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Abstract 

Parkinson’s disease (PD) is a common neurodegenerative disorder caused by the progressive 

degeneration of the nigrostriatal dopaminergic pathway. The resulting loss of dopamine 

neurotransmission is responsible for the symptoms of the disease. Available treatments are 

initially successful in treating PD symptoms; however, their long-term use is associated with 

complications and they cannot stop the neurodegeneration. Current research aims at 

developing new therapies to halt/reverse the neurodegenerative process, rather than treating 

symptoms. Neurotrophic factors are proteins critical for maintenance and protection of 

neurones in the developing and adult brain. Several neurotrophic factors have been 

investigated for their protective effects on dopaminergic neurones. Here we review some of 

the most promising factors and provide an update on their status in clinical trials. 

 

 

 

Keywords: Glial cell line-derived neurotrophic factor; Growth/differentiation factor 5; 

Neurturin; Mesencephalic astrocyte-derived neurotrophic factor; Cerebral dopaminergic 

neurotrophic factor  
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1. Parkinson’s disease 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, with an 

incidence of 1.5-2% in the population over 60 years of age, which increases significantly with 

advancing age. As life expectancy is significantly increasing in the Western world, the 

incidence of PD is steadily escalating. Consequently, the financial and economical burden of 

the treatment and care of PD patients is substantial and increasing [1]. Thus, research on the 

causes of this debilitating disease is critical, as is the development of new treatments.  

 

PD is caused by the progressive degeneration of the nigrostriatal (A9) dopaminergic pathway, 

which projects from the substantia nigra in the midbrain to the caudate-putamen (striatum) in 

the forebrain [2, 3]. The resulting loss of dopamine neurotransmission in the striatum causes 

the cardinal symptoms of the disease: tremor at rest, rigidity and bradykinesia. Approximately 

5% of PD cases are caused by heritable genetic mutations. The remaining cases are sporadic 

and of unknown origin, although many theories have been proposed to explain the cause of 

dopaminergic neuronal death which occurs in PD, such as environmental toxins, 

mitochondrial dysfunction with resulting oxidative stress, and inflammatory mechanisms [4, 

5]. 

 

The therapies presently available for PD are not effective in the long-term and cannot stop the 

ongoing neurodegeneration. The most commonly-used treatment is the dopamine precursor, 

levodopa, which replaces lost dopamine in the denervated striatum and relieves motor 

symptoms. Levodopa is generally administered in conjunction with an inhibitor of peripheral 

decarboxlyase (carbidopa, benserazide), which has the effect of enhancing the central activity 

of levodopa. Levodopa is initially successful, however about 50% of patients develop 
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complications within the first five years of treatment, primarily severe motor fluctuations and 

dyskinesias. Other drug treatments include inhibitors of the dopamine breakdown enzymes 

catechol-O-methyl-transferase (tolcapone, entacapone) or monoamine oxidase–B (selegiline, 

rasagiline), and dopamine receptor agonists (bromocriptine, pergolide, pramipexole, 

ropinirole). Surgical methods involving ablation of deep brain structures or deep brain 

stimulation have also been used with good success, but these procedures are not widely-

available or applicable for all patients. In summary, none of the current treatments provide 

safe and long-lasting relief from the symptoms and have little or no effect on the progression 

of the disease [1]. Current research is aimed at developing therapies that will halt the 

neurodegenerative process, rather than simply treat the symptoms. These include the use of 

antioxidants, anti-apoptotic agents, cell-based therapies and neuroprotective agents such as 

neurotrophic factors (NTF). 

 

2. Neurotrophic factors for dopaminergic neurones 

NTF are secreted proteins that play critical roles in the induction, specification, survival and 

maturation of developing neurones. Certain NTF also act in the adult brain, to support and 

protect mature neuronal populations. As PD is primarily caused by the degeneration of a 

single neuronal population, several factors have been investigated for their neurotrophic and 

protective effects on dopaminergic neurones. The goal of this therapeutic approach is to apply 

a factor(s) which can halt or reverse the progressive degeneration of nigrostriatal 

dopaminergic neurones, and which can be administered to patients in a safe, targeted and 

long-lasting manner. NTF that have selective effects on dopaminergic neurones represent 

good targets for this approach. These include glial cell line-derived neurotrophic factor 

http://en.wikipedia.org/wiki/Bromocriptine
http://en.wikipedia.org/wiki/Pergolide
http://en.wikipedia.org/wiki/Pramipexole
http://en.wikipedia.org/wiki/Ropinirole
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(GDNF), neurturin, growth/differentiation factor (GDF) 5, mesencephalic astrocyte-derived 

neurotrophic factor (MANF) and cerebral dopaminergic neurotrophic factor (CDNF). 

 

2.1 GDNF family of ligands (GFL) 

2.1.1 Effects of GDNF in vitro 

The GFL family is composed of four factors - GDNF, neurturin, persephin and artemin. 

GDNF, its prototypical member, was isolated from a glial cell line due to its neurotrophic 

effects on cultured dopaminergic neurones [6]. Subsequent studies have shown that it can also 

act on other neuronal types (see [7]). GDNF has been shown to induce the dopamine synthetic 

enzyme, tyrosine hydroxylase (TH), in fetal human and rat cortical cultures (Table 1) [8]. 

