
A

Analytical Modeling is Enough for High Performance BLIS

TZE MENG LOW, The University of Texas at Austin

FRANCISCO D. IGUAL, Universidad Complutense de Madrid

TYLER M. SMITH, The University of Texas at Austin

ENRIQUE S. QUINTANA-ORTI, Universidad Jaume I

We show how the BLAS-like Library Instantiation Software (BLIS) framework, which provides a more de-

tailed layering of the GotoBLAS (now maintained as OpenBLAS) implementation, allows one to analytically
determine optimal tuning parameters for high-end instantiations of the matrix-matrix multiplication. This

is of both practical and scientific importance, as it greatly reduces the development effort required for the
implementation of the level-3 BLAS while also advancing our understanding of how hierarchically layered

memories interact with high performance software. This allows the community to move on from valuable

engineering solutions (empirically autotuning) to scientific understanding (analytical insight).

Categories and Subject Descriptors: G.4 [Mathematical Software]: Efficiency

General Terms: Algorithms, Performance

Additional Key Words and Phrases: linear algebra, libraries, high-performance, matrix multiplication, an-
alytical modeling

ACM Reference Format:

ACM V, N, Article A (January YYYY), 19 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

The field of dense linear algebra (DLA) was among the first to realize, understand, and pro-
mote that standardizing (de facto) an interface to fundamental primitives supports portable
high performance. For almost four decades, those primitives have been the Basic Linear Al-
gebra Subprograms (BLAS) [Lawson et al. 1979; Dongarra et al. 1988; Dongarra et al. 1990].
The expectation was and still remains that some expert will provide to the community a high
performance implementation of the BLAS every time a new architecture reaches the market.
For this purpose, many hardware vendors currently enroll a numerical libraries group and
distribute well-maintained libraries (e.g., Intel’s MKL [Intel 2015], AMD’s ACML [AMD
2015], and IBM’s ESSL [IBM 2015] libraries), while over the years we have enjoyed a num-
ber of alternative Open Source solutions (e.g., GotoBLAS [Goto and van de Geijn 2008b;
2008a], OpenBLAS [OpenBLAS 2015], ATLAS [Whaley and Dongarra 1998]). Nevertheless,
these solutions all require considerable effort in time and labor for each supported target
architecture.

In order to reduce the exertion of developing high performance implementations, ATLAS
and its predecessor PHiPAC [Bilmes et al. 1997b] introduced autotuning to the field of
high performance computing. The fundamental rationale behind these two libraries is that
optimizing is too difficult and time-consuming for a human expert and that autogeneration
in combination with autotuning is the answer.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0000/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61493164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A:2 Tze M. Low et al.

The work in [Yotov et al. 2005] shows that the ATLAS approach to optimizing the general
matrix-matrix product (gemm) can be, by and large, analytically modelled. Thus, it reveals
that autotuning is unnecessary for the operation that has been tauted by the autotuning
community as the example of the success of autotuning. The problem with that work ([Yotov
et al. 2005]) is that the ATLAS approach to optimizing gemm had been previously shown
to be suboptimal, first in theory [Gunnels et al. 2001] and then in practice [Goto and van de
Geijn 2008b]. Furthermore, ATLAS leverages an inner kernel optimized by a human expert,
which still involves a substantial manual encoding. Precisely, the presence of this black-
box kernel makes analytical modeling problematic for ATLAS, since some of the tuning
parameters are hidden inside.

GotoBLAS (now supported as OpenBLAS) also builds on a substantial inner kernel that
is implemented by a human, turning the analysis equally difficult without a complete un-
derstanding of the complex details embedded into the inner kernel. (Until recently, no paper
that detailed the intricacies of the GotoBLAS inner kernel existed.)

BLIS (BLAS-like Library Instantiation Software) [Van Zee and van de Geijn 2014] is a new
framework for instantiating the BLAS. A key benefit of BLIS is that it is a productivity mul-
tiplier, as the framework allows developers to rapidly unfold new high-performance imple-
mentations of BLAS and BLAS-like operations on current and future architectures [Van Zee
et al. 2014]. From the implementation point of view, BLIS modularizes the approach under-
lying GotoBLAS2 (now adopted also by many other implementations) to isolate a micro-
kernel that performs gemm upon which all the level-3 BLAS functionality can be built.
Thus, for a given architecture, the programmer only needs to develop an efficient micro-
kernel for BLIS, and adjust a few key parameter values1 that optimize the loops around the
micro-kernel, to automatically instantiate all the level-3 BLAS. Importantly, BLIS features
a layering that naturally exposes the parameters that need to be tuned.

While BLIS simplifies the implementation of BLAS(-like) operations, a critical step to
optimize BLIS for a target architecture is for the developer to identify the specific parameter
values for both the micro-kernel and the loops around it. Conventional wisdom would dictate
that empirical search must be applied. In this paper, we adopt an alternative model-driven
approach to analytically identify the optimal parameter values for BLIS. In particular, we
apply an analysis of the algorithm and architecture, similar to that performed in [Yotov
et al. 2005], to determine the data usage pattern of the algorithm ingrained within the
BLIS framework, and to build an analytical model based on hardware features in modern
processor architectures.

The specific contributions of this work include:

— An analysis of the best known algorithm. We address the algorithm underlying
BLIS (and therefore GotoBLAS and OpenBLAS) instead of the algorithm in ATLAS.
This is relevant because it has been shown that, on most architectures, a hand-coded
BLIS/GotoBLAS/OpenBLAS implementation (almost) always yields higher performance
than an implementation automatically generated via ATLAS [Van Zee et al. 2014], even
if ATLAS starts with a hand-coded inner kernel.

— A more modern model. We accommodate a processor model that is more represen-
tative of modern architectures than that adopted in [Yotov et al. 2005]. Concretely, our
model includes hardware features such as a vector register file and a memory hierarchy
with multiple levels of set-associative data caches. This considerably improves upon the
analytical model in [Yotov et al. 2005] which considered one level only of fully associative
cache and ignored vector instructions.

