, 

parallel to the sulcus) and width of otoliths, and the lower rostral length of cephalopod beaks 

were measured using a graticule under a binocular microscope or a vernier calliper. Otoliths 

were separated into lefts and rights, paired when possible and the average otolith length was 

calculated. For each prey species the length and weights were estimated for which regressions 

equations were available in the literature (Härkönen, 1986; Harvey et al., 2000; Magnússon, 

2001; Campana, 2004; Rosa et al., 2006; Santos et al., 2007; Tuset et al., 2008; Fock and 

Ehrich, 2010). Cephalopod mantle lengths (DML, mm) and weight were estimated using 

regressions from Clarke (See Appendix I). No corrections were applied for possible otolith 

erosion. 

2.3.2 Accumulation and Rarefaction curves 

 

Since the diversity of prey increases with the number of sampled stomachs, sample size 

sufficiency was assessed by constructing prey species accumulation and rarefaction curves, 

using the freeware program Estimate S, version 8.0 (Colwell, 2005). The species accumulation 

curve plots the total number of prey species revealed during the process of data collection, as 
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sample units are added to the pool of all previously collected samples. In these curves the order 

in which samples are added affects the shape of the curve. To eliminate this arbitrariness, the 

sample order has to be randomized. The rarefaction curve is produced by repeatedly re-

sampling the pool of N samples, at random, plotting the average number of species represented 

by 1, 2,…N individuals or samples (Gotelli and Colwell, 2001).  

 

2.3.3 Trophic diversity 

 

Trophic diversity of the prey was assessed for each quarter of the year, with the Shannon-

Wiener diversity index,   i

n

1i

i plnp'H:'H  


, 

where pi is the numeric proportion of prey i in the diet (Krebs, 1999). 

For dietary analysis, the prey items were grouped into the following categories: Micromesistius 

poutassou, Mesopelagic fish, other teleost fish, Acanthephyra sp, Pasiphaea sp, other shrimps, 

Gonatus sp, Branchioteuthis sp, Histioteuthis sp and other cephalopods. 

The diet composition was analysed by length class, sex and seasonal variation (Jan-Mar, Apr-

Jun, Jul-Sept and Oct-Dec). Differences in the ranking of %N values for prey categories 

between three or more groups (e.g. four year seasons) were tested for significance with 

Kendall’s Coefficient of Concordance (Wc) (H0: The diet composition is different among groups). 

For paired groups (e.g males and females), the Spearman rank correlation (rT) was used  (Zar, 

2010). 
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3. Results 

 

The specimens of black scabbardfish used in this study were caught over a bathymetric range 

of 500 to 1500m, but mostly between 900 and 1100m depth (Fig. 1). 

3.1 Stable isotopes 

 

Isotopic information was obtained from two geographical areas: west of the British Isles and 

Madeira.  Overall, samples from Madeira had higher mean δ
15

N and δ
13

C values than fish from 

the west of British Isles (Table 2) 

Table 2.  Summary of biological and stable isotope values obtained from West of British Isles and 

Madeira Islands 

Area n

W Scotland 30  -18.52 ± 0.25

Madeira 40  -18.01 ± 0.22 

Total length 

(mm)

Total weight 

(g)
 δ

13
CV-PDB (‰)δ

15
NAir (‰)

13.4 ± 0.44

14.1 ± 0.50 

966 ± 73

1193 ± 82

1175 ± 362

2258 ± 431 
 

 

However, significant correlations were found between fish weight and isotope values (δ
15

N; r
2
 = 

0.61, p < 0.01; δ
13

C; r
2
 =0.55, p < 0.01), and fish caught west of the British Isles were 

significantly smaller than those caught in Madeira (Tukey’s HSD, p< 0.05). Therefore, all the 

subsequent analyses used total weight as a covariate.  

Collectively, samples from west of the British Isles and Madeira were well separated 

isotopically, as illustrated in the bivariate plot of δ
15

N vs. δ
13

C values (Fig. 2).  Although the 

mean δ
15

N value was significantly different between areas, this is likely because of the 

difference in mean length between the areas.  After adjusting for size, linear model (LM) results 

showed that δ
13

C signatures were significantly different between samples from both areas (F1,68 

= 7.21, p < 0.01), δ
15

N values were not significantly different between regions (F1,68 = 2.35 p = 

1.30) (Table 3). The variance in δ
15

N values, which provides a comparable estimate of trophic 

niche width, was not significantly different between the two areas (F29,39 = 0.76, p  = 0.785), 
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suggesting that the trophic niche width was the same in both areas, assuming a comparable 

variance in isotopic baselines. 
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Fig. 2. Bivariate plot of δ
15

N against δ
13

C values (mean ± s.d.) of West of British Isles and Madeira 

samples. 

 

Table 3. Results of the linear model (with total weight as covariate) comparing isotope composition 

among black scabbardfish from West of British Isles and Madeira 

Variable
Model 

d.f.

Error 

d.f.
Model R

2 Model 

MS

Error 

MS
F p -value

δ
15

N 1 68 0.37 8.48 0.21 2.35 1.299

 δ
13

C 1 68 0.55 4.46 0.05 7.2 <0.01
 

 

3.1.1 Analysis of stable isotope composition and variability 

 

For the northern area samples, δ
15

N values was not significantly correlated with body mass or 

sex, but showed a significant depletion between the first and second semester (F(1,26) =9.798, p 

= 0.004). The δ
13

C values showed a significant enrichment with body weight, but no differences 

between sex and semester (Table 4). 
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For the Madeira samples, the δ
15

N values showed a significant linear enrichment with body 

weight (F (1, 36) = 9.165, p = 0.005) and a significant depletion in males (F(1,36)= 4.131, p = 0.049). 

LMs showed that δ
13

C values were only significantly different between semesters (F (1,36)= 

4.496, p = 0.041) (Table 4). 

 

Table 4. Analysis of variance table for the linear model fitted to δ
15

N and δ
13

C data to the total weight 

(Log2TW), semester and sex, for black scabbardfish from West of British Isles and Madeira. * p <0.05 

Area Variable Source of variation Df Sum of Squares F value p -value

Log2TW 1 0.234 1.210 0.281

Semester 1 1.895 9.798 0.004*

Sex 1 0.284 1.471 0.235

Residuals 26 5.027

Log2TW 1 0.514 10.101 0.004*0.004*

Semester 1 0.008 0.167 0.685

Sex 1 0.067 1.330 0.259

Residuals 26 1.324

Log2TW 1 1.348 9.166 0.004*

Semester 1 0.42 2.857 0.099

Sex 1 0.607 4.131 0.049

Residuals 36 5.294##### 9.03E-02

Log2TW 1 0.154 3.587 0.0668.80E-02 0.008 0.993

Semester 1 0.192 4.496 0.040*8.33E-02 -1.375 0.178

Sex 1 0.0004 0.009 0.9227.13E-02 -0.517 0.608

Residuals 36 1.541

West of 

British 

Isles

Madeira

δ15N

δ13C

δ13C

δ15N

 

 

3.2 Diet Analyses  

 

Of the 1994 stomachs examined, 1068 (53.6%) were inverted, 782 (39.2%) were empty and 

144 (7.2%) had food contents. From the 409 specimens caught by longliners in Madeira, only 7 

stomachs (1.7%) had food contents; three had bait remains and four had food contents (Table 

1). These stomachs were excluded for any further statistical analyses but will be mentioned for 

the diet composition. 
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In total, 197 prey items were found in the stomachs of black scabbardfish, belonging to 35 prey 

categories. Table 5 provides details of the prey composition of the pooled stomach contents. 