GDNF has been consistently shown to promote the survival and differentiation of 

dopaminergic neurones in vitro [6, 9, 10] and to protect these cells from the dopaminergic 

toxins, 1-methyl-4-phenylpyridinium ion (MPP+) and 6-hydroxydopamine (6-OHDA),[11-

13]. GDNF treatment has also been reported to reduce apoptosis in dopaminergic neurones 

cultured from embryonic rat [14, 15] and human [16] midbrain. GDNF can also protect 

cultured dopaminergic neurones from lipopolysaccharide-induced degeneration, a model of 

neuroinflammation [17]. Most of the above studies were conducted on embryonic day 14 

(E14) rat midbrain, the time point at which dopaminergic neurones are undergoing their 

terminal mitotic divisions and are beginning to differentiate. An in vitro study showed that 

GDNF can also support these neurones during their postnatal period of natural developmental 

death [18]. Midbrain cultures may contain dopaminergic neurones of two origins, the 

nigrostriatal pathway (A9), which degenerates in PD and the mesolimbic pathway (A10), 

which is largely spared in this disease. Differential effects of GDNF treatment on A9 andA10 

dopaminergic neurones in vitro have been reported, whereby a single dose of GDNF 
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selectively enhanced the survival of A9 cells, while repeated exposure to this factor only 

increased the survival of A10 cells [19].  

 

2.1.2 Effects of GDNF in vivo 

In normal adult rats, a single injection of GDNF into either the substantia nigra or striatum 

significantly increased the levels of dopamine and its metabolites in the striatum and nigra 

[20]. Several studies have reported neuroprotective and functional effects of GDNF in adult 

animal models of PD (see [21]). In one early study, repeated injections of recombinant rat 

GDNF protected against dopaminergic cell loss induced by transection of the adult rat medial 

forebrain bundle (MFB), the fibre bundle containing the dopaminergic projections from the 

substantia nigra to the striatum [22].  

 

The most widely-used laboratory model of PD involves unilateral injection of the selective 

dopaminergic toxin, 6-OHDA in the adult rat. This results in the degeneration of nigrostriatal 

dopaminergic neurones and consequent depletion of striatal dopamine transmission on one 

side of the brain. Stereotaxic injection of 6-OHDA into the MFB or substantia nigra induces a 

complete lesion of the nigrostriatal pathway, while intrastriatal injection induces progressive 

neurodegeneration. Several groups have examined the effects of intracerebral injection of 

recombinant GDNF in rats with 6-OHDA-lesions of the MFB. Injection of GDNF in or near 

the substantia nigra at four weeks after or just before a 6-OHDA lesion resulted in reduction 

of motor deficits, and preservation of nigral dopaminergic neurones and striatal dopamine 

release and uptake [23-25]. In adult rats with bilateral 6-OHDA lesions of the MFB, injection 

of high doses of GDNF into the lateral ventricles resulted in improved motor function and 

sparing of nigral dopaminergic neurones [26]. GDNF’s effects may be dependent on host age, 
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as one study found that young rats displayed significantly higher levels of neuroprotection 

than aged rats [27]. This may be relevant to clinical trials, where the age of the patient may 

determine the extent of neuroprotection that is achieveable with GDNF treatment. 

 

The intrastriatal lesion model has been used extensively since it is possible to administer the 

NTF while neurodegeneration is progressing. Administration of single or multiple doses of 

recombinant human GDNF near or in the substantia nigra starting at the day of, or the day 

before, a 6-OHDA-induced lesion, had protective effects on nigral dopaminergic cell bodies 

[28, 29] A series of four intrastriatal injections of GDNF was found to decrease drug-induced 

rotations and preserve nigrostriatal dopaminergic neurones in adult rats with 6-OHDA-

induced lesions [30]. Long-term rescue of nigrostriatal dopaminergic neurones from 6-OHDA 

lesions was reported after short-term GDNF treatment [31]. Long-term protection against 

rotational asymmetry, reductions in striatal dopamine levels and uptake, and death of nigral 

dopaminergic cell bodies induced by 6-OHDA lesions of the MFB was conferred by a single 

dose of GDNF, divided between the lateral ventricle and substantia nigra [32]. GDNF 

injections into the striatum one week after an intrastriatal 6-OHDA lesion resulted in re-

innervation of the striatum as well as recovery of motor function [33], indicating that the 

ability of intrastriatal GDNF injection to confer behavioural improvements may be due to its 

effects on the remaining striatal afferents in the partially-denervated striatum. 

 

For application to clinical studies, the optimal injection site for production of safe and 

effective results is obviously an important consideration. Some studies have directly 

compared the sites of administration of GDNF in 6-OHDA-lesioned rats. Kirik et al. found 

that intrastriatal GDNF delivery had protective effects on motor function and the integrity of 
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the nigrostriatal pathway, intranigral GDNF protected nigral cell bodies but not striatal 

innervation or motor function, while intraventricular GDNF had no significant effects [34]. 