1The micro-kernel itself is characterized by three additional parameters, which the programmer has to
consider when implementing it.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:3

— A more comprehensive model. Our analytical model is more comprehensive in that
it includes the parameter values that also characterize the micro-kernel. These are values
that a developer would otherwise have to determine empirically. This is important because
the best implementations provided by ATLAS often involve loops around a hand-coded
(black-box) kernel. Since the internals of the hand-coded kernel are not known, the model
in [Yotov et al. 2005] was not able to identify the globally optimal parameter values.

— Competitive with expert-tuned implementations. Unlike previous work compar-
ing the performance attained against auto-generated implementations in C obtained by
ATLAS [Yotov et al. 2005; Kelefouras et al. 2014], which are typically not competitive
with those that use hand-coded inner kernels (so-called “ATLAS unleashed” in [Yotov
et al. 2005]), this paper shows that analytically-obtained parameter values can yield per-
formance that is competitive with manually-tuned implementations that achieve among
best-in-class performance. Hence, this paper provides an answer to the question posed
in [Yotov et al. 2005] —i.e. whether empirical search is really necessary in this context—,
by demonstrating that analytical modeling suffices for high performance BLIS implemen-
tations which then shows that careful layering combined with analytical modeling is com-
petitive with GotoBLAS, OpenBLAS, and vendor BLAS (since other papers show BLIS
to be competitive with all these implementations).

In this paper, we restrict ourselves to the case of a single-threaded implementation of gemm
in double precision. How to determine optimal parameter values for a multithreaded im-
plementation is orthogonal to this paper, and is at least partially answered in [Smith et al.
2014].

2. APPROACHES TO IDENTIFY THE OPTIMAL PARAMETER VALUES FOR GEMM

It has been argued that empirical search is the only way to obtain highly optimized im-
plementations for DLA operations [Demmel et al. 2005; Bilmes et al. 1997a; Whaley and
Dongarra 1998], and an increasing number of recent projects (Build-To-Order BLAS [Belter
et al. 2010] and AuGEM [Wang et al. 2013]) now adopt empirical search to identify optimal
parameter values for DLA algorithms.

The problem with empirical-based approaches is that they unleash a walloping search
space, due to the combination of a large number of possible values for a substantial set of
parameters. Therefore, even with the help of heuristics, generating, executing, and timing
all variants of the program, with their unique combinations of parameter values, requires a
considerable amount of time (sometimes measured in days). In addition, empirical search has
to be performed on the target machine architecture. This implies that a high performance
implementation of BLAS for a new machine architecture cannot be developed until the
programmer is granted access to the target machine, and then it still requires a significant
amount of time. This is especially critical on state-of-the-art embedded architectures, where
cross-compiling processes are necessary, greatly complicating or even invalidating in practice
the application of empirical-based approaches.

A refinement of the empirical approach is iterative optimization [Knijnenburg et al. 2002;
Kisuki et al. 2000; 2000]. As the name suggests, instead of a single run that explores the
entire search space, multiple optimization passes are executed. There exist different tech-
niques to perform iterative optimization, but they all share the following similarities: An
initial sampling run is performed while a monitoring tool captures specific performance
information such as the number of cache misses. Using the captured information and the
application of some heuristics, the search space is trimmed/refined, and new program vari-
ants (with new sets of parameter values) are generated for further exploration in subsequent
passes.

Although iterative optimization represents an improvement over empirical search, the in-
formation obtained, e.g. from the performance counters, may not be sufficient to limit the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Tze M. Low et al.

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

k
c

mc

TLB misses

32

64

96

128

160

192

224

256

288

320

352

384

416

448

480

512

544

576

608

640

64 128 192 256 320 384 448 512 576 640

2e+06

4e+06

6e+06

8e+06

1e+07

k
c

mc

L2 misses

32

64

96

128

160

192

224

256

288

320

352

384

416

448

480

512

544

576

608

640

64 128 192 256 320 384 448 512 576 640

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

k
c

mc

L1 misses

32

64

96

128

160

192

224

256

288

320

352

384

416

448

480

512

544

576

608

640

64 128 192 256 320 384 448 512 576 640

8

10

12

14

16

18

20

k
c

mc

GFLOPS

32

64

96

128

160

192

224

256

288

320

352

384

416

448

480

512

544

576

608

640

64 128 192 256 320 384 448 512 576 640

Fig. 1: Performance metrics when empirically testing different parameter values. Clockwise
from top-left: GFLOPS, and misses in the L1, TLB and L2 caches. A heuristic for reducing
the search space is to find the parameter values that minimize the cache misses and TLB
misses. From the above data, this still leaves a relatively large space that needs to be
searched.

search space. Consider the graphs in Figure 1, which report the GFLOPS (i.e., billions of
floating-point arithmetic operations, or flops, per second), and L1, L2 and TLB cache misses
observed for the execution of a tuned implementation of dgemm from BLIS on a single core
of an Intel Xeon E3-1220 processor (3.1 GHz), while varying two of the optimization pa-
rameters only (mc and kc, to be introduced later). The top-left plot illustrates the challenge
for empirical search: generate and evaluate all different combinations of an exponentially
growing search space. (BLIS, e.g., needs to optimize 5–6 different parameters, which is a re-
duced quantity when compared with other solutions including ATLAS.) In contrast to this,
iterative optimization runs a coarse-grained grid of experiments that can help to identify
contour lines which roughly delimit the area which simultaneously minimizes the amount
of cache misses for all three caches (L1, L2, and TLB). However, even armed with that
information, we can observe from the three cache miss plots that such region still comprises
an enormous number of cases that nonetheless have to be individually evaluated to finally
reveal the optimal combination for the architecture (mc=96 and kc=256 for this particular
case).

A third approach to identify the optimal parameter values is to use analytical models as
advocated by some in the compiler community. Concretely, simple analytical models have
been previously developed in the compiler domain in order to determine optimizing parame-
ter values for tile sizes and unrolling factors [Bacon et al. 1994; Yotov et al. 2005; Kelefouras
et al. 2014]. These models are based on the data access pattern and exploit a fair knowledge

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:5

of the hardware features commonly found in modern processor architectures. Previous work
has shown that parameter values derived analytically can deliver performance rates that
are similar to those attained using values determined through empirical search [Yotov et al.
2005]. More importantly, the time it takes to analytically identify the optimal parameter
combination is often a fraction of that required by empirical search. Let us distinguish this
from autotuning by calling it auto-fine-tuning. We adopt this in our quest for the parameter
values that optimize the algorithm in BLIS, with the aim to make even auto-fine-tuning
unnecessary for many architectures.