The diet of black scabbardfish consisted of a wide variety of organisms, dominated by fishes 

(68.4%, %N), followed by crustaceans (21.6%) and cephalopods (15.3%). Blue whiting 

(Micromesistius poutassou) was by far the predominant fish prey item, contributing 37.6% to the 

total number of prey (%N) and 63.7% by weight. The mesopelagic fish species (Nemichthys 

scolopaceus, Synaphobranchidae, Notoscopelus sp, Centrolophus sp, Lycodes sp, 

Alepocephalidae, Bathylagus greyae, Stomias boa and unidentified mesopelagic species) were 

the second largest group, representing 15.3% of the total number of preys.  

Black scabbardfish also fed upon several species of crustaceans and cephalopods. Among the 

cephalopods species, the most frequent were Gonatus sp. and Branchioteuthis reesei, which 

represented 3.7% and 2.67% of all food items counted, respectively. Numerically, crustaceans 

species were more important than the cephalopods, with Acanthephyra sp. and Pasiphaea sp. 

representing 7.6% and 6.6% of the diet. 

The use of three-dimensional graphical representation of diet provides a good depiction of prey 

importance (dominant or rare) and predator feeding strategy (specialized or generalist). The 

graph From this, the diet of black scabbardfish feeding predominantly on blue whiting, M. 

poutassou (Figure 3). Only seven specimens caught in Madeira had food contents; three had 

bait, identified as scombrids and squid. The other four stomachs contained two species of 

cephalopods (Gonatus sp. and Histioteuthis arcturi), one crustacean decapoda (Acanthephyra 

purpurea) and one unidentified mesopelagic fish. Overall, the diet composition presented a high 

trophic diversity (H’ = 3.35). 
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Table 5. Diet composition of Aphanopus carbo caught to the west of the British Isles and Madeira 

between June 2009 and May 2010. (Si) number of prey items, (%N) Percentage by number, weight 

(%W), occurrence (%O) and Index of relative importance (IRI and %IRI) for each prey item observed.  

Prey items Si %N %O %W IRI %IRI

CEPHALOPODA 29 15.32 16.06 24.43 638.25 5.87

Ancistroteuthis lichtensteini 3 1.60 2.13 7.21 18.76 0.49

Branchioteuthis reesei 5 2.67 2.84 0.14 7.99 0.21

Gonatus sp 7 3.74 2.84 3.43 20.34 0.53

Histioteuthis arcturi 1 0.53 0.71 2.22 1.96 0.05

Histioteuthis bonnelli 1 0.53 0.71 0.24 0.55 0.01

Histioteuthis reversa 3 1.60 2.13 4.40 12.78 0.33

Toraropsis eblanae 2 1.07 1.42 0.64 2.42 0.06

Cephalopod NI 7 3.55 5.11 6.15 49.56 1.29

CRUSTACEA 40 21.62 23.36 1.05 529.57 4.87

Decapoda

    Acanthephyra pelagica 4 2.16 1.92 0.09 4.34 0.11

    Acanthephyra purpurea 4 2.16 2.56 0.08 5.76 0.15

    Acanthephyra  sp 7 3.78 3.85 0.15 15.13 0.39

    Pasiphaea multidentada 2 1.08 1.28 0.18 1.62 0.04

    Pasiphaea tarda 3 1.62 1.92 0.08 3.27 0.09

    Pasiphaea  sp 8 4.32 4.49 0.32 20.83 0.54

Lophogastridae

    Gnathophausia zoea 7 3.78 4.49 0.07 17.30 0.45

Undentified Crustacea 5 2.70 3.21 0.07 8.89 0.23

PISCES 107 68.37 67.88 74.52 9010.53 88.53

Anguilliformes

    Nemichthydae

    Nemichthys scolopaceus 2 1.08 1.28 0.22 1.67 0.04

    Synaphobranchidae

    Synaphobranchus kaupii 3 1.62 1.92 0.47 4.01 0.10

    Synaphobranchidae unid. 1 0.54 0.64 0.18 0.46 0.01

Gadiformes

    Gadidae

    Ciliata septentrionalis 1 0.54 0.64 0.19 0.47 0.01

    Gadiculus argenteus 2 1.08 1.28 0.27 1.73 0.05

    Micromesistius poutassou 74 37.56 40.30 63.75 4082.87 94.31

    Gadidae unid. 5 2.54 3.65 4.47 25.59 0.67

    Macrouridae

    Nezumia aequalis 1 0.54 0.64 0.11 0.41 0.01

    Moridae

    Halargyreus johnsoni 3 1.62 1.92 1.37 5.76 0.15

    Lepidion eques 1 0.54 0.64 0.12 0.43 0.01

Myctophiformes

    Myctophidae

    Notoscopelus  sp 1 0.54 0.64 0.14 0.44 0.01

Perciformes

    Centrolophidae

    Centrolophus  sp 1 0.54 0.64 * * *

    Scombridae 0.00

    Scomber scombrus 1 0.54 0.64 0.64 0.76 0.02

    Zoarcidae

    Lycodes  sp 1 0.54 0.64 0.34 0.57 0.01

Osmeriformes

    Alepocephalidae

    Alepocephalus bardii 1 0.54 0.64 0.36 0.58 0.02

    Alepocephalus  sp 3 1.62 1.92 1.08 5.20 0.14

    Xenodermichthys  sp 2 1.08 1.28 0.30 1.77 0.05

    Bathylagidae

    Bathylagus greyae 2 1.08 1.28 0.38 1.87 0.05

Stomiiformes

    Stomiidae

    Stomias boa 3 1.62 1.92 0.13 3.36 0.09

Mesopelagic unid. 11 5.58 8.03 * * *

Teleost unid. 9 4.57 5.11 * * *  
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Fig. 3. Three dimensional graphical representation of the relative importance of prey in the diet of 

black scabbardfish: percentage by number (%N), percentage by weight (%W) and frequency of 

occurrence (%O). Prey items are: MP) Micromesistius poutassou; Ce) Cephalopods; Cr) 

Crustaceans; OF) Other fish; MF) Mesopelagic fish. 

 

Rarefaction and accumulation curves were used to assess if the size of the sample of stomachs 

was adequate to describe the diet of black scabbardfish in the NE Atlantic. The accumulation 

curve does not appear to have reached a prolonged asymptote, which may indicate that the 

number of stomachs samples were insufficient to identify all prey consumed (Fig. 4) and/or that 

they are opportunistic feeders.  

The Spearman rank correlation (rT) and Kendall’s Coefficient of Concordance (Wc) showed no 

differences in the diet between sexes (rT = 0.896, p < 0.01) nor among length classes (Wc = 

0.65, p< 0.01), respectively.  
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3.3 Diet composition by season 

The diet analysis by season was only examined for the samples from west of the British Isles. 

Examination of season-related differences in the black scabbardfish diet indicated that the 

ranking of %N values for each season were not significantly correlated (Wc = 0.05, p> 0.05) 

indicating that overall the diet of black scabbard was different throughout the year (Table 6). 