Another study found that intraventricular infusion of GDNF starting two weeks after an 

intrastriatal lesion had protective effects on the integrity and function of the nigrostriatal 

pathway, which lasted for six weeks after cessation of GDNF infusion, whereas the effects of 

intrastriatal infusion stopped upon withdrawal of GDNF [35]. Another group found that 

intrastriatal infusion of a high dose of GDNF four weeks after an intrastriatal lesion induced 

restorative effects on motor behaviour and the integrity of dopaminergic neurones and their 

terminals [36]. Thus, the intrastriatal route of administration appears to be the most 

efficacious in this progressive model of PD. Sequential application of GDNF over the nigra 

for two weeks, followed by injections of GDNF into the striatum for three weeks, in rats with 

intrastriatal 6-OHDA lesions, protected nigral dopaminergic cell bodies but did not prevent 

striatal denervation or improve motor function [37]. This suggests that the motor 

improvements observed in the other studies were dependent on an ability of GDNF to induce 

reinnervation of the lesioned striatum, perhaps by stimulating axonal sprouting from the 

remaining dopaminergic neurones. Thus, once the axonal retraction to the level of the nigra 

has occurred, application of GDNF to the striatum appears to be ineffective. This is an 

important consideration for clinical studies, as it suggests that there is a window of 

opportunity in which GDNF application may be therapeutically effective, but that this factor 

may not be useful at advanced stages of the disease. 

 

In another commonly-used animal model of PD, N-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-treated adult mice, GDNF injected either before or one week after 

MPTP treatment, conferred significant protective or restorative effects, respectively [38].  
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Gash and colleagues showed that administration of recombinant GDNF in MPTP-treated 

rhesus monkeys induced motor recovery and protection of nigral dopaminergic neurones and 

their striatal projections [39]. Combined application of oral levodopa and 

intracerebroventricular GDNF resulted in significant behavioural improvements with reduced 

levodopa-induced side-effects, in MPTP-treated monkeys [40]. Another study found that 

intraventricular GDNF improved motor function and reduced levodopa-induced dyskinesias 

in this model [41]. Significant recovery of motor function for at least four months was 

reported in MPTP-treated monkeys that had received GDNF into the lateral ventricles [42], 

while intraventricular injections of GDNF were found to increase intrastriatal but not 

intranigral dopamine levels [43]. Infusion of GDNF into the putamen of MPTP-treated 

monkeys induced a gradual and significant reduction in parkinsonian symptoms [44]. This 

appeared to be a regenerative action, since GDNF was injected at three months after the 

MPTP lesion, when the nigrostriatal pathway had presumably undergone significant 

degeneration. Chronic intraputaminal administraion of GDNF in aged monkeys had a long-

lasting protective action on nigrostriatal dopaminergic neurones and on motor function, 

without any adverse side-effects [45].  

Neurotrophic proteins like GDNF are metabolised rapidly in the brain and thus single 

injections of this factor cannot confer permanent effects. Gene therapy approaches have been 

applied to achieve long-term and targeted delivery of GDNF to the injured nigrostriatal 

pathway. Adenoviral vector delivery of GDNF into or close to the substantia nigra [46, 47] or 

into the striatum [48, 49] of rats with intrastriatal 6-OHDA lesions resulted in significant 

motor improvements and protection of nigral dopaminergic neurones. Adenoviral-delivered 

GDNF induced behavioural and neuroprotective effects when injected into the substantia 

nigra, but not into the striatum, in rats that had intrastriatal 6-OHDA lesions [50]. In MPTP-
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treated mice, adenoviral vector-mediated GDNF delivery to the striatum prevented depletion 

of striatal dopamine levels [51]. A study which compared the effects of intrastriatal and 

perinigral injection of an adenoviral vector encoding GDNF found that, while both injection 

routes conferred protective effects on dopaminergic cell bodies in the nigra, only the 

intrastriatal route reduced motor deficits, in rats with intrastriatal 6-OHDA lesions [52]. 

 

Another vector system, based on adeno-associated virus 2 (AAV2), has also shown efficacy 

in animal models of PD. Mandel and co-workers reported significant protective effects on the 

nigrostriatal pathway and its functioning, in adult rats with intrastriatal 6-OHDA lesions, 

following intranigral injection of AAV2-GDNF either three weeks before [47] or just after the 

lesion [53]. AAV2-mediated delivery of GDNF to the striatum, but not to the substantia nigra, 

induced gradual behavioural recovery and regeneration of the 6-OHDA-lesioned nigrostriatal 

system in adult rats [34]. AAV2 vectors have the advantage over adenoviral vectors in that 

they can integrate and stably express their transgene product in non-dividing cells such as 

neurons. Also, they are relatively safe as there is little or no host immune response due to the 

absence of viral genes in these vectors. Their disadvantage is that they can only deliver gene 

constructs of relatively small size compared to adenoviral vectors. Furthermore, there is a 

delay before the transgene is expressed following intracerebral injection of an AAV2 vector. 