3. EXPERT IMPLEMENTATION OF GEMM

The gemm algorithm embedded within the BLIS framework is described in [Van Zee and
van de Geijn 2014], and the same approach is instantiated in BLAS libraries optimized
by DLA experts such as GotoBLAS [Goto and van de Geijn 2008b; 2008a] and its succes-
sor, OpenBLAS [OpenBLAS 2015]. Importantly, BLIS exposes three loops within the inner
kernel used by the GotoBLAS and OpenBLAS, which then facilitates the analytical deter-
mination of the parameters. For completeness, we provide a brief overview of the algorithm
next. In addition, we identify the data usage pattern and highlight the parameters that
characterize the algorithm.

3.1. An expert’s implementation of gemm

Without loss of generality, we consider the special case of the matrix-matrix multiplication,
C := AB + C, where the sizes of A, B, C are m× k, k× n, and m× n, respectively. In the
following elaboration, we will consider different partitionings of the m, n and k-dimensions
of the problem. For simplicity, when considering a (vertical or horizontal) partitioning of
one of the problem dimensions, say q, into panels/blocks of size (length or width) r, we will
assume that q is an integer multiple of r.

BLIS implements gemm as three nested loops around a macro-kernel2, plus two packing
routines. The macro-kernel is implemented in terms of two additional loops around a micro-
kernel. The micro-kernel is a loop around a rank-1 (i.e., outer product) update, and it is
typically implemented in assembly or with vector intrinsics. In BLIS, the remaining five
loops are implemented in C.

Pseudo-code for the gemm algorithm is given in Figure 2. The outermost loop (Loop 1,
indexed in the figure by jc) traverses the n-dimension of the problem, partitioning both
C and B into column panels of width nc. The second loop (indexed by pc) processes the
k-dimension, partitioning A into column panels of width kc and the current panel of B into
blocks of length kc. The third loop (indexed by ic) iterates over the m-dimension, yielding
partitionings of the current column panels of C and A into blocks of length mc. The following
loops comprise the macro-kernel. Let us define Cc = C(ic : ic +mc−1, jc : jc +nc−1). Loop
4 (indexed by jr) traverses the n-dimension, partitioning Cc and the packed block Bc into
micro-panels of width nr. Loop 5 (indexed by ir) then progresses along the m-dimension,
partitioning the current micro-panel of Cc into micro-tiles of length mr and the packed
block Ac into micro-panels of the same length. The innermost loop (Loop 6, indexed by pr),
inside the micro-kernel, computes the product of a micro-panel of Ac and micro-panel of
Bc as a sequence of kc rank-1 updates, accumulating the result to a micro-tile of Cc, which
can be described mathematically as

Cc(ir : ir+mr−1, jr : jr+nr−1) += Ac(ir : ir+mr−1, 0 : kc−1)·Bc(0 : kc−1, jr : jr+nr−1).

At this point it is worth emphasizing the difference between Cc and Ac, Bc. While the
former is just a notation artifact, introduced to ease the presentation of the algorithm, the
latter two correspond to actual buffers that are involved in data copies.

2The macro-kernel is also known as the inner kernel in GotoBLAS.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Tze M. Low et al.

ic

jc

nc

mc

ic

kc

mc

cp jc

nc

kc

cp BC A

Loop 1 for jc = 0, . . . , n− 1 in steps of nc

Loop 2 for pc = 0, . . . , k − 1 in steps of kc
B(pc : pc + kc − 1, jc : jc + nc − 1) → Bc // Pack into Bc

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc

A(ic : ic + mc − 1, pc : pc + kc − 1) → Ac // Pack into Ac

Loop 4 for jr = 0, . . . , nc − 1 in steps of nr // Macro-kernel
Loop 5 for ir = 0, . . . ,mc − 1 in steps of mr

Loop 6 for pr = 0, . . . , kc − 1 in steps of 1 // Micro-kernel
Cc(ir : ir + mr − 1, jr : jr + nr − 1)

+= Ac(ir : ir + mr − 1, pr)
· Bc(pr, jr : jr + nr − 1)

endfor
endfor

endfor
endfor

endfor
endfor

Fig. 2: High performance implementation of gemm by an expert.

A Bc c

rm

nr

Fig. 3: Packing in the BLIS and GotoBLAS implementations of gemm.

3.2. The importance of packing

It is generally known that accessing consecutive memory locations (also known as in-stride
access) is usually faster than non-consecutive memory accesses. By packing elements of A in
Loop 3 and B in Loop 2 in a special manner into Ac and Bc, respectively, we can ensure that
the elements of these two matrices will be read with in-stride access inside the micro-kernel.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:7

Loop Reused data Size of reused data Reuse factor
6 Micro-tile, Cr mr × nr kc
5 Micro-panel, Br kc × nr mc/mr

4 Packed block Ac mc × kc nc/nr

3 Packed block Bc kc × nc m/mc

2 Column panel of C m× nc k/kc
1 Matrix A m× k n/nc

Table I: Analysis of data reuse performed in the different loops of the BLIS implementation
of gemm.

Concretely, each mc × kc block of A is packed into Ac. Elements are organized as row
micro-panels of size mr × kc, and within each micro-panel of Ac, the elements are stored in
column-major order. Each kc × nc block of B is packed into Bc. In this case, elements are
packed into column micro-panels of size kc×nr, and each column micro-panel is stored into
row-major order. The reorganization of the entries of A and B into blocks of Ac and Bc with
the packing layout illustrated in Figure 3 ensures that these elements are accessed with unit
stride when used to update a micro-tile of C. Packing Ac and Bc also has the additional
benefit of aligning data from Ac and Bc to cache lines boundaries and page boundaries.
This enables to use instructions for accessing aligned data, which are typically faster than
their non-aligned counterparts.