Between January and March, M. poutassou was by far the most abundant prey in the black 

scabbard diet (72.3% N). In the second quarter of the year (Apr-Jun) the abundance of blue 

whiting decreased and the consumption of mesopelagic fish increased to 31.8% (%N). In the 

third quarter (Jul- Sept) crustaceans were the most important prey category (39.4% N) and 

finally, in the last quarter of the year the diet of black scabbard appear to be more evenly 

dispersed among cephalopods (27.5% N), crustaceans (25% N), blue whiting (22.5% N) and 

mesopelagic fish (17.5% N) (Table 6). The diet trophic diversity (H’) of black scabbardfish 

increased throughout the year. 
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Fig. 4. Species accumulation curve and species rarefaction curve for black scabbardfish with sample 

size. 
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Table 6. Percentage number (%N) of prey categories of Aphanopus carbo caught to the west of the 

British Isles, by quarter of the year. Prey items occurring in less than 3 stomachs were grouped in 

higher taxonomic levels. Wc Kendall’s coefficient of concordance. *P<0.01. Trophic diversity (H’) is also 

presented. 

Jan-Mar Apr-Jun Jul-Sept Oct-Dec

Acanthephyra  sp 1.79 4.67 16.28 5.41

Pasiphae  sp 0.00 9.34 10.60 10.81

Gnathophausia zoea 0.00 0.00 9.82 2.70

Shrimp NI 0.00 0.00 3.27 8.11

Histioteuthis sp 0.00 6.60 0.00 8.11

Brachioteuthis  sp 1.79 0.00 2.31 5.41

Gonatus  sp 5.66 0.00 1.64 2.70

Other cephalopods 0.00 4.67 9.82 13.51

Micromesistius poutassou 71.57 28.02 16.03 16.22

Mesopelagic fish 5.37 32.69 19.63 18.92

Other Fish 13.40 14.01 10.60 8.11

Trophic diversity (H') 1.14 2.62 3.14 3.49

No Stomachs 45 24 45 23

Year quarter

Wc = 0.05*

Prey category

 

3.4 Reconstruction of prey lengths and weights 

Length frequency distribution was constructed to allow examination of the lengths of the most 

important species eaten by black scabbardfish, Micromesistius poutassou (Fig. 5). The total 

length of blue whiting consumed ranged from 13.6 to 34 cm, with a mean length of 26.3 cm 

(S.E.= 0.55, n = 74). The modal size of blue whiting was between 26 and 30 cm, but the 

distribution was skewed towards smaller fish. No correlation was found between the predator 

length and prey length (r = 0.01). The estimated weight of blue whiting collected from the 

stomachs ranged from 12.2 g (TL = 13.6 cm) to 256.7 g (TL = 340 cm). 
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Fig. 5. Length frequency distribution of reconstructed size (Total length, cm) of Micromesistius poutassou 

(from measurements of 74 otoliths) in the stomachs of black scabbardfish. 
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4. Discussion 

 

Unravelling the feeding ecology of a deep-water fish species can be exceedingly complicated 

due to the difficulties in obtaining samples, compounded by the high rate of stomach eversion 

and regurgitation. As with all methods, there is inherent bias in reconstructing diet from stomach 

content analysis due to differences in detectability, quantification and digestibility of the prey 

remains (Bergstad et al., 2010). Different prey categories have different digestion rates, and 

prey with hard parts (e.g. fish, cephalopods, crustaceans) would be overrepresented compared 

to soft-tissue prey (e.g. gelatinous prey).  However, direct stomach content analysis offer great 

taxonomic resolution and size composition of the diet, but provides only a snapshot of recent 

diet items (Pinnegar and Polunin, 1999). Stable isotopes, in contrast, offer poor taxonomic 

resolution in relation to prey items, but provide temporally integrated information regarding what 

an organism has consumed and assimilated over a period of time (Hesslein et al., 1991), and 

provide evidence of nutrient pathways between primary production and subsequent higher 

trophic levels. The combined use of both analyses can provide valuable information on feeding 

ecology within and among populations (Reñones et al., 2002), but this approach has rarely 

been used for deep water species (Stowasser et al., 2009). For black scabbardfish this is 

particularly useful because the stomach vacuity and eversion rates are very high, principally in 

the samples collected in Madeira, where the stomach vacuity was nearly 100%. In fact, for the 

Madeira samples, the stable isotope analysis was the only method that could be used due to 

the extremely reduced number of stomachs with contents (only 4 stomachs with food contents). 

This is likely attributed to the method of capture. Longlining is a passive fishing method, which 

suggests that fish with empty stomachs or partial stomach fullness respond to bait odour and 

get caught (Løkkeborg et al., 1995).  

The diet of fish to the west of the British Isles consisted of a wide variety of prey species 

including fish, crustaceans and cephalopods. Although blue whiting (Micromesistius poutassou) 

was the predominant prey species, especially in the first quarter of the year, black scabbard 

seems to feed upon a wide variety of organisms, consistent with the scarce information from 

previous studies carried out in the same geographical area (Zilanov and Shepel, 1975; 

Mauchline and Gordon, 1984c). However, those studies were limited by the low number of 
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stomachs examined and only referred to in general comments, with no diet analysis performed, 

which preclude any meaningful comparisons. 

Although we analysed a much higher number of stomachs than the previous studies and we 

sampled throughout the year, the common concerns about the limited number of stomachs with 

contents are also applied to this study. The rarefaction analysis may indicate that the number of 

stomachs sampled were not sufficient to have a complete knowledge of the dietary composition 

of black scabbardfish. But this can also inform us about the feeding strategy of black scabbard. 

According to Mauchline and Gordon (1985) assessing the trophic diversity within diets of fish is 

very difficult unless the species is a specialist feeder. In a generalist or opportunistic species 

like black scabbardfish, the asymptote is achieved much more slowly and the prey species 

composition is more difficult to define comprehensively, since many of the prey species are rare 

components consumed opportunistically. While analysis of additional specimens would allow for 

a more robust quantitative estimation, it is unlikely that this would change the overall conclusion 

about the general diet composition of black scabbardfish. 

Blue whiting (Micromesistius poutassou) was by far the most abundant fish prey item, occurring 

in 34.6% of all stomachs and representing 63.7% by weight. Blue whiting is a small 

mesopelagic gadoid that is widely distributed in the eastern part of the North Atlantic. The 

highest abundance of blue whiting occurs along the edge of the continental shelf in areas west 

of the British Isles and on the Rockall Bank where it occurs in large spawning schools between 

the 300 and 400 m deep, between January and April (ICES, 2010), which makes it a highly 

available prey to black scabbardfish. Blue whiting, like other mesopelagic species, is a 

particularly important fish prey in the diet of other fish species, such cod Gadus morhua (Du 

Buit, 1995; Dolgov et al., 2009), whiting Merlangius merlangus (Pinnegar et al., 2003), hake 

Merluccius merluccius (Du Buit, 1996) and saithe Pollachius virens (Du Buit, 1991). It is also an 

important species in the diet of some marine mammal species, such as bottlenose dolphins 

(Tursiops truncatus) (Fernándes et al., 2011) and common dolphin (Delphinus delphis) (Silva, 

1999). However, in the series of diet studies carried out by Mauchline and Gordon (1983; 

1984a; 1984b; 1984c; 1991) with deep water species in the Rockall Trough, only the morid 

Antimora rostrata (Mauchline and Gordon, 1984b) and the deep water sharks, Apristurus sp and 



132 

 

Centroscymnus coelolepis (Mauchline and Gordon, 1983), prey on blue whiting, and in low 

quantities.   

Most samples used for the stomach content analysis (80%) were caught at 1000-1200m depth. 