 

A third type of vector system, based on lentiviruses, has also been used to deliver GDNF in 

PD animal models, with promising results. Lentiviral vectors have the capacity to deliver 

large transgenes and they can integrate efficiently into non-dividing cells. Delivery of the 

human GDNF gene using lentiviral vectors in MPTP-lesioned and aged rhesus monkeys 

achieved long-term gene expression and significant functional benefits [54]. Kordower and 
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colleagues administered lentiviral-GDNF to the striatum and substantia nigra of nonlesioned 

aged monkeys and MPTP-treated young monkeys and found extensive expression of GDNF 

in all of the brains. Lentiviral-delivered GDNF reversed motor deficits in the aged monkeys 

and prevented nigrostriatal degeneration and the development of functional deficits in the 

MPTP-lesioned animals. Another study used a lentiviral vector to achieve long-term delivery 

of GDNF to the striatum and substantia nigra of aged rhesus monkeys, and found that this 

treatment conferred significant protective effects on the functioning and integrity of the 

nigrostriatal pathway [55]. Lentiviral delivery of GDNF was also found to increase the 

number of intrinsic dopaminergic neurones in the primate striatum [56]. Lentiviral-mediated 

delivery is very effective but there are concerns about its safety and these will have to be 

addressed before clinical application of this system is feasible.  

 

Another avenue of exploration is the co-administration of NTF with neuronal transplants in 

cell replacement therapy approaches to PD. Transplantation of embryonic midbrain tissue is a 

promising and successful therapy for PD, but is limited by the poor survival of the 

transplanted dopaminergic neurones (see [57]). GDNF has been shown to improve the 

survival and integration of grafted embryonic dopaminergic neurones in animal models of 

PD. Rosenblad and colleagues reported that repeated injections of this factor adjacent to 

embryonic rat ventral midbrain grafts in the 6-OHDA-lesioned rat striatum improved the 

survival of the grafted dopaminergic cells and induced earlier recovery of motor function than 

untreated grafts [58]. Improvements in the survival of grafted dopaminergic neurones and 

their integration into the host striatum were also reported after pre-incubation of the grafts 

with GDNF [59-62]. Injection of GDNF along the nigrostriatal tract stimulated the outgrowth 

of dopaminergic fibres from intranigral grafts towards the striatum [63-65]. Enhancement of 

complex motor functions, as well as improved graft survival, were found in 6-OHDA-
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lesioned rats that had received GDNF-pretreated grafts [66]. GDNF pre-treatment has also 

been used to promote the survival of human fetal midbrain tissue, when grafted into two PD 

patients [67]. These patients displayed a large increase in fluorodopa uptake after one year, an 

index of striatal dopaminergic transmission, as measured by positron emission tomography 

(PET).  

 

Ex vivo gene therapy approaches have been applied in attempts to extend the effects of 

exogenous GDNF, which is rapidly metabolised in vivo. Genetically-modified embryonic rat 

midbrain cells which over-express GDNF have been found to induce earlier functional 

recovery in 6-OHDA-lesioned rats than control grafts [68]. GDNF-overexpressing rat neural 

precursor cells also significantly increased the survival of co-grafted embryonic dopaminergic 

neurones [69]. Human neural progenitor cells have been used to deliver GDNF, which 

conferred protective effects on the lesioned nigrostriatal pathway in adult rats [70]. This 

cellular delivery system, which allows the release of GDNF under an inducible promoter, has 

also been found to provide GDNF to the aged monkey brain for at least three months [70]. 

Encapsulation technology involves enclosing cells within a semi-permeable membrane 

composed of polymer fibres, which allows outward diffusion of any proteins secreted by the 

cells, while preventing the cells from proliferating extensively and forming tumours. 

Intrastriatal grafting of an encapsulated GDNF-expressing human (BHK) cell line has been 

shown to confer neuroprotective and restorative effects in 6-OHDA-lesioned rats [71, 72], 

particularly when the GDNF-expressing cells are implanted at an early stage of the disease 

progression [73]. Encapsulated human fibroblasts genetically engineered to overexpress 

GDNF were found to exert regenerative effects when implanted into the rat striatum one week 

after an intrastriatal 6-OHDA lesion [74]. Although the cells were removed after six weeks, 

the regenerative effects on motor function and on nigral dopaminergic neurones were evident 
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for a further seven weeks, indicating that transient delivery of GDNF was sufficient to confer 

sustained effects. In MPTP-treated primates, encapsulated GDNF-expressing cells induced 

transient motor improvements and increases in striatal dopamine uptake, without any adverse 

side-effects [75]. Encapsulated cells expressing GDNF have also been applied in combination 

with embryonic rat brain grafts in 6-OHDA-lesioned rats, and were found to improve the 

survival of the grafted dopaminergic neurones and their functional effects [76]. Encapsulated 

cell technology may have great potential for future clinical studies, should the promising 

effects found in these animal studies be extended to show long-term and safe delivery of 

appropriate doses of neurotrophic proteins (see [77]).  

 

2.1.3 Effects of neurturin in vitro  

A second member of the GFL family, neurturin, was identified for its survival-promoting 

effects on sympathetic neurones [78]. It was found to promote the survival of developing and 

mature dopaminergic neurones in vitro, These effects were similar in strength to those of 

GDNF [79, 80]. Neurturin is expressed in the ventral midbrain and striatum during 

development [80].  