A third benefit of packing is that data from Ac and Bc are preloaded into certain cache
levels of the memory hierarchy. This reduces the time required to access the elements of Ac

and Bc when using them to update a micro-tile of C. Since Ac is packed in Loop 3, after
Bc has been packed in Loop 2, the elements of Ac will likely be higher up in the memory
hierarchy (i.e. closer to the registers) than those of Bc. By carefully picking the sizes for Ac

and Bc, the exact location of Ac and Bc within the memory hierarchy can be determined.

3.3. Data usage pattern

Consider Loop 6. This innermost loop updates a micro-tile of C, say Cr, via a series of kc
rank-1 updates involving a micro-panel Ar, from the packed matrix Ac, and a micro-panel
Br, from the packed matrix Bc. At each iteration, mr elements from Ar and nr elements
from Br are multiplied to compute mrnr intermediate results that will be accumulated into
the micro-tile of C. Between two iterations of Loop 6, different elements from Ar and Br

are used, but the results from the rank-1 updates are accumulated into the same micro-tile.
Hence, the micro-tile Cr is the data reused between iterations (Reused data) in Loop 6. In
addition, because kc rank-1 updates are performed each time Loop 6 is executed, Cr is said
to have a reuse factor of kc times. Since the columns of Ar and the rows of Br are used
exactly once each time through Loop 6, there is no reuse of these elements.

Identifying pieces of data that are reused is important because it tells us which data
portions should be kept in cache in order to allow fast access and reduce cache trashing. An
analysis similar to that with Loop 6, performed on the remaining loops to identify the data
that is reused in each one of them, the size of the reused data, and the number of times the
data is being reused, yields the results summarized in Table I.

Notice that the size of the reused data becomes smaller as the loop depth increases. This
nicely matches the memory hierarchy, where faster memory layers (caches) feature lower
capacity than slower caches. As such, gemm maps smaller reused data to faster layers in
the memory hierarchy, as depicted in Figure 4.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Tze M. Low et al.

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

C
r

BA

b
r

BC

Memory

L3 cache

L2 cache

Registers

L1 cache

a
r

C

Pack BPack A

micro−kernelmicro−kernel

C
C

C
A

i = 0r

Load fromLoad from

micro−kernel

Load from

micro−kernel

Load from

Fig. 4: Packing in the BLIS and GotoBLAS implementations of gemm.

3.4. Characteristic parameters that drive performance

As described in the previous subsection and captured in Table I, the gemm algorithm that
underlies BLIS is characterized by the following five parameters:

mc, kc, nc,mr and nr,

which correspond to the block/panel/tile size for each of the loops around the micro-kernel.
In addition, this set of parameters also determines the dimension of the reused data and
the reuse factor of each of the loops.

Loop 6 is defined by three of the five parameters (mr, nr and kc), while Loops 3, 4 and 5
are characterized by four of the five parameters. In addition, three of the four parameters
that characterize Loops 3, 4 and 5 carry beyond to the next inner loop as well. Now, when
the parameters that characterize Loop 5 have been identified, the only unknown parameter
for Loop 4 is nc. This observation suggests that the parameters should be identified from
the innermost loop outwards. In the next section, we leverage this observation to optimize
this collection of parameters analytically.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:9

4. MAPPING ALGORITHM TO ARCHITECTURE

An effective mapping of the micro-kernel and the loops around it to the architecture is
fundamental to attain high performance with the BLIS approach. This means that we need
to identify values for the characteristic parameters that are tuned for the target machine
architecture. As discussed in the previous section, we start by mapping the micro-kernel to
the architecture and work our way outwards in order to identify the optimal values for the
different characteristic parameters.

4.1. Architecture model

To develop an optimization model for mapping the gemm algorithm onto an architecture, we
first need to define a model for our target architecture. We make the following assumptions
regarding our hypothetical processor:

— Load/store architecture and vector registers. Data have to be loaded into the pro-
cessor registers before computation can be performed with them. A total of Nreg vector
registers exist, where each can hold Nvec elements (floating-point numbers) of size Sdata.
(In a machine with no vector registers, Nvec = 1.) In addition, we assume that memory
instructions can be issued in parallel with floating-point arithmetic instructions.

— Vector instructions. The processor floating-point arithmetic units have a throughput
of Nvfma vector (or SIMD) fused multiply-add instructions (vfma) per clock cycle (i.e.,
2NvecNvfma flops per cycle). A single vfma instruction combines Nvec regular (non-
vector) instructions and produces Nvec scalar results. Furthermore, each vfma has a
latency of Lvfma cycles, which is the minimum number of cycles between the issuance
of two dependent consecutive vfma instructions. On an architecture without vfma in-
structions, Lvfma is computed by adding the latencies for a multiply and an addition
instruction.

— Caches. All data caches are set-associative, and each cache level Li is characterized by
four parameters as follows:

– CLi: size of cache line,
– WLi: associativity degree,
– SLi: size, and
– NLi: number of sets,

where SLi = NLiCLiWLi. A fully-associative cache can be modelled by setting NLi = 1
and WLi = SLi/CLi.
The replacement policy for all caches is least-recently-used (LRU) [Hennessy and Patterson
2003]. For simplicity, we assume that the size of a cache line is the same for all cache levels.

4.2. Parameters for the body of the inner-most loop: mr and nr

Recall that the micro-kernel is characterized by three parameters: mr, nr and kc, where the
former two determine the size of the micro-tile of C that is reused across every iteration.
In addition, these two parameters also define the number of elements of Ar and Br that
are involved in the rank-1 update at each iteration of Loop 6. In this subsection, we discuss
how mr and nr can be identified analytically.

4.2.1. Strategy for finding mr and nr. The main strategy behind our approach to identify
mr, nr is to choose them “large enough” so that no stalls due to the combination of de-
pendencies and latencies are introduced in the floating-point pipelines during the repeated
updates of the micro-tile Cr. In addition, the smallest values of mr, nr which satisfy this
condition should be chosen because this implies that Cr occupies the minimum number of
registers, releasing more registers for the entries of Ar, Br. This in turn enables larger loop
unrolling factors and more aggressive data preloading [Hennessy and Patterson 2003] to
reduce loop overhead.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Tze M. Low et al.

