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Multi-scale Cortical Keypoint Representation
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Abstract. Keypoints (junctions) provide important information for
focus-of-attention (FoA) and object categorization/recognition. In this
paper we analyze the multi-scale keypoint representation, obtained by
applying a linear and quasi-continuous scaling to an optimized model of
cortical end-stopped cells, in order to study its importance and possibili-
ties for developing a visual, cortical architecture. We show that keypoints,
especially those which are stable over larger scale intervals, can provide
a hierarchically structured saliency map for FoA and object recognition.
In addition, the application of non-classical receptive field inhibition to
keypoint detection allows to distinguish contour keypoints from texture
(surface) keypoints.

1 Introduction

Models of cells in the visual cortex, i.e. simple, complex and end-stopped, have
been developed, e.g. [4]. In addition, several inhibition models [3, 11], keypoint
detection [4, 13, 15] and line/edge detection schemes [3, 13, 14], including dis-
parity models [2, 9, 12], have become available. On the basis of these models
and processing schemes, it is now possible to create a cortical architecture for
figure-background separation [5, 6] and visual attention or focus-of-attention
(FoA), bottom-up or top-down [1, 10], and even for object categorization and
recognition.

In this paper we will focus on keypoints, for which Heitger et al. [4] developed
a single-scale basis model of single and double end-stopped cells. Wiirtz and
Lourens [15] presented a multi-scale approach: spatial stabilization is obtained
by averaging keypoint positions over a few neighboring micro-scales. We [13] also
applied multi-scale stabilization, but focused on integrating line/edge, keypoint
and disparity detection, including the classification of keypoint structure (e.g.
T, L, K junctions). Although the approaches in [13, 15] were multi-scale, the
aim was stabilization at one (fine) scale. Here we will go into a truly multi-
scale analysis: we will analyze the multi-scale keypoint representation, from very
fine to very coarse scales, in order to study its importance and possibilities for
developing a cortical architecture, with an emphasis on FoA. In addition, we
will include a new aspect, i.e. the application of non-classical receptive field
(NCRF) inhibition [3] to keypoint detection, in order to distinguish between
object structure and surface textures.
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2 End-Stopped Models and NCRF Inhibition

Gabor quadrature filters provide a model of cortical simple cells [8]. In the spatial
domain (x,y) they consist of a real cosine and an imaginary sine, both with a
Gaussian envelope. A receptive field (RF) is denoted by (see e.g. [3]):

j2 + ,_YgQ

z
552 > : cos(27rx + ),

Gx0,0,0(T, ) = exp (—

T =xcosf+ysinb;y =ycost — xsinb,

where the aspect ratio v = 0.5 and o determines the size of the RF. The spa-
tial frequency is 1/A, A being the wavelength. For the bandwidth o/ we use
0.56, which yields a half-response width of one octave. The angle 6 determines
the orientation (we use 8 orientations), and ¢ the symmetry (0 or 7/2). We
apply a linear scaling between fii, and fiax with, at the moment, hundreds of
contiguous scales.

The responses of even and odd simple cells, which correspond to the real and
imaginary parts of a Gabor filter, are obtained by the convolution of the input
image with the RF, and are denoted by Rfi (z,y) and Rgi(ac7 y), s being the scale
and ¢ the orientation (0; = im/(Ng — 1)) and Ny the number of orientations. In
order to simplify the notation, and because the same processing is done at all
scales, we drop the subscript s. The responses of complex cells are modelled by
the modulus

Ci(w,y) = [{RF (z,9)}* + {RY (x,9)}*]"/%.

There are two types of end-stopped cells [4, 15], i.e. single (S) and double (D). If
[]T denotes the suppression of negative values, and C; = cos®; and S; = sinb;,
then

Si(z,y) = [Ci(x +dS;y — dCi) = Ci(w — dSi,y +dC;)] " ;
1 1 *
The distance d is scaled linearly with the filter scale s, i.e. d = 0.6s. All end-
stopped responses along straight lines and edges need to be suppressed, for which
we use tangential (T) and radial (R) inhibition:

2Np—1
I(2,y) = > [=Cimod Ny (%,9) + Cimoa Ny (& + dCiyy + dSi)] "
i=0
2Np—1 d d +
I (2,y) = ; [Ci mod Ng (T, Y) =4+ Cli4 Ny /2) mod N, (T + §Ci’ Y+ 532') )

where (i + Ng/2) mod Ny L ¢ mod Ny.