 

2.1.4 Effects of neurturin in vivo 

Neurturin has been found to exert protective and functional effects on dopaminergic 

nigrostriatal neurones after 6-OHDA lesions of the adult rat MFB [79, 80] or striatum [81, 82] 

and after axotomy of the adult rat MFB [83]. The study by Rosenblad and colleagues directly 

compared the effects of neurturin with those of GDNF in the striatal 6-OHDA lesion model. 

They found that neurturin was less efficacious than GDNF after intrastriatal and especially 

after intraventricular delivery, which may reflect poor solubility of neurturin in vivo [82]. 
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Another study showed that delivery of neurturin into the cerebral ventricles of adult rats using 

mini-pumps resulted in an increase in striatal dopamine levels [84]. A recent study reported 

that intranigral injection of recombinant neurturin induced increases in striatal dopamine 

release, which were similar in magnitude to those induced by intranigral injection of 

recombinant GDNF [85]. Intracerebral delivery of recombinant neurturin has also been found 

to protect nigrostriatal dopaminergic neurones and induce improvements in motor function in 

MPTP-treated monkeys [86, 87]. Co-administration with recombinant neurturin protein has 

been reported to improve the survival of fetal rat dopaminergic neurones after intrastriatal 

grafting into 6-OHDA-lesioned adult rats [88]. 

 

Lentiviral gene delivery to the striatum of 6-OHDA-lesioned adult rats of a modified 

neurturin construct, which had the pro-region deleted and replaced with an immunoglobulin 

heavy-chain signal peptide, had protective effects on the nigrostriatal pathway [89]. Sustained 

functional recovery, with minimal side-effects, was achieved following stereotaxic injection 

of an AAV2–based vector encoding the human neurturin gene, in MPTP-treated monkeys 

[90] and 6-OHDA-lesioned rats [91]. Stable expression of neurturin using this AAV2 delivery 

system was achieved for at least a year in rats [92]. Kordower and colleagues showed that, ten 

months after injection of AAV2-neurturin into the striatum and substantia nigra, MPTP-

treated parkinsonian monkeys displayed a large reduction in the intensity of their motor 

symptoms compared to buffer-injected animals. This functional recovery was accompanied 

by significant preservation of dopaminergic neurones [90]. A study using the same expression 

system in 6-OHDA-lesioned adult rats found long-term neurturin expression in the striatum 

and dose-dependant protective effects on the nigrostriatal dopaminergic neurones for at least 

ten months [91]. Similar results were found after application of this system in aged monkeys 

and no adverse effects were recorded in this study after thorough toxicological testing [93]. A 
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further study by this group found that the expression of neurturin using this system could be 

sustained for a year in rhesus monkeys, as could its therapeutic effects [94]. Unlike the case 

with GDNF, no antibodies to neurturin or no pathological abnormalities were detected after 

AAV2-delivery in primates [95]. 

 

2.1.5 Effects of persephin and artemin in vitro and in vivo 

Persephin, a third member of the GFL family, has also been found to exert neurotrophic 

effects on midbrain dopaminergic neurones in vitro [96] and in vivo [97]. This factor also has 

trophic effects on motor neurones [96] and has not been extensively investigated for its 

clinical potential in PD. The fourth member of the GFL family, artemin, has survival-

promoting effects on dopaminergic neurones in culture [98] and in vivo [99], and also has 

potent actions on sensory neurones of the dorsal root ganglia [98]. Like persephin, artemin 

has not progressed into clinical trials for PD; however it has been tested as a therapeutic for 

neuropathy [100].  

 

2.2 GDF5 

GDF5, a member of the Transforming Growth Factor β superfamily of proteins, is also being 

investigated for its therapeutic potential in PD. GDF5 is related to the Bone Morphogenetic 

Proteins, which are involved in diverse physiological functions, including the development of 

the nervous system, where they play roles in early CNS patterning as well as in neural cell 

fate determination, differentiation, and survival (see [101]).  
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GDF5 mRNA and protein expression have been found in the embryonic, neonatal and adult 

rat brain including the striatum and midbrain [102-104]. GDF5 protein expression in the rat 

brain peaks at E14, the time at which dopaminergic neurones in the developing midbrain are 

undergoing terminal differentiation [103]. 

 

2.2.1 Effects of GDF5 in vitro  

On embryonic rat dopaminergic neurones in vitro, GDF5 has selective trophic actions which 

are comparable to those of GDNF. Application of GDF5 promotes the survival of 

dopaminergic neurones in embryonic rat midbrain cultures and protects them against the 

dopaminergic neurotoxin MPP+ [102] and against free radical-induced damage [105]. 

Application of recombinant human GDF5 induced a dramatic increase in the number of 

dopaminergic neurones in cultures of embryonic rat midbrain [106]. This study found that the 

effects of GDF5 may be dependent on BMPR1b, since application of GDF5 at the time of 

plating, when BMPR1b is expressed, increases dopaminergic neuronal number, but 

application after six days in vitro, when this receptor is no longer expressed, had no effect. 