The small number of samples collected in different depth strata precluded a comparative 

analysis with depth. The presence of prey species with pelagic affinities, such as blue whiting 

(300 – 400m), and vertically migrating species (e.g. Pasiphaea sp., Acanthephyra sp., 

cephalopods species) (Cartes, 1993; Cartes et al., 1993; Bower and Takagi, 2004; Watanabe et 

al., 2006) in the diet of black scabbard, corroborates the importance of these organisms in the 

diet of deep-water fish and on the transfer of energy from the epipelagic and mesopelagic zones 

to the near bottom zone (Vinogradov, 1997). The most important process to facilitate this 

energy transfer is the diel vertical downward migration of the pelagic nekton to depths where the 

black scabbard occurs (~700 – 1000m), but also, potential upward migration of black 

scabbardfish into the water column to intercept diurnally migrating pelagic species (Vinogradov, 

1997; Bergstad et al., 2003). The presence of epipelagic and mesopelagic food sources has 

been shown to be important for other deep water species such as Coryphaenoides rupestris, 

Alepocephalus bairdii, Antimora rostrata, Synaphobranchus kaupii, and their occurrence have 

been associated with scavenging behaviour and vertical migration of the prey and predator 

species (Mauchline and Gordon, 1991; Gordon et al., 1995; Martin and Christiansen, 1997; 

Gordon, 2001; Bergstad et al., 2003; Bergstad et al., 2010). Although there is little doubt that 

the success of benthopelagic fishes results from the energy transfer from the surface 

downwards (Gordon, 2001), it is not known how frequently upward interception migrations occur 

in benthopelagic species (Mauchline and Gordon, 1991). To fully understand the daily feeding 

activity of black scabbardfish it would be necessary to run a sampling program over a 24h 

period. 

The ability to catch pelagic, highly mobile prey provides evidence of black scabbardfish’s fine 

swimming and sensory adaptations for predation (Bone, 1971; Martin and Christiansen, 1997). 

Blue whiting was found within stomachs bitten, folded over in half and swallowed whole- this 

together with the presence of two big fish tails, belonging to Centrolophus sp and 

Alepocephalus sp. is consistent with the observations by Bone (1971) who suggested that this 
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is indicative of a stalking from behind and striking behaviour as a hunting strategy for black 

scabbard. 

The feeding strategy of black scabbard off the west of British Isles, which seems to be more or 

less opportunistic, feeding upon species with epipelagic and benthopelagic affinities, was also 

confirmed by the stable isotope data. The  δ
15

N values in the tissue of consumers is typically 

enriched by c. 3‰ in relation to their prey and thus the 
15

N values reflect the trophic level of an 

organism (Jennings et al., 2002a; Hoffman and Sutton, 2010), while δ
13

C values are more 

weakly enriched with the increasing trophic level, and may act as a good indicator of sources of 

production (Jennings et al., 1997; Vander Zanden and Rasmussen, 2001). The mean δ
15

N 

(~13.4‰) and δ
13

C (-18.50‰) values support the diet composition encountered in the stomachs 

– several species with pelagic affinities (e.g. blue whiting, mackerel, A. pelagica, P. 

multidentada, squids) (Cartes and Carrassón, 2004) and species with strong benthopelagic 

affinities (e.g. the crustaceans: A. purpurea and G. zoea and fish: L. eques, S. kaupii) (Iken et 

al., 2001; Cartes and Carrassón, 2004) that black scabbardfish forms a link between the pelagic 

and the benthopelagic food webs. The stable isotope composition of range of deep water 

species sampled in the Rockall Trough and Porcupine bank was determined by Trueman et al. 

(in review). Black scabbardfish has high (enriched) δ
15

N and δ
13

C values compared with the 

benthopelagic feeders – Xenodermichthys copei, Argentina silus, Alepocephalus bardii - and 

low (depleted) nitrogen and carbon isotope ratios compared to the true benthic predators and/or 

scavengers – Deania calceus, Centroselachus crepidater, Chimaera monstruosa, Hydrolagus 

mirabilis (See Fig. 6). The δ
15

N and δ
13

C values for black scabbardfish are close to the values 

found for the other slope dwelling species, such Lepidion eques, Nezumia aequalis and large 

individuals of C. rupestris, which where classified as species that link the benthic and 

benthopelagic food webs (Stowasser et al., 2009; Trueman et al., in review) .   

The estimated mean δ
15

N values in the present study were more enriched than the estimates in 

Trueman et al. (in review). This variability between 2006 and 2009 in δ
15

N and δ
13

C may not 

necessarily reflect changes in food web structure and carbon flow, but just a temporal variation 

in the isotopic baseline, which is not possible to determine without suitable estimates of δ
15

Nbase 

and δ
13

Cbase in each year (Post, 2002). The high variability of the δ
15

 N values (12.30-14.50 ‰) 
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reflects the stomach content data that shows that black scabbardfish feeds upon a wide variety 

of species and may also reflect changes in diet seasonally. 

 

Fig. 6. Relationship between δ
15

N and δ
13

C values for (◊) benthopelagic feeders; (○) benthic feeders and 

(♦) Aphanopus carbo in the Rockall Through and Porcupine Bank. Samples collected in 2006 (Adapted 

from Trueman et al. (in prep)). 

This study showed seasonal changes in the diet composition of black scabbardfish in the 

northern area. In the first quarter of the year, the diet is predominated by blue whiting and 

throughout the year there was an accentuated decrease of this species and an increased 

contribution of cephalopods and crustaceans. These changes are clearly related with the 

migration pattern of blue whiting which undertakes long annual movements from feeding 

grounds in the Norwegian Sea to spawning grounds, west of the British Isles, and back again. 

Between January and April, most NE Atlantic blue whiting aggregate to spawn in the region 

around the Porcupine Bank and by the end of April / May migrate back to Norwegian Sea 

(Bailey, 1982; Was et al., 2008). This migration pattern supports the results obtained in this 

study, which could indicate that black scabbard selects prey in proportion to its availability but 

can adapt its diet according to changes in abundance of the main prey, feeding on locally 

abundant or more available prey. Seasonal changes in the diet composition were also detected 

in the δ
15

N values in the muscle, which became more depleted in the second time period, 
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confirming a shift to a diet composed of prey from a lower trophic level. The temporal offset 

between prey consumption and expression in muscle tissue isotopes is unknown, complicating 

the interpretation of seasonal changes in tissue isotopes, but it is likely to be on the order of 

weeks-months depending on the growth rate of the individual fish and the isotopic separation 

between different diets (Martinez del Rio et al., 2009).  

In contrast, the samples from Madeira showed seasonal differences only in δ
13

C values. The 

significant depletion in δ
13

C values in November could be related to changes in the nutritional 

status of black scabbardfish during the reproductive season (between September and 

December, with a spawning peak in November) (Neves et al., 2009) or a change in habitat.  The 

variation in stable isotopes signatures, which is often assumed to be only a reflection of the diet 

and foraging location, are often obscured by the individual’s physiology (Gannes et al., 1998). 

However, how these intrinsic factors affect the isotopic signal is still poorly understood (Williams 

et al., 2007).  

The extreme reduced numbers of stomachs with food contents from Madeira Islands (only 4 

with prey items) obviated any prey composition analysis and meaningful comparisons between 

the two areas. However, stable isotope analysis isa useful tool to compare the trophic ecology 

of black scabbardfish between both areas. After accounting for the effect of fish, differences 

were found in the mean δ
13

C values, between the two regions, but not in δ
15

N values, indicating 

that there is no isotopic evidence for difference in diet or feeding strategy of black scabbard 

between the two areas (assuming a constant δ
15

N baseline value). The difference in the mean 

δ
13

C values between areas is likely due to the gradient in the degree of isotopic fractionation 

during photosynthetic primary production in these regions (Tagliable and Bopp, 2008; Graham 

et al., 2010), where primary production at high latitudes typically has more depleted δ
13

C values 

due to relatively low plankton growth rates, large cells and high levels of dissolved CO2 .  