The model of non-classical receptive field (NCRF) inhibition is explained in
more detail in [3]. We will use two types: (a) anisotropic, in which only responses
obtained for the same preferred RF orientation contribute to the suppression,



Multi-scale Cortical Keypoint Representation 257

and (b) isotropic, in which all responses over all orientations equally contribute
to the suppression.

The anisotropic NCRF (A-NCRF) model is computed by an inhibition term
tf,m for each orientation i, as a convolution of the complex cell response C; with

the weighting function w,, with we(z,y) = [DoGe(z,y)]T /II[DoGs]T 1, || - |1
being the L norm, and

1 2?2 + 92 1 z? +y?
27 (40)? exp(= 2(40)? )- 2mo? exp(= 202 )

DoG,(z,y) =

A

s,0,1

The operator b
atﬁgji]"‘, with o controlling the strength of the inhibition.
The isotropic NCRF (I-NCRF) model is obtained by computing the inhi-

bition term ¢! _ which does not dependent on orientation i. For this we con-

s,0

corresponds to the inhibition of Cs;, i.e. b?,a,i = [Cs; —

struct the maximum response map of the complex cells C, = max{Cs;}, with
1 = 0,...Ng — 1. The isotropic inhibition term tg,(, is computed as a convolu-
tion of the maximum response map C, with the weighting function w,, and the

isotropic operator is b! , = [Cs — at] ]*.

3 Keypoint Detection with NCRF Inhibition

NCRF inhibition permits to suppress keypoints which are due to texture, i.e.
textured parts of an object surface. We experimented with the two types of
NCREF inhibition introduced above, but here we only present the best results
which were obtained by I-NCRF at the finest scale.

All responses of the end-stopped cells S(x, y) = ngjofl Si(z,y) and D(z,y) =
ngzeofl D;(z,y) are inhibited in relation to the complex cells (by bf ), i.e. we
use a = 1, and obtain the responses S and D of S and D that are above a small
threshold of bg,a. Then we apply I = I” + I® for obtaining the keypoint maps
KS(x,y) = S(z,y) — gI(z,y) and KP(z,y) = D(z,y) — gI(x,y), with g ~ 1.0,
and then the final keypoint map K (z,y) = max{K?°(z,y), KP(x,y)}.

Figure 1 presents, from left to right, input images and keypoints detected
(single scale), before and after I-ZNCRF inhibition. The top image shows part of
a building in Estoril (“Castle”). The middle images show two leaves, and the
bottom one is a traffic sign (also showing, to the right, vertex classification with
micro-scale stability, see [13]). Most important keypoints have been detected,
and after inhibition contour-related ones remain. Almost all texture keypoints
have been suppressed, although some remain (Castle image) because of strong
local contrast and the difficulty of selecting a good threshold value without
eliminating important contour keypoints (see Discussion).

4 Multi-scale Keypoint Representation

Here we focus on the multi-scale representation. Although NCRF inhibition can
be applied at each scale, we will not do this for two reasons: (a) we want to
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Fig. 1. Keypoints without and with NCRF' inhibition; see text.

study keypoint behavior in scale space for applications like FoA, and (b) in
many cases a coarser scale, i.e. increased RF size, will automatically eliminate
detail (texture) keypoints. In the multi-scale case keypoints are detected the
same way as done above, but now by using K2 (z,y) = Ss(z,y) — gls(z,y) and
K2(2,y) = Ds(z,y) — gLs(z,y).

For analyzing keypoint stability we create an almost continuous, linear, scale
space. In the case of Fig. 2, which shows the (projected) trajectories of detected
keypoints over scale in the case of a square and a star, we applied 288 scales
with 4 < A < 40. Figure 2 illustrates the general behavior: at small scales
contour keypoints are detected, at coarser scales their trajectories converge, and
at very coarse scales there is only one keypoint left near the center of the object.
However, it also can be seen (star object) that there are scale intervals where
keypoints are unstable, even scales at which keypoints disappear and other scales
at which they appear. (Dis)appearing keypoints are due to the size of the RFs
in relation to the structure of the objects, in analogy with Gaussian scale space
[7]. Unstable keypoints can be eliminated by (a) requiring stability over a few
neighboring micro-scales [13], i.e. keep keypoints that do not change position over
5 scales, the center one and two above and two below (Fig. 2e), or (b) requiring
stability over at least N5 neighboring scales (Fig. 2f and 2g with N, = 10 and
40, respectively).