GDF5 treatment also induced morphological changes in cultured embryonic rat dopaminergic 

neurones, stimulating neurite outgrowth and branching [106, 107]. Clayton and Sullivan 

found that the effects of GDF5 were much greater when cultures were prepared from the 

lateral part of the developing midbrain. Furthermore, the BMPR1b receptor was expressed at 

higher levels in the lateral than in the medial region, suggesting that GDF5 acts through this 

receptor to increase dopaminergic neuronal number. Combined application of GDF5 and 

GDNF have been shown to have additive neurotrophic effects on cultured embryonic rat 

dopaminergic neurones, indicating that these two factors may act on separate subpopulations 

of cells [108].  
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2.2.2 Effects of GDF5 in vivo 

Studies have shown that GDF5 can protect and restore adult rat nigrostriatal dopaminergic 

neurones in 6-OHDA–lesioned animals. The first such study reported that intracerebral 

injection of recombinant human GDF5 just above the substantia nigra and into the lateral 

ventricles produced improvements in motor function, protected nigral dopaminergic neurones 

and their striatal terminals, and preserved striatal levels of dopamine, its metabolites and its 

uptake, in rats with 6-OHDA lesions of the MFB [109]. A follow-up study compared three 

injection sites and found that application of GDF5 into either the striatum or substantia nigra, 

but not into the lateral ventricle, produced optimal neuroprotective effects [110]. Delayed 

administration of recombinant human GDF5 at one or two weeks after an intrastriatal 6-

OHDA lesion resulted in significant improvements in motor behaviour, but only the one-week 

injection regimen induced protection of nigral dopaminergic cell bodies, whereas there was 

no significant rescue of striatal dopaminergic terminals after either time-point of treatment 

[111]. This indicates that there is a window of time at which the degenerating nigrostriatal 

pathway can be rescued by exogenous trophic factors, which has relevance to clinical studies, 

as such therapies may only be effective at earlier stages of the disease. GDF5 has also been 

reported to improve the survival and function of grafted dopaminergic neurones to the same 

extent as GDNF [61]. This study found that pre-incubation of embryonic rat midbrain tissue 

in GDF5 or GDNF produced significant improvements in cell survival after intrastriatal 

grafting in 6-OHDA-lesioned rats. Furthermore, GDF5-treated grafts conferred significant 

motor improvements and preservation of nigral dopaminergic neurones and their striatal 

terminals in 6-OHDA-lesioned rats, to at least the same extent as GDNF-treated grafts [61]. 

Each of these in vivo studies involved infusion of recombinant GDF5 protein, which can only 

be effective for a limited time due to its being metabolised in the brain. Future studies will 
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examine alternative administration methods, such as viral vector-mediated delivery or the use 

of encapsulated cell technology. One recent study reported that GDF5-over-expressing 

embryonic rat midbrain transplants survived well in the 6-OHDA-lesioned adult rat striatum 

and had significant effects to improve motor behaviour in these animals [112]. 

 

2.3 MANF and CDNF 

2.3.1 Effects of MANF and CDNF in vitro 

MANF and CDNF are members of a recently-described family of evolutionarily-conserved 

proteins which are secreted from glial cells and have potent effects on dopaminergic neurones 

(see [113]). CDNF mRNA and protein have been found in both developing and adult mouse 

striatum and substantia nigra, suggesting that this factor may provide trophic support to 

mature dopaminergic neuronal cell bodies and their terminals, as well play a role in the 

development of these cells [114]. CDNF is a paralogue of MANF, which was originally 

isolated from a rat mesencephalic astrocyte cell line and found to have selective trophic 

effects on dopaminergic neurones in vitro [115]. Polymorphisms in CDNF have recently been 

linked to an early-onset form of PD [116]. Like CDNF, MANF is expressed in the rodent 

nigrostriatal system during the early postnatal period, as well as in the adult [117]. The 

Drosophila homologue of MANF, DmMANF, is essential for the maintenance and function of 

dopaminergic neurones [118]. Although the receptors for MANF and CDNF have yet to be 

identified, it appears that they may act by a different mechanism to the GFL family members 

to exert their neurotrophic effects on dopaminergic neurones. It is possible that at least part of 

the action of MANF is via inhibition of endoplasmic reticulum (ER) stress-induced neuronal 

cell death [113, 119]. Overexpression of MANF has recently been shown to block apoptotic 
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cell death in sympathetic neurones cultured from the neonatal mouse superior cervical 

ganglion [120], supporting an intracellular mechanism of action.  

 

2.3.2 Effects of MANF / CDNF in vivo 

Intracerebral injection of recombinant human CDNF or MANF has been reported to have 

potent protective and restorative effects on the 6-OHDA-lesioned adult rat nigrostriatal 

pathway [114]. Each of these studies reported motor recovery and preservation of 

dopaminergic nigral cell bodies and their terminals in the striatum, conferred by intrastriatal 

injection of the NTF six hours before or four weeks after intrastriatal injection of 6-OHDA. 