When both areas are considered together, there is a positive relationship between the body 

mass and δ
15

N values, consistent with a size-structured food web (Jennings et al., 2002b), 

assuming that the baseline of N is the same in two areas. However, when the relationships 

between body mass and δ
15

N values are analysed in the different areas separately, the 

relationship was significant only for the Madeira samples. The lack of significance of any 
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relationship between trophic level and body size in black scabbardfish from the west of the 

British Isles samples may reflect the high levels of prey variability between seasons, and 

possibli differential rates of isotopic assimilation between large and small individuals.  

The size range of blue whiting recovered from the black scabbardfish stomachs was biased 

towards smaller fish compared to fish caught in the Irish blue whiting surveys (mean TL of  prey 

blue whiting = 26.3 cm, mean TL of trawled blue whiting =28.5cm) (ICES, 2010; O'Donnell et al., 

2011). The biggest blue whiting found in a stomach of a black scabbard was much smaller (34 

cm) than the biggest captured by the fishery (48 cm), which may reflect the mouth dimensions 

and stomach storage capacity of A. carbo. The lack of any significance correlation between the 

length blue whiting in stomachs and black scabbard lengths (r = 0.01) suggest that black 

scabbard feed on all specimens irrespective of size, up to a threshold size (~ 34cm) and 

potentially also explains the limited correlation between size and δ
15

N values in black 

scabbardfish within regions. Previous studies have demonstrated that fishes have an “optimal” 

prey size, which should be the largest size that a predator can handle (Pinnegar et al., 2003). 

However in the present study, we observed small prey in larger predators, which could be 

related to a combination of relatively high abundance and a higher vulnerability of smaller prey 

to predation. 

The relationship between the black scabbardfish preferences and prey availability should be 

considered as being of the upmost importance, particularly in the northern area, since the 

fishing pressure exerted on the main prey species (blue whiting) might have an indirect impact 

on the predator stocks. It is becoming increasingly evident that stocks can not be managed in 

isolation and fisheries managers should focus more on a multi-species assessment and an 

ecosystem approach to fisheries management, where interactions between predators and prey 

should be taken into account.  

Conclusions 

This study has shown that the use of stable isotope analysis in conjunction with stomach 

content data can provide both taxonomic specificity and integrative information on assimilation 

in species and environments where conventional methods alone offer limited data. Stable 

isotope analysis proved to be particularly useful when stomach contents were difficult to obtain, 
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as in the samples from the longline fishery in Madeira. To the west of the British Isles, stomach 

content and stable isotope analysis indicated that A. carbo is a top benthopelagic predator and 

its diet is associated with prey with both pelagic and benthopelagic affinities. Black scabbardfish 

thus form a critical link between the pelagic and the benthopelagic food webs. Comparisons of 

the stable isotope ratios between the west of British Isles and Madeira showed that although the 

black scabbardfish feed upon preys with different C isotope ratios, depending on the local 

availability of prey, the feeding strategy does not change spatially and they feed at a similar 

trophic level, as a top predator in the different areas. Together these methods characterize the 

diet of black scabbardfish more comprehensively and can be a greater benefit to resource 

managers and ecosystem modellers. 
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Appendix I 

 

Table I. Regression equations used to estimate fish and cephalopod size: DML, Mantle length (mm); LRL, Lower rostral length (mm); TW, 

total length (g); OL, otolith length (mm); TL, total length (mm); FL, fork length (mm). 

Prey items Estimated prey length Source Estimated prey weight Source

CEPHALOPODA

Ancistroteuthis lichtensteini DML = -41.3 + 40.75 x LRL Clarke (1986) ln (W)= -0.194 + 3.56 x ln (LRL) Clarke (1986)

Branchioteuthis reesei DML = 16.31 + 20.18 x LRL Clarke (1986) ln (W)= 0.550 + 1.41 x ln (LRL) Clarke (1986)

Gonatus sp DML = -43.4 + 42.87 x LRL Clarke (1986) ln (W)= -0.655 + 3.33 x ln (LRL) Clarke (1986)

Histioteuthis arcturi DML = -13.60 + 22.21 x LRL Clarke (1986) ln (W)= 1.594 + 2.31 x ln (LRL) Clarke (1986)

Histioteuthis bonnelli DML = -13.60 + 22.21 x LRL Clarke (1986) ln (W)= 1.594 + 2.31 x ln (LRL) Clarke (1986)

Histioteuthis reversa DML = -13.60 + 22.21 x LRL Clarke (1986) ln (W)= 1.594 + 2.31 x ln (LRL) Clarke (1986)

Toraropsis eblanae DML = -10.32 + 35.04 x LRL Clarke (1986) ln (W)= 0.590 + 3.17 x ln (LRL) Clarke (1986)

PISCES

Anguilliformes

    Nemichthydae

    Nemichthys scolopaceus OL / TL = 1.9 Tuset et al.  (2008) TW = 0.0041 x TL
3.000 Pauly  et al . (1998)

    Synaphobranchidae

    Synaphobranchus kaupii OL / TL = 0.5 Tuset et al.  (2008) TW = 0.0003 x TL
3.315 Rosa et al . (2006)

Gadiformes

    Gadidae

    Gadiculus argenteus FL = 19.449 x OL
1.053 Härkönen (1986) TW = 0.0207 x TL

3.7981 Härkönen (1986)

    Micromesistius poutassou TL = -2.140 + OL x 22.090 Santos et al.  (2007) TW = 0.019350 x (TL/10)
3.34372 Santos et al.  (2007)

    Gadidae unid. TL = -2.140 + OL x 22.090 Santos et al.  (2007) TW = 0.019350 x (TL/10)
3.34372 Santos et al.  (2007)

    Moridae

    Halargyreus johnsoni OL / TL = 0.47 Campana (2004) TW = 0.0117 x TL
3.000 Fock and Elrich (2010)

    Lepidion eques OL / TL = 0.60 Tuset et al.  (2008) TW = 0.001 x TL
3.498 Magnússon (2001)

Myctophiformes

    Myctophidae

    Notoscopelus  sp OL / TL = 3.9 Tuset et al.  (2008) TW = 0.00521 x TL
3.260 Fock and Elrich (2010)

    Zoarcidae

    Lycodes  sp FL = 3.47 x OL + 0.48 Harvey et al. (2000) TW = 0.0195 x FL
2.522 Harvey et al. (2000)

Osmeriformes

    Alepocephalidae

    Alepocephalus bardii OL / TL = 0.20 Campana (2004) TW = 0.003 x TL
3.210 Fock and Elrich (2010)

    Xenodermichthys  sp OL / TL = 0.12 Campana (2004) TW = 0.00736 x TL
2.984 Fock and Elrich (2010)
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General discussion 

Black scabbardfish is an enigmatic inhabitant of the continental slope and one of the main deep 

water commercial species in Europe, where it is captured by multi-species trawlers in the North 

Europe and small scale longliners in Portugal and the Madeira Islands (Gordon, 2001). As a 

deep water species, there is much concern about whether it can be sustainably exploited 

(Haedrich et al., 2001; Roberts, 2012) given that it is generally accepted that deep-water 

species are generally long-lived, slow- growing, mature late and have low fecundity. The 

ecological characteristics of these fish make them vulnerable to over-exploitation and slow to 

recover from it (Clark, 2001; Morato et al., 2006). 