4.2.2. Latency of instructions. Consider the kc successive updates of Cr occurring in Loop 6.
In each of the kc iterations, each element of Cr is updated by accumulating the appropriate
intermediate result to it (obtained from multiplying corresponding elements of Ar and
Br). This update can be achieved with a vfma instruction for each element of Cr in each
iteration.

Now, recall that there is a latency of Lvfma cycles between the issuance of a vfma instruc-
tion and the issuance of another dependent vfma instruction. This implies that Lvfma cycles
must lapse between two successive updates to the same element of Cr. During those Lvfma
cycles, a minimum of NvfmaLvfma vfma instructions must be issued without introducing
a stall in the floating-point pipelines. This means that, in order to avoid introducing stalls
in the pipelines, at least NvfmaLvfmaNvec output elements must be computed. Therefore,
the size of the micro-tile Cr must satisfy:

mrnr ≥ Nvec LvfmaNvfma. (1)

4.2.3. Maximizing Register Usage. Ideally, mr should be equal to nr as this maximizes the
ratio of computation to data movement during the update of Cr in Loop 6 (2mrnrkc flops
vs 2mrnr +mrkc+nrkc memory operations). However, there are two reasons why this is not
always possible in practice. First, mr and nr have to be integer values as they correspond
to the dimensions of the micro-tile Cr. Second, it is desirable for either mr or nr to be
integer multiples of Nvec. As the number of registers is limited in any architecture, it is
necessary to maximize their use, and choosing mr (or nr) to be an integer multiple of Nvec
will ensure that the registers are filled with elements from Ar, Br and Cr such that data
not used in a particular iteration is not kept in registers.

Therefore, in order to satisfy this criterion as well as (1), mr and nr are computed as
follows:

mr =

⌈√
Nvec LvfmaNvfma

Nvec

⌉
Nvec (2)

and

nr =

⌈
Nvec LvfmaNvfma

mr

⌉
. (3)

The astute reader will recognize that one could have computed nr before computing mr.
Doing this is analogous to swapping the values of mr and nr, and also yields a pair of values
that avoid the introduction of stalls in the pipeline. We choose the values of mr and nr that
maximize the value of kc, which will be discussed in the following section.

4.3. Parameters for the remaining loops: kc, mc and nc

After analytically deriving optimal values for mr, nr, we discuss next how to proceed for
kc, mc and nc.

4.3.1. Strategy for identifying kc, mc and nc. We recall that kc, mc and nc (together with nr)
define the dimensions of the reused data for Loops 3 to 5; see Table I. Since the reused
blocks are mapped to the different layers of the memory hierarchy, this implies that there
is a natural upper bound on kc, mc and nc, imposed by the sizes of the caches. In addi-
tion, because the reused data should ideally be kept in cache between iterations, the cache
replacement policy and the cache organization impose further restrictions on the optimal
values for kc, mc and nc.

In the remainder of this section, we describe our analytically model for identifying values
for these characteristic parameters. For clarity, the discussion will focus on identifying the
optimal value for kc. The values for mc and nc can be derived in a similar manner.

4.3.2. Keeping Br in the L1 cache. Recall that the micro-panel Br is reused in every iteration
of Loop 5. As such, it is desirable for Br to remain in the L1 cache while Loop 5 is being

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:11

executed. Since the L1 cache implements an LRU replacement policy, conventional wisdom
suggests choosing the sizes of the different parts of the matrices such that data required for
two consecutive iterations of the loop are kept in cache. This implies that the cache should
be filled with Br, two micro-panels of Ac, and two micro-tiles of Cc. The problem with this
approach is that keeping two micro-panels of Ac and two micro-tiles of Cc consequently
reduces the size of the micro-panel Br that fits into the L1 cache, which means that the
value kc is smaller, hence decreasing the amount of data that could possibly be reused. In
addition, kc is the number of iterations for Loop 6, and reducing this value also means less
opportunities to amortize data movement with enough computation in the micro-kernel.

Instead, we make the following observations:

(1) At each iteration of Loop 5, a micro-panel Ar from Ac and the reused micro-panel Br

are accessed exactly once. This implies that the micro-panel that is loaded first will
contain the least-recently-used elements. Therefore, because of the LRU cache replace-
ment policy, as long as Br is loaded after Ar, the entries from Ar will be evicted from
the cache before those from Br.

(2) Since each micro-panel Ar is used exactly once per iteration, it is advantageous to
overwrite the entries of the micro-panel Aprev

r which was used in the previous iteration
with the corresponding entries of the new Anext

r that will be used in the present iteration.
Doing so potentially allows a larger Br to fit into the cache, hence increasing the amount
of data being reused.

4.3.3. Evicting Aprev
r from cache. We assume that within the micro-kernel (Loop 6), the

elements from Br are loaded after those of Ar. From the second observation above, a strategy
to keep a large micro-panel Br in cache is to evict the old micro-panel Aprev

r from the cache,
loaded in the previous iteration of Loop 5, by replacing its entries with those of the new
micro-panel Anext

r to be used in the current iteration of the loop. To ensure this, we need to
enforce that the same entries of all micro-panels of Ac are mapped to the same cache sets.
Since the L1 cache comprises NL1 sets, then the memory addresses that are NL1CL1 bytes
apart will be mapped to the same set in the L1 cache. This implies that the corresponding
elements of consecutive micro-panels of Ac must lie in memory an integer multiple (say
CAr

) of NL1CL1 bytes apart.
Recall that consecutive micro-panels of Ac are packed contiguously in memory, and each

micro-panel of Ac contains exactly mr×kc elements. This means that the distance between
the same entries of two consecutive micro-panels of Ac must be mrkcSdata bytes. Therefore,
Aprev

r will be replaced by Anext
r only if

mrkcSdata = CArNL1CL1.

Rearranging the above expression yields the following expression for kc,

kc =
CAr

NL1CL1

mrSdata
, (4)

which ensures that a newly read micro-panel of Ac is mapped to the same set as the existing
micro-panel of Ac. Thus, solving for kc in (4) is equivalent to finding CAr

, since the remaining
variables in the equation are hardware parameters.