The same group recently reported that intrastriatal infusion of CDNF via mini-pumps for two 

weeks, beginning at two weeks after an intrastriatal 6-OHDA lesion, was able to confer motor 

improvements and partially protect dopaminergic nigral cell bodies and their striatal terminals 

[121]. It is interesting that MANF appears to be transported through the brain in a different 

manner to that of GDNF, as radiolabelled MANF is transported to the cortex after intrastriatal 

injection [119], while labelled GDNF is retrogradely transported to the substantia nigra [122, 

123], as is labelled CDNF [121]. 

 

3. Dopaminergic neurotrophic factors in clinical trials  

3.1 GDNF in clinical trials 

The potent and reproducible effects of GDNF in animal models led to the initiation of clinical 

trials in PD patients. The clinical application of NTF is hampered by the fact that these 

proteins do not cross the blood-brain barrier, and are rapidly degraded in vivo. The need for 

direct intracerebral delivery of NTF may increase the level of complications in patients. The 
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first clinical trial was a randomised controlled trial involving 50 patients, and used 

intraventricular delivery of recombinant human GDNF (r-metHuGDNF, liatermin, 

manufactured by Amgen) or placebo [124]. This study reported no significant benefits of 

GDNF treatment over the placebo, probably because GDNF did not reach the striatum in 

sufficient amounts. In addition, troublesome side-effects were observed, including pain, 

depression, appetite loss and l’Hermitte’s sign [124, 125], and these may have been due to the 

intraventricular delivery (Table 2). 

 

Since intraventricular delivery did not achieve GDNF delivery to the striatum, subsequent 

trials used direct administration to brain parenchyma using a catheter system. Promising 

results emerged from two open-label trials, which used intraputaminal infusion of 

recombinant GDNF [126-129]. These trials both reported improvements in the patients’ motor 

symptoms and in activities of daily living, without any serious side-effects. Gill and 

colleagues demonstrated that direct uni- or bilateral intraputaminal infusion of GDNF had 

long-lasting benefits in five patients suffering from advanced PD. After 24 months of 

treatment, all patients reported complete absence of akinesia and a significant reduction in the 

duration of dyskinetic episodes. Motor dysfunction was significantly reduced in both on- and 

off-medication phases compared to pre-treatment levels [128]. The second study, by Slevin 

and co-workers, used unilateral intraputamenal infusion of escalating doses of GDNF in ten 

patients with advanced PD and reported similar results, showing bilateral motor 

improvements after 24 weeks [129]. In both studies, the only consistent adverse effect was a 

mild l’Hermitte’s sign. Improvements in dopamine storage were detected in the regions 

surrounding the catheter which was used for infusion of GDNF [126, 127].  
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These two studies demonstrated the feasibility and sustainability of GDNF treatment by 

intraputaminal infusion. However, a subsequent randomised placebo-controlled trial, 

involving 34 patients (17 received GDNF and 17 received placebo), reported no significant 

motor improvements in PD patients [124, 130]. After six months of bilateral intraputaminal 

infusion of recombinant GDNF, there were no significant differences between the motor 

scores of the unified Parkinson’s disease rating scale (UPDRS) in patients that had received 

GDNF and in those that had received a placebo. Furthermore, safety concerns were raised, 

since approximately 10% of the GDNF-treated patients developed antibodies against the 

peptide, which could potentially counteract the therapeutic benefits [131]. A similar 

proportion of patients who had participated in the two open-label trials also developed 

antibodies to GDNF [129, 130]. PET studies showed a significant increase in 18F-dopa intake 

in the GDNF-infused patients compared to the placebo group, demonstrating a functional 

effect of GDNF infusion, although this did not translate into significant motor improvements 

[130]. The discrepancies between the open–label and placebo-controlled trials may have been 

due to variations in patient selection, as well as to a placebo effect. Optimisation of surgical 

methodologies, catheter design and positioning, drug dosage and diffusion, and patient 

selection will be necessary for any future GDNF clinical studies. The development of 

inexplicable cerebellar pathology in a primate model of PD after administration of a high dose 

of GDNF raised a further safety issue [132]. This resulted in a controversial decision by 

Amgen to cease all clinical trials using GDNF (see [133-135]). A recent study paved the way 

for future clinical trials by investigating GDNF distribution in the non-human primate brain 

following AAV2-mediated intraputaminal delivery [136]. It appears to be generally accepted 

that GDNF therapy for PD requires further development in pre-clinical trials and it is probable 

that alternative methodologies, such as viral vector-mediated expression, may prove to be 

more effective for achieving long-term and targeted GDNF delivery (see [137]).  
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3.2 Neurturin in clinical trials 