Although black scabbardfish is widely distributed in the NE Atlantic and of commercial interest, 

biological studies over its entire distributional range are very sparse. Before this study, the most 

comprehensive biological studies were spatially confined to the southern regions (Portuguese 

slope and Madeira Islands), specifically on reproduction (Figueiredo et al., 2003; Pajuelo et al., 

2008; Neves et al., 2009) and age (Morales-Nin and Sena-Carvalho, 1996; Morales-Nin et al., 

2002; Vieira et al., 2009). In northern Europe, previous studies  had focus only on distribution 

(Zilanov and Shepel, 1975; Piotrovskiy, 1981; Mauchline and Gordon, 1984; Nakamura and 

Parin, 1993; Magnússon and Magnússon, 1995; Vinnichenko et al., 2005) and general 

comments on reproduction (Magnússon and Magnússon, 1995) and on diet composition of 

black scabbardfish (Mauchline and Gordon, 1984). No complete study focusing and integrating 

all life history aspects, from specimens caught off western British Isles and Madeira, had ever 

been carried out. Given that the life history parameters are the basic data needed for population 

modelling purposes, there was a need to perform a complete life history study, including age, 

growth, maturity and reproductive seasonality on black scabbard. Only with these data, can  

further population dynamic assessments be carried out in order to determine, for example, if the 

current fishing pressures are sustainable and how to manage the species.  

The general concerns about the sustainability of deep water resources and the urgent need to 

enhance our understanding of the life history, ecology and stock structure of Aphanopus carbo 

over its wide geographical distribution in Northeast Atlantic constitute the basis for this study. A 

combination of methodologies of traditional biological tools was used to describe the 
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reproductive cycle (Chapter 2), age and growth (Chapter 3) and trophic ecology (Chapter 4) of 

black scabbardfish off western British Isles and Madeira islands. For the first time the recent 

technique of otolith stable isotope analysis to investigate the migration pattern of black 

scabbardfish between the two sampling locations was carried out to test whether the fish from 

the two different locations present some degree of connectivity at different stages of the life 

cycle (Chapter 5). To investigate the spatial distribution and provide some information on the 

effects of the fishing pressure, a 10 year time-series was used. These data were collected 

during Scottish and Irish deep-water surveys and trends in abundance and size structure of 

black scabbardfish on the slope off the western British Isles (Chapter 6) were analysed. All the 

objectives proposed at the beginning of this study were achieved and the new knowledge 

acquired on life history and stock structure of black scabbard will increase our ability to assess 

the current impacts of commercial fisheries and to better manage this species in the NE Atlantic. 

The overall results of this study suggest and support the existence of wide ranging, likely 

panmitic population of black scabbardfish in the NE Atlantic. The combined analyses of life 

history characteristics throughout the year of specimens from two distinct geographical areas, 

west of the British Isles and Madeira, corroborates that the fish caught in the former are pre-

adults that likely undertake large scale north - south migrations towards Madeira and the 

Canaries Islands where they reach maturity and spawn. 

This final chapter presents a general discussion, a summary of the key findings and conclusions 

presented in the various sections of this thesis. 

Spatial and depth distribution 

In the NE Atlantic, black scabbardfish has its northerly distribution limit in Iceland (Magnússon 

and Magnússon, 1995) and its southerly limit in Canary islands (Nakamura and Parin, 1993; 

Pajuelo et al., 2008). The geographical distribution of black scabbardfish might be directly 

associated with the reproductive (Chapter 3) and feeding (Chapter 5) behaviours.    

According to the Scottish and Irish deep water surveys, the bathymetric distribution of black 

scabbardfish west of the British Isles ranged between 500 and 1500m. The distribution at depth 

fits a unimodal function, with maximum abundance at the centre of the bathymetric distribution, 
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between 800 and 1000 m. The peak of abundance for black scabbard is in agreement with 

previous studies made in the Rockall Trough (Mauchline and Gordon, 1984). However, when 

compared with the surveys conducted in the 1970s (Bridger, 1978), it seems likely that there 

was a slight change in core distribution of the species, from 600-800 m (Bridger, 1978) in 

1970s, to 800-1000 m in 2000s. If this shift is real, it could be related to a change in community 

structure on the continental slope caused by fishing pressure (Jennings et al., 1999) or perhaps 

to spatial and temporal variations in the underlying productivity and abundance of other fish 

species, particularly potential prey (Bailey et al., 2006). The current biomass peak depth for 

black scabbard is one of most critical characteristics of deep-sea assemblages. Demersal 

biomass is at its highest between 800 and 1550 m deep, with a pronounced maximum at 1000 

m on the slope of the Rockall Trough (Gordon et al., 2003) and is where most deep-water 

fisheries tend to be concentrated (Hopper, 1995). 

Different length-frequency distributions were observed between the specimens captured to the 

west of the British Isles and Madeira. The largest specimens were caught off the Madeira 

Islands (attaining 1450mm), while the smallest were captured to the West of the British Isles 

(~620mm), suggesting that there is geographical size segregation. This was previously 

observed by other authors (Santos, 2000; Bordalo-Machado et al., 2001; Figueiredo et al., 

2003). Although the geographical size segregation is difficult to definitively prove without 

directed fishing using the same gear types in both areas, the size distributions suggest that 

black scabbard does not complete its life cycle in one area.  

Reproduction 

Understanding the reproductive cycle of A. carbo across the NE Atlantic is a fundamental first 

step to identifying and understanding stock structure (Begg et al., 1999). The combined 

simultaneous analysis throughout the year of specimens from two distinct geographical areas, 

West of the British Isles and Madeira, corroborates that the fish caught in the former are pre-

adults that must undertake large scale north - south migrations towards Madeira and the 

Canaries Islands where they are known to reach maturity and spawn (Figueiredo et al., 2003; 

Pajuelo et al., 2008). Therefore the results obtained on the reproductive biology suggest and 

support the existence of wide ranging population of black scabbardfish in the NE Atlantic. 
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Based on the macroscopic and histological results, the specimens from west of the British Isles 

were all immature throughout the year, while in Madeira all maturity stages were observed. The 

lack of gonadal evolution throughout the year was confirmed by the constant values of GSI and 

suggests that the fish leave the northern region prior to/once the gonads start to develop to the 

early-vitellogenic stage and likely migrate southwards to proceed with maturation and spawn.  

The factors that trigger the “decision” to migrate are difficult to disentangle and most probably 

are a combination of environmental, ecological and physiological factors (Jørgensen et al., 

2006). One factor that might contribute to trigger the migration is the change in the diet 

composition throughout the year. The diet composition analysis from this study (Chapter 4) 

showed that the diet of black scabbardfish changed throughout the year, resulting in a shift from 

a diet predominated by blue whiting in the first quarter of the year to a  less energetically 

nutritional diet, composed of cephalopod and crustaceans in the following quarters. This change 

in the diet composition may result in a decrease in black scabbard’s condition to proceed with 

maturation and trigger the migration towards the south. The diet shift in the end of the first 

quarter may also contribute to the increase in the levels of atresia observed in April, which 

suggest that the specimens with poorer conditions may remain in the northern area and enter 

into an atretic process. The decision to migrate has to be a trade-off between the potential 

benefit of reproduction and the costs of migration and natural and fisheries-induced mortalities 

(Jørgensen et al., 2006). 

In the Madeira Islands all maturity stage were observed during the year, although very few 

immature fish were observed. The low numbers of immature specimens corroborates the 

migration pattern of black scabbardfish previously discussed and they are present in Madeiran 

waters in very low numbers. Notwithstanding this, the low numbers of immature fish caught off 

Madeira could also be as a result of differential gear selectivity, avoiding being caught by 

longline gear, or a different vertical distribution. The spawning season was well defined, 

between September and December, which is in agreement with previous studies from Madeira  

(Bordalo-Machado et al., 2001; Figueiredo et al., 2003; Neves et al., 2009).  