4.3.4. Finding CAr . The astute reader will recognize that CAr
is the number of cache lines

taken up by a micro-panel Ar in each set of the L1 cache. Similarly, we can define CBr
as

the number of cache lines in each set dedicated to the micro-panel Br. In order for Br to
remain in a WL1-associative cache, it is necessary that

CAr
+ CBr

≤WL1.

In practice, the number of cache lines filled with elements of Ar and Br has to be strictly
less than the degree of associativity of the cache. This is because at least one cache line

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Tze M. Low et al.

must be used when the entries of a micro-tile Cr are loaded into the registers. Since Cr

is not packed, it is possible that its entries are loaded into the same set as the entries of
Ar and Br. Hence, we update the previous expression to account for the loading of Cr as
follows

CAr
+ CBr

≤WL1 − 1. (5)

As the micro-panel of Bc is packed into nrkcSdata contiguous memory, we can compute
CBr as follows:

CBr
=
⌈
nrkcSdata
NL1CL1

⌉
=
⌈

nr

mr
CAr

⌉
.

Therefore, replacing this expression in the inequality in (5), we get

CAr
≤
⌊
WL1−1

1+ nr
mr

⌋
,

which suggests choosing CAr as large as possible and then allows us to solve for kc.

4.3.5. Two-way set associativity. Our value for kc was chosen to enforce Anext
r to be loaded

into those cache lines previously occupied by Aprev
r . To achieve this effect, we made two

assumptions:

— Each set in the cache has to be filled equally with the micro-panel of Ar; i.e. the number
of cache lines in each set containing elements from Ar is the same across all sets. This
assumption ensures that the corresponding elements of different micro-panels will be
assigned to the same cache set.

— One cache line in each set of the cache is reserved for the elements of Cr so that loading
them will not evict the micro-panel Br that already resides in cache.

The problem with a two-way set associative cache is that satisfying these two assumptions
would imply that there remain no available cache lines to hold the elements of Br, precisely
the block that we want to keep in cache.

However, if the size of Ar is NL1CL1/k, where NL1 is an integer multiple of k, then the
micro-panel of Ar that is loaded in the (k + 1)-th iteration will be mapped to the same
cache sets as the first micro-panel of Ar. When k = 2, this is identical to keeping two
iterations worth of data in the cache, which ensures that the micro-panel of Br is kept in
cache. Any larger value of k decreases the size of the micro-panel of Ar, which implies that
kc is reduced. Therefore,

mrkcSdata =
NL1CL1

2 ,

which implies that kc is given by the formula:

kc =
NL1CL1

2mrSdata
(6)

when the cache is 2-way set associative.

5. VALIDATION

In this section, we compare the optimal values derived via our analytical model with those
employed by implementations that were either manually tuned by experts or empirically
tuned. Unlike previous work [Yotov et al. 2005; Kelefouras et al. 2014] that compared per-
formance against an implementation based on ATLAS, we chose to compare our parameter
values against the parameter values from manually-optimized implementations using the
BLIS framework. As the algorithms used are identical, any deviation is the result of a
difference in the parameter values.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:13

Architecture Nvec Lvfma Nvfma Analytically Expert Expert
derived BLIS OpenBLAS

mr nr mr nr mr nr

Intel Dunnington 2 5+3 1 4 4 4 4 4 4
Intel SandyBridge 4 5+3 1 8 4 8 4 8 4
AMD Kaveri 2 6 2 4 6 4 6 8 2
TI C6678 2 3+4 1 4 4 4 4 - -

Table II: Comparison between analytical values for mr, nr and empirical values chosen by
experts.

For this experiment, we chose the following mixture of traditional (x86) architectures
and low-power processors: Intel Dunnington (X7660), Intel SandyBridge (E3-1220), AMD
Kaveri (A10-7850K), and Texas Instruments C6678. This sample includes both dated (end-
of-life) and recent architectures in order to evaluate the accuracy and validity of the model,
while taking into account different trends in processor architecture design. We consider
double precision real arithmetic to obtain our parameter values.

5.1. Evaluating the model for mr and nr

Table II lists the machine parameters necessary for computing mr and nr, the optimal
values analytically derived for mr and nr using the model, and the values of mr and nr

chosen by the expert when implementing a micro-kernel using the BLIS framework. In
addition we include the expert’s values for the micro-kernel underlying OpenBLAS. The in-
struction latency for the different architectures were obtained from the vendors’ instruction
set/optimization manuals. In these cases where the architecture did not include an actual
vfma instruction, we computed Lvfma by adding the latencies for a floating-point multiply
and a floating-point addition.

Note that for all the architectures our analytical values match those chosen by the BLIS
experts who were not aware of this parallel research. Furthermore, the values for mr and
nr used in OpenBLAS also match our analytical values in two out of three cases3. We note
with interest that OpenBLAS utilized an 8 × 2 micro-kernel for the AMD Kaveri. While
it differs from our analytical 4× 6 micro-kernel, we note that AuGEM [Wang et al. 2013],
an empirical search tool developed by the authors of OpenBLAS in order to automatically
generate the micro-kernel, generated a micro-kernel that operates on a 6 × 4 micro-tile.
This suggests that the original 8 × 2 micro-kernel currently used by OpenBLAS may not
be optimal for the AMD architecture.

The results provide evidence that our analytical model for mr and nr is reasonably robust
across a variety of architectures.

5.2. Evaluating the model for kc and mc

Table III presents the machine parameters to derive kc and mc using the model, the optimal
analytical values, and the empirical values adopted in BLIS after a manual optimization
process (inside parenthesis). We do not report results for nc because most of these processor
architectures do not include an L3 cache, which means that nc is, for all practical purposes,
redundant. For the SandyBridge processor, there was minimal variation in performance
when nc was modified.

Again, our analytical model yields similar values if not identical for both kc and mc. The
analytical model offered the same values the expert picked when optimizing for kc.

3There exist no OpenBLAS implementations for the remaining architectures.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Tze M. Low et al.