Based on the promising results found in animal studies using AAV2-mediated gene transfer 

of neurturin (CERE-120), an open-label phase 1 clinical trial was initiated in PD patients by 

the company Ceregene [138]. Twelve patients, each suffering from advanced PD, received 

bilateral intraputaminal injections of AAV2-neurturin (at one of two doses) and were 

followed for twelve months. Results showed that neurturin-treated patients displayed 

reductions in their off-medication UPDRS score, decreases in the time spent in the ‘off’ 

period and reductions in dyskinesias, without any adverse side-effects [138]. However, a 

subsequent double-blind phase 2 trial, which involved 58 PD patients, was reported to have 

failed. In this trial, intraputaminal AAV2-neurturin did not have superior effects on motor 

function than sham surgery, when assessed after twelve months, and only modest benefits 

were recorded after eighteen months. Serious adverse side-effects were reported in about a 

third of the neurturin-treated patients [139]. Ceregene began to recruit PD patients for a new 

double-blind trial using AAV2-neurturin in September 2010 

(www.ceregene.com/press_101910.asp). This multi-centre phase 2 trial will involve about 52 

patients, half of whom will receive intraputaminal AAV2-neurturin and half of whom will 

receive sham surgery. It is hoped that a new dosing regimen, designed to maximise the 

delivery of the neurturin gene throughout the degenerating nigrostriatal system, will be the 

key to a promising outcome from this trial. This hypothesis is based on a post mortem 

analysis on the brains of some of the patients who had received AAV2-neurturin (and who 

had died of unrelated causes), which found that neurturin had been retrogradely transported 

from the intraputaminal injection site to the substantia nigra [140]. The company 

subsequently administered AAV2-neurturin to both the substantia nigra and the striatum of 

http://www.ceregene.com/press_101910.asp
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six PD patients and, based on analysis of the safety data from these six patients, are now 

recruiting patients for the second phase of this trial.  

 

4. Conclusion 

Despite the recent disappointing results in clinical trials with GDNF and neurturin, there 

remains an optimism that NTF will prove to be useful in PD therapy (see [7]). Optimisation of 

delivery methods is needed and vital information is being gleaned in this respect from studies 

in animal models, such as grafting of encapsulated cells expressing NTF and viral-mediated 

NTF delivery. It is likely that NTF will be most applicable in the early stages of the disease, 

to provide neuroprotection to the remaining nigrostriatal dopaminergic neurones before 

extensive neuronal loss has occurred. For future clinical trials, optimisation of surgical and 

infusion protocols, as well as careful patient selection, will be critical to advance this 

promising therapeutic approach. Animal studies have provided signs that NTF therapy may be 

more applicable in young patients than in old, and also that patients with earlier, less severe, 

disease stages may be more responsive to this type of therapy than those at advanced disease 

stages.  

 

Researchers are currently investigating the use of stem or progenitor cells as a possible 

alternative to freshly-dissected embryonic midbrain for transplantation in PD patients. The 

use of such cells would alleviate some of the ethical and practical concerns associated with 

the use of fresh embryonic tissue. It is likely that NTF could be used to improve stem cell 

therapy for PD, both to enhance the survival of transplanted dopaminergic precursor cells, and 

to induce a dopaminergic cell fate in unspecified progenitors. 
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In conclusion, much research still remains to be conducted in the area of NTF therapy for PD. 

In the case of those factors which have been tested in clinical trials (GDNF and neurturin) 

optimisation of the surgical delivery procedures and patient selection will be critical to the 

ongoing development of this therapeutic approach. Exploration of novel delivery 

mechanisms, such as viral vector-mediated delivery and cell encapsulation, which has been 

tested in animal models of PD to deliver GDNF, will be critical. More information is needed 

about factors such as GDF5 and CDNF, which have shown promise in preclinical models of 

PD. Knowledge of the receptors and signal transduction pathways that are involved in the 

neurotrophic and protective effects of these factors will aid the future development of safe and 

targeted therapeutics. 
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Table 1: Effects of GDNF on dopaminergic neurones in vitro 
 
Effect Reference 

Increases Tyrosine Hydroxylase expression [8] 

Promotes survival of mesencephalic cultures [6, 9] 

Promotes morphological differentiation [10] 

Protects from MPP+ neurotoxicity [12, 13] 

Protects from 6-OHDA neurotoxicity [11] 

Decreases apoptosis [14, 15, 16] 

Protects from LPS neurotoxicity [17] 
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Table 2: Neurotrophic factors in clinical trials 
 
Neurotrophic 

factor 
rh-methionyl-

GDNF 
rh-methionyl-

GDNF 
rh-methionyl-

GDNF 
rh-methionyl-

GDNF 
AAV2-
NRTN 

AAV2-
NRTN 

Trial type MC,R,DB,PC Open-label Open-label MC,R,DB,PC Open-label MC, DB, 
SSC 

Delivery 
Site ICV IPu IPu IPu IPu IPu 

No. Patients 50 5 10 33 12 58 
Age / 

Duration of 
disease 
(years) 

58±8 / 11±6 54.2±6 / 
19±9.8 

57.9±9.3 / 
8.7±3.6 

56±7.2 / 
9.7±3.9 57±8 / 11±3 60±7 / 10±3 

Benefits No Yes Yes No Yes No 

Side-effects 
LS, 

Nausea, 
Anorexia 

LS LS, 
Headaches 

LS , 
Anti-GDNF 
antibodies 

Headaches Headaches 

Reference [124] [126, 128] [129] [130] [138] [139] 
 
Abbreviations: rh recombinant human, MC Multi-centre, R Randomized, DB Double-blind, PC Placebo-
controlled, SSC Sham surgery-controlled, ICV Intracerebroventricular, IPu Intraputaminal, LS L’Hermitte’s sign 
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