This was the first study to differentiate females in developing stage (IIa) from the ones in resting 

stage (IIb) (See Table 3, Chapter 2). This differentiation is not just essential for a better 
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understanding of the reproductive cycle, but from a stock management perspective, the lack of 

differentiation can result in erroneous estimates of length at first maturity (LC50%) and have 

serious consequences for the larger part of the reproductive stock. 

The present study revealed that black scabbardfish has a very particular maturation process, 

with a geographical quasi-complete separation of the immature and mature individuals. While in 

the northern area only immature specimens were sampled, in the Madeira Islands a very low 

number of immature specimens were sampled, with a low overlap along the size range. 

Notwithstanding the geographical distance between the west of Scotland and Madeira, it is 

important to incorporate the immature species from the former location into the maturity ogive 

estimations, since our data strongly suggests that the life cycle of black scabbardfish is not 

completed in just one area. When the data from the two locations were combined, the length-at-

maturity estimated for females was 1156mm,  which is much larger than the estimations by 

Figueiredo et al. (~1028mm) (2003). 

Age and Growth 

The previous studies on age and growth of black scabbardfish presented contradictory results. 

In the first growth study, Morales-Nin and Sena-Carvalho (1996), considered black scabbard to 

be fast growing, reaching a maximum age of 8 years, whereas the study by Kelly et al. (1998), 

showed that the growth rate was much slower, with a maximum age of 32 years. In more recent 

studies (Morales-Nin et al., 2002; Vieira et al., 2009), the maximum age recorded was 12 and 

15 years, respectively. The differences among the publish studies are the result of the features 

of the black scabbardfish otoliths, which have poor contrast between the alternating dark and 

light zones, and a confusing sequence of narrow zones, which can either be counted singly or 

grouped. In order to address this problem, two reading interpretations methodologies were 

employed: a conservative interpretation and a non-conservative interpretation. Taken together, 

these two methodologies gave an indication of the likely range of the growth rates and 

maximum ages that could plausibly be ascribed to black scabbardfish. The results indicated that 

the conservative reading interpretation should be the correct one for ageing black scabbard and 

the bands counted as true rings were in fact false rings, resulting in overestimated age and 

underestimated growth (See Chapter 3).  
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The growth parameters obtained in this study, using the conservative reading interpretation, 

showed that black scabbardfish from the west of the British Isles is faster growing than 

estimated by Kelly et al. (1998), but slower growing in Madeira than previously stated by Vieira 

et al. (2009), Morales-Nin et al. (2002) and Morales-Nin and Sena-Carvalho (1996). These 

differences result most likely from different interpretations of the growth increments. The results 

of this study raise concern over the inaccurate age estimations which result in erroneous growth 

rate estimations (Beamish and McFarlane, 1983) and may cause problems for the assessment 

and management of the stock. The ageing errors affects directly the catch-at-age data, but also 

other input data, including maturity at age, age-structured catch per unit effort (CPUE). Hence, 

age-reading problems may influence virtually all the assessment inputs (Reeves, 2003). 

Consequently ageing error will affect the estimations of fishing mortality and spawning stock 

biomass, essential indexes for stock predictions. It is essential otoliths exchange programmes 

and workshops for otolith interpretation standardization among experts and laboratories. 

The results showed area specific differences in the growth parameters and population age 

structure. To the west of the British Isles, specimens reached a lower maximum age and had a 

higher growth rate than those caught off Madeira. These differences are consistent with the 

theory of a single population of black scabbardfish in the NE Atlantic, highly segregate, with 

smaller, immature and younger fish caught to the west of the British Isles that migrate further 

south (possibly to Madeira) as they grow, reach maturity and spawn. 

Although this study showed that there are rather serious interpretation challenges, the overall 

precision of these age estimates is acceptable and repeated counts of the same otolith section 

do not vary much once a certain interpretation of zonation is defined. The age validation of 

black scabbardfish proved to be difficult and the analysis of the nature of the otolith edge 

throughout the year was different from previous study by Morales-Nin and Sena-Carvalho 

(1996) and might not be the best validation method for this species. One of the most promising 

age validation techniques for long-lived deep water fish is the lead-radium dating of otoliths, 

which utilizes a known radioactive decay series in the cores of previously aged fish otoliths to 

provide an independent age estimate of bony fishes (Cailliet et al., 2001; Andrews et al., 2009). 

This technique relies on the decay of the radioisotope radium-226 to a short-lived product lead-
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210 and it is best suited to discriminate age where the candidate species has age 

interpretations that are widely divergent, as in the case of black scabbardfish. 

Trophic ecology 

Unravelling the feeding ecology of deep sea fish is very complicated due to the difficulty in 

obtaining samples and the high rate of stomach eversion. This was particularly true for black 

scabbardfish, where relatively low numbers of stomachs with food contents were recovered 

from the west of the British Isles and an insignificant number from Madeira. To augment the 

limited recovery of stomach contents, the study on trophic ecology of black scabbardfish was 

augmented by stable isotope analysis. The combined use of both analyses can provide valuable 

information on feeding ecology within and among populations (Reñones et al., 2002), but this 

approach has rarely been used for deep water species.  

The feeding strategy of black scabbardfish from the west of the British Isles seems to be more 

or less opportunist, consisting of a wide variety of fish, cephalopods and crustaceans, with 

epipelagic and benthopelagic affinities and this was confirmed by the stable isotope data. The 

mean δ
15

N and δ
13

C values support the diet composition encountered in the stomachs and that 

black scabbardfish forms a link between the pelagic and the benthopelagic food webs. Although 

there is no food content information from Madeira, the stable isotope analyses showed that 

although the black scabbardfish feed upon prey with different C isotope ratios, depending on the 

local availability of prey, the feeding strategy does not change spatially and they feed at a 

similar trophic level, as a top benthopelagic predator in the different areas. 

Despite the diverse diet, blue whiting was by far the most abundant fish prey item. Blue whiting 

is a mesopelagic species occurring in the highest abundances between the 300 and 400 m off 

west of the British Isles (ICES, 2010). Their occurrence might be associated with scavenging 

behaviour and vertical migration of the prey and predator species. Although there is little doubt 

that the success of benthopelagic fishes results from the energy transfer from the surface 

downwards (Gordon, 2001), it is not known how  interception migrations occur in benthopelagic 

species (Mauchline and Gordon, 1991).  
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This study showed seasonal changes in the diet composition of black scabbardfish in the 

northern area. In the first quarter of the year, the diet is predominated by blue whiting and 

throughout the year there was an accentuated decrease of this species and an increased 

contribution of cephalopods and crustaceans. These changes are clearly related with the 

migration pattern of blue whiting which undertakes long annual movements from feeding 

grounds in the Norwegian Sea to spawning grounds, west of the British Isles, and back again 

Otolith stable Isotope Analysis 

The stable isotope analyses in different regions of the otoliths, provided information on the 

metabolic and environmental conditions that individual black scabbard fish experienced in the 

northeast Atlantic throughout its life history. The ontogenetic variations of δ
18

O and δ
13

C values 

corroborate the large scale migration of black scabbardfish, described in the previous chapters. 