The leftmost five columns in Fig. 3 illustrate that similar results are obtained
after blurring, adding noise, rotation and scaling of an object (a leaf), whereas
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Fig. 2. Keypoint scale space, with finest scale at the bottom. From left to right: (a)
square; (b) projected 3D keypoint trajectories of square; (c) and (d) star and projected

trajectories; (e) micro-scale stability; (f) and (g) stability over at least 10 and 40 scales
respectively.

the last two columns show results for other leave shapes. In all cases, important
contour keypoints remain at medium scales and texture keypoints disappear,
without applying NCRF inhibition.

With respect to object categorization/recognition, a coarse-to-fine scale strat-
egy appears to be feasible. Figure 4 shows an image with four objects, i.e. two
leaves, a star and a van from a traffic sign (see [13]). At very coarse scales the
keypoints indicate centers of objects. In the case of the elongated van, an even
coarser scale is required. Going from coarse to fine scales, keypoints will indi-
cate more and more detail, until the finest scale at which essential landmarks on
contours remain. In reality, the keypoint information shown will be completed
by line/edge and disparity (3D) information.

Figure 5 shows that a coarse-to-fine strategy is also feasible in the case of real
scenes, i.e. the tower of the Castle image. At coarse scales keypoints indicate the
shape of the tower; at finer scales appear structures like the battlements, whereas
the corners of the battlements appear at the finest scales. Here we did not apply
NCRF inhibition to all scales in order to show that the multi-scale approach
selectively “sieves” according to structure detail and contrast.

Another element of an object detection scheme is focus-of-attention by means
of a saliency map, i.e. the possibility to inspect, serially or in parallel, the most
important parts of objects or scenes. If we assume that retinotopic projection is



260 Jodo Rodrigues and Hans du Buf

by &

Fig. 3. From left to right: ideal image, blurred, with added noise, rotated and scaled
leaf, plus two other leaves. From fine (2nd line) to medium scale (bottom line).

Fig. 4. Object detection from coarse (right) to fine (left) scales (4 < A < 50).

maintained throughout the visual cortex, the activity of keypoint cells at position
(z,y) can be easily summed over scale s. At the positions where keypoints are
stable over many scales, this summation map, which could replace or contribute
to a saliency map [10], will show distinct peaks at centers of objects, impor-
tant structures and contour landmarks. The height of the peaks can provide
information about the relative importance. This is shown in Fig. 6. In addition,
this summation map, with some simple processing of the projected trajecto-
ries of unstable keypoints, like lowpass filtering and non-maximum suppression,
might solve the segmentation problem: the object center is linked to important
structures, and these are linked to contour landmarks. Such a data stream is
data-driven and bottom-up, and could be combined with top-down processing
from inferior temporal cortex (IT) in order to actively probe the presence of ob-
jects in the visual field [1]. In addition, the summation map with links between
the peaks might be available at higher cortical levels, where serial processing
occurs for e.g. visual search.
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Fig. 5. Keypoint scale-space without NCRF inhibition. From left to right and top to
bottom increasing scale (4 < X\ < 50).

Fig. 6. 3D visualization of the keypoint summation map of the star.

5 Conclusions

The primary visual cortex contains low-level processing “engines” for retinotopic
feature extraction. These include multi-scale lines and edges, bars and gratings,
disparity and keypoints. Mainly being data-driven, these engines feed higher
processing levels, for example for translation, rotation and scale invariant object
representations, visual attention and search, until object recognition.

To the best of our knowledge, this is the first study to analyze the impor-
tance of multi-scale keypoint representation for e.g. focus-of-attention and object
recognition. We showed that the trajectories of keypoints in scale space may be
quite complex, but also that keypoints are stable at important structures. In
general, at coarse scales keypoints can be expected at centers of objects, at finer
scales at important structures, until they cover finest details. We also showed
that retinotopic summation of “keypoint-cell activity” over scale provides very
useful information for a saliency map (FoA), and even could solve the segmen-
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tation problem by bounding objects and linking structures within objects. It
seems that the multi-scale keypoint representation, obtained by a linear scaling
of cortical end-stopped operators, might be the most important component in
building a complete cortical architecture. However, much more information is
available through line and edge cells, bar and grating cells, and disparity-tuned
cells. In addition, data-driven and bottom-up signals must be used together with
top-down or feedback signals coming from higher processing levels.

Finally, it should be mentioned that the hundreds of quasi-continuous scales
used here, which is computationally very expensive, can be seen as an abstrac-
tion of cortical reality: in reality, there may be an octave or half-octave RF
organization, with at each level adaptivity (plasticity) in order to stabilize de-
tection results. Such a scheme, and its application to e.g. FoA, has not yet been
explored.
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