Architecture SL1 WL1 NL1 kc SL2 WL2 NL2 mc

(Kbytes) (Kbytes)

Intel Dunnington 32 8 64
256

(256)
3,072 12 4,096

384
(384)

Intel SandyBridge 32 8 64
256

(256)
256 8 512

96
(96)

AMD Kaveri 16 4 64
128

(128)
2,048 16 2,048

1, 792
(1, 368)

TI C6678 32 4 256
256

(256)
512 4 2,048

128
(128)

Table III: Comparison between analytical values for kc, mc and empirical (manually-
optimized) values from existing implementations of BLIS (inside parenthesis).

16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496 528 560 592 624
12

14

16

18

20

22

kc

G
F

L
O

P
S

BLIS on Intel Sandy Bridge (m=n=k=1000). GFLOPS

mc=32

mc=96

mc=512

16 48 80 112 144 176 208 240 272 304 336 368 400 432 464 496 528 560 592 624

1e+07

2e+07

3e+07

4e+07

5e+07

kc

L
1
 m

is
se

s

BLIS on Intel Sandy Bridge (m=n=k=1000). L1 misses

mc=32

mc=96

mc=512

Fig. 5: GFLOPS and L1 cache misses (left and right plots, respectively) on the Intel
SandyBridge, for a matrix multiplication with all three operands square of dimension
m = n = k = 1, 000, different values of kc; mc = 32, 96 (optimal) and 512; and the
remaining three parameters set to the optimal analytical/empirical values for this architec-
ture (mr = 8, nr = 4, nc = 4, 096).

We expected to encounter more variation between the expert-chosen values and the
manually-tuned ones for the mc parameter. This is because most L2 caches are unified
(i.e., they contain both instructions and data), which makes predicting the cache replace-
ment behavior of the L2 cache more difficult, as it depends on both the amount of data
and instructions in that level of the cache. Nonetheless, we note that with the exception of
the AMD Kaveri, the values computed by our analytical model for mc were similar if not
identical to those chosen by the expert.

5.3. Experimental validation

In this subsection we aim to assess the accuracy of the analytical model in more detail. Our
goal is twofold: first, to analyze the behavior of BLIS from the performance and cache miss
ratio perspectives on an architecture for which the analytical model exactly predicts the
empirical optimal values for mc and kc (Intel SandyBridge); and second, to quantify and
explain the deviations in performance for an architecture for which the analytical values do
not match the observed ones (AMD Kaveri).

5.3.1. Empirical validation of the analtical model. The Intel SandyBridge case. We experimentally
measure the behaviour of the L1 cache misses/GFLOPS rate against the parameter kc.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:15

Figure 5 shows the result of this evaluation on the Intel SandyBridge, for three different
values of mc: the analytical/empirical optimal (mc = 96) and two values, one below and
one above the optimal (mc = 32 and mc = 512, respectively). Let us relate the size of the
blocks in the L1 cache to the performance lines and the compulsory (also known as cold),
conflict and capacity misses [Hennessy and Patterson 2003]. Consider the mc-optimal case
(green line) first. We can clearly identify three ranges or intervals in the results for the L1
cache misses (right-hand side plot):

— kc < 48 (i.e., kc = 16 or 32). For these two small values, a complete block Ac (mc × kc)
fits into the L1 cache together with a single micro-panel Br (kc × nr). In this scenario,
the volume of conflict/capacity misses is negligible, and most of L1 cache misses are
compulsory, occuring when Ac is packed by the corresponding routine and each Br is
loaded from the micro-kernel. (The number of L1 cache misses during the packing of Bc

is negligible as well.) We emphasize that no L1 cache misses are expected in the access to
any of the micro-panels Ar from the micro-kernel, as they are all part of Ac and this block
already resides in the L1 cache after it is packed. The repeated use of the micro-panels
Ar from within Loop 4 explains why this yields such a low rate of L1 cache misses. On
the other hand, the low value of kc does not allow to hide the cost of transferring the
data from the cache, and produces the low GFLOPS rate for these two particular values.

— 48 ≤ kc ≤ 256. This range of values for kc ensures that Ar and Br respectively occupy
16 and 8 KBytes at most (i.e., for the largest value of the range, kc = 256). Therefore, no
capacity misses are to be expected in the L1 cache. Furtherfore, because of the 8-way set-
associative configuration of the L1 cache in this architecture, the careful aligned packing
of BLIS will ensure that Ar occupies up to CAr = 4 lines per set of the L1 cache, Br up
to CBr = 2 lines/set, and the remaining 2 lines/set are left “empty” for entries of Cc.
Therefore, no significant amount of conflict misses is to be expected. The L1 cache misses
are mostly compulsory, and originate when the micro-panels Ar and Br are loaded from
within the micro-kernel. (This time, the volume of L1 cache misses during the packing
of both Ac and Bc is negligible.) Indeed, most of the misses come from the load of Ar,
as the block Ac does not fit into the L1 cache, and has to be repeatedly accessed for
each iteration of Loop 4. We also note that the number of misses is almost constant for
the full range of values. This is because Ac is streamed by the micro-kernel, from the L2
cache through the L1 cache, approximately nc/nr times within Loop 4, independently of
the actual value of kc. From the point of view of performance, the best option occurs at
kc = 256, because this is in the range of value that match the architecture configuration,
and is the largest one so that it better amortizes the overheads of packing and overlaps
data transfers from the L1/L2 cache with computation.

— kc > 256. As kc exceeds the analytical optimal, conflict misses first and capacity misses
later dominate resulting in lower performance.

Three intervals can be distinguised as well for the suboptimal case mc = 32 (blue line):
kc < 144, 144 ≤ kc ≤ 256 and kc > 256. The first interval has the same cause as in the
optimal scenario above (i.e., kc < 48 and mc = 96), but given that the value of mc is now
3× smaller than the optimal, the value of kc that yields a block Ac that fits into the L1
cache is multiplied by 3, yielding the upper threshold kc < 144 for the first interval. Now,
given that the second interval is defined by the dimensions of the micro-panels Ar and Br

that fit into the L1 cache, it should not be surprising that the upper threshold is defined
by kc = 256 when mc = 32 as well, since mc plays no role in the dimension of these two
micro-panels. Thirdly, the higher amount of L1 cache misses of this suboptimal case when
compared to the optimal one, with kc ≥ 144 is explained because the number of times that
Ac is repacked and repeatedly accessed is proportional to m/mc.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Tze M. Low et al.

24 120 216 312 408 504 600 696 792 888 984 1080 1176 1272 1368 1464 1560 1656 1752 1848 1944
16

18

20

22

24

mc

G
F

L
O

P
S

BLIS on AMD Kaveri (m=n=k=4000). GFLOPS

24 120 216 312 408 504 600 696 792 888 984 1080 1176 1272 1368 1464 1560 1656 1752 1848 1944

2e+07

4e+07

6e+07

8e+07

1e+08

mc

L
2

 m
is

s
e

s

BLIS on AMD Kaveri (m=n=k=4000). L2 misses

Fig. 6: GFLOPS and L2 cache misses (left and right plots, respectively) on the AMD Kaveri ,
for a matrix multiplication with all three operands square of dimension m = n = k = 4, 000,
the optimal kc = 128, and varying mc in steps of 24. The blue and green markers respectively
identify the empirical optimal value mE

c = 1, 368 and the analytical suboptimal m̃A
c = 1, 788.

The same comments of the previous case apply to the suboptimal case mc = 512 (red
line), with the only exception of the high number of L1 cache misses when kc is very small.
The reason is that, for this large value of mc, the packing of Ac produces this effect.

5.3.2. Quantification of the analytical model deviations. The AMD Kaveri case. Let us analyze the
discrepancy between the analytical and empirical optimal values for mc on the AMD Kaveri.
In particular, the model fixes the analytical optimal at mA

c = 1, 792, while the experimen-
tation found the empirical optimal at mE

c = 1, 368. Unfortunately, BLIS enforces that mc

is an integer multiple of both mr and nr (on this architecture, 4 and 6 respectively) so that
the analytical optimal cannot be experimentally tested. To avoid exceeding the capacity of
the cache, in the following analysis we will thus consider the analytical suboptimal value
at m̃A

c = 1, 788, which corresponds to the closest integer multiple of both 4 and 6 smaller
than mA

c .
Figure 6 relates the performance (GFLOPS) and L2 cache misses on the AMD Kaveri,

using the optimal value kc = 128, for a wide range of values for mc that include both
mE

c and m̃A
c . The first point to note in the right-hand side plot is that the analytical

suboptimal correctly determines the dimension from which the number of L2 cache misses
initiates an exponential growth due to capacity constraints (specifically, this occurs from
mc ≥ 1, 800 > mA

c > m̃A
c). Compared with the empirical optimal, the case m̃A

c increases the
L2 cache misses by 8.85% which, in principle, seems a large value but cannot be appreciated
in the plot due to the scale. However, relative to the maximum number of cache misses in
the plot (i.e, normalized against the misses for mc = 2, 016), the misses for m̃A

c only incur
an increase of 0.78% with respect to the figure for mE

c . With these parameters, the slightly
larger number of L2 cache misses results in a small decrease of performance: from 23.95
GFLOPS for mE

c to 23.48 GFLOPS for m̃A
c , i.e. −1.97%.

Let us consider now the empirical suboptimal m̃E
c = 1, 656, which corresponds to the

largest possible value of mc that still is within the “noise” of the best performance. From
a practical point of view, the difference in performance between mE

c and m̃E is negligible
(23.946 GFLOPS for the latter, which represents a decrease of −0.017% with respect to
mE

c and can be considered to be in the noise level). Taking into account the dimensions
of Ac, for m̃E

c this block occupies 1,656 KBytes, i.e. 85.55% of the L2 cache or, in this
16-way associative cache, close to 13 lines of each 16-line set (the exact value is 12.93).
We can observe that this is not far from the analytical optimal mA

c , which dictates that

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:17

Ac should occupy 87.50% of the L2 cache, or 14 lines of each 16-line set. The conclusion
from this analysis is that the discrepancies between the analytical values m̃A

c , mA
c and the

empirical values m̃E
c , mE seem to be due to problems with the alignment of Ac in the 16-

way associative cache, probably related to the packing of Ac producing unexpected conflict
misses, and not to a deviation in the analytical model. A second source of aligment problems
may be that, for this architecture, nr(= 6) is not a power of 2. Therefore, it may occur that
each micro-panel of Bc does not overwrite the previous micro-panel of this block, in turn
causing conflict misses since the streaming of this matrix does not overwrite the micro-panel
of B in the L2 cache.

6. CONCLUSION AND FUTURE DIRECTIONS

We have developed an analytical model that yields optimal parameter values for the gemm
algorithm that underlies BLIS as well as other manually-tuned high performance dense
linear algebra libraries. The key to our approach is the recognition that many of the param-
eters that characterize BLIS are bounded by hardware features. By understanding how the
algorithm interacts with the processor architecture, we can choose parameter values that
leverage, more aggressively, hardware features such as the multi-layered cache memory of
the system.

We compare the values obtained via our analytical approach with the values from
manually-optimized implementations and report that they are similar if not identical. Unlike
similar work that compares with ATLAS, this is the first paper, to the best of our knowl-
edge, that demonstrates that an analytical approach to identifying parameter values can be
competitive with best-in-class, expert-optimized implementations. This demonstrates that a
high performance implementation for the gemm algorithm can be obtained without relying
on a costly empirical search.

We believe that more can be done in terms of enhancing the analytical model. One
possible direction we are exploring is to extend the analytical model to more complicated
linear algebra operations such as those in LAPACK [Anderson et al. 1999]. In general these
operations, e.g. matrix factorizations, are implemented as blocked algorithms, and the gemm
operation is often a sub-operation in the loop body. It would be interesting to determine
how to identify optimal block sizes, given that the parameters that favor performance for
the gemm operation are known.

A second direction to enhance the analytical model is to incorporate data movement
considerations. Currently, the parameters for the micro-kernel (mr and nr) are determined
by only considering the latency of the floating-point arithmetic