The similar values of δ18O during the larval and juvenile phases in both sampling locations, 

suggest that the ambient environmental conditions experienced by the fish during these life 

phases were identical. The extreme low values of δ
18

O in the core of the otolith indicated that 

the specimens of black scabbardfish captured off the west of Scotland spent its larval phase in 

warmer, southerly waters (e.g. Madeira islands) migrating afterwards to deeper and northern 

waters. On the other hand, the values of δ
18

O obtained for the juvenile phase in the otoliths from 

Madeira presented identical values to their counterparts from west of Scotland that might 

suggest that the fish caught in Madeira spent their juvenile phase in waters with identical 

oceanographic  features.  

The δ
13

C composition in the black scabbardfish’s otoliths became more enriched with age, 

indicating a decline in metabolic rate and feeding at a higher trophic level as they get older 

(Begg and Weidman, 2001; Sherwood and Rose, 2003; Longmore et al., 2011) and no 

differences were found between west of Scotland and Madeira. This might suggest a similar 

metabolic rate and feeding strategy in each location. The identical δ
13

C values during the 

juvenile phase in both locations also support the hypothesis that black scabbardfish spend their 

juvenile phase off the west of the British Isles, feeding. 
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Biomass and size structure trends 

The analysis of the time series data from the Scottish and Irish deep water surveys, has 

demonstrated that overall, the black scabbardfish stock west of the British Isles declined 

significantly between 1998 and 2004 and has remained at stable but low levels since. Declines 

in abundance are an inevitable consequence of exploitation (Hilborn and Walters, 1992; Pauly 

et al., 1998; Hilborn et al., 2003), and a reduction in biomass may be required for maximum 

productivity to be attained (Schnute and Richards, 2002). The same trend has been recorded 

for other deep-water species, particularly for grenadiers (Neat and Burns, 2010). The relative 

stability of abundance after 2005 may reflect the introduction of stricter management tools, 

including TACs for commercial deepwater species. Hence fishing pressure has been alleviated, 

which might suggest that the restriction has been sufficient to prevent further decline of the 

black scabbardfish stock. However, a lack of knowledge of the population status prior to the 

fishery starting and regrettably even at the present time makes it difficult to assess accurately 

the real consequences of fishing pressure and of the decline in abundance of deep-water 

species over years. 

Over ten years, there was no obvious change in the size structure of black scabbardfish west of 

the British Isles, suggesting that this species has greater resilience to fishing pressure than 

some other deep-water species (Clark, 2001; Lorance and Dupouy, 2001; Neat and Burns, 

2010). This may also be attributed to a large scale movement and size segregation as 

described in the previous chapters (Chapters 2, 3 and 5). Black scabbardfish undertakes large-

scale southward migrations to spawn and then, the juveniles migrate towards the north where 

an intense feeding activity takes place. With this migration pattern, it means that the spawning 

stock in Madeira does not suffer the same fishing pressure as the specimens west of the British 

Isles, allowing this species to reproduce and produce viable offspring in order to maintain long 

term population levels. Although they are fished in Madeira and the Canary Islands, the fishing 

pressure level is much lower than in northern Europe, being fished by small scale longliners 

(Bordalo-Machado et al., 2009).   
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Final considerations and future research 

This study has presented comprehensive and new information on the life history and population 

structure of A. carbo over its wide distribution range and clearly demonstrated the existence of a 

widely distributed population in the Northeast Atlantic, with a distinct migration pattern. 

Given its life cycle there is an urgent need that the management process recognizes the 

existence of a continuous widely distributed stock of black scabbardfish between the west of the 

British Isles and Madeira. Currently, black scabbardfish is managed based on the separate 

biennial ICES and CECAF scientific advice and as species that transpose the barriers of the 

Regional Fishery Bodies should be treated as highly migratory and managed collectively.  An 

effective management requires cooperation between the States and/or the Regional Fishery 

Bodies where black scabbardfish is exploited. The inadequacy of the available information to 

evaluate the state of the spawning stock stated in ICES advice (ICES, 2012), is the outcome of 

the lack of cooperation and interchange between ICES and CECAF. Understanding the logical 

connection between juveniles and spawning biomass and the effect of the migration behaviour 

within the distribution area is vital for the maintenance of the population (Secor, 1999; Trippel, 

1999).  It is important that fish are able to grow to a reproductive size and are able to spawn 

before they are harvested. Harvesting of juveniles ultimately reduces the number of individuals 

that contribute to the spawning stock. It is vital to allow potential spawners to reproduce and 

produce viable offspring in order to maintain long term sustainable population’s levels. 

In this study two areas were sampled and analysed; west of the British Isles and Madeira, which 

corresponds to the known feeding and reproductive grounds, respectively. However, black 

scabbardfish has a wider geographical distribution, including Iceland, Mid-Atlantic Ridge, the 

Azores and Canary Islands. It is essential to obtain more biological information from these 

areas, to understand the population structure and dynamics across a wider geographical area. 

While the migration between the northern and southern component was demonstrated, there 

are still questions about how and when the migration occurs, that should be addressed by 

further research. The south-north migration should be addressed to find out how long the 

juveniles take to move between the spawning grounds in the south to the northern waters. 

Further analysis on the monthly length frequency data collected by the deep water French 
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observer program, possibly could give us insights on recruitment pulses throughout the year or 

between years. Furthermore, is important to know how long the juveniles remain in northern 

waters and how do they migrate to the southerly waters where they mature and spawn.  

During the present study, it was observed that some of the fish from northern Europe had high 

levels of atresia in their ovaries and might not migrate southwards to spawn. If only a proportion 

migrates, it is also very important to assess what proportion of the population migrates and the 

impacts that might have on the spawning stock. This could be achieved with genetic data and 

using otolith microchemistry analyses over a wider distribution area and with a large sample 

size 

The egg and larval stages of black scabbardfish are still unknown, and finding them would 

improve significantly our knowledge on the population structure and on how the migration 

proceeds. A possible approach for accomplishing this would be by carrying out pelagic scientific 

surveys in the known spawning grounds (e.g. Madeira Islands).  

Despite the great effort to estimate accurately the age and the growth parameters of black 

scabbardfish, it was found to be very difficult to interpret the ring patterns, due the complexity in 

the otoliths structure. Age validation studies are urgently required to access the accuracy and 

the frequency of formation of a growth increment (Campana, 2001). Since some of the 

validation methods are impossible to apply in deep water species (e.g. mark-recapture), one of 

the most promising age validation technique that could be used in black scabbardfish is the 

radiochemical dating of otoliths (Andrews et al., 2009). The application of lead-radium dating 

may provide an independent estimate of the age, differentiate between different age scenarios 

and provide a reliable age validation. This technique could also be applied to other deep water 

species that are commercially exploited and where age validation is absent. 

The complexity of the structural patterns of the black scabbardfish otoliths raised concerns 

about whether the deposition of the otolith macrostructures is meaningful for age estimation. 

Further investigation should be carried out to evaluate if the otolith ring patterns are stable over 

time or if they are randomly deposited, as a response to environmental or endogenous factors. 
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It has been known for some time that there are two very similar species in Madeira and Canary 

Islands, A. carbo and A. intermedius. It was only recently that these two species have been 

distinguished in the monthly sampling program and the contribution of each species in the total 

landings from Madeira is unknown. It is important to know the proportion of each species in the 

landings, but also important to know the level of interaction of these sympatric species (Stefanni 

and Knutsen, 2007). 

Since there is strong connectivity between the north and south population components, it is vital 

to understand how the reductions on the biomass and abundance of black scabbardfish west of 

the British Isles affects the spawning biomass and the fishing regime in the southerly waters of 

Madeira Islands that could be achieved, as discussed previously, with a change on how black 

scabbardfish is actually managed.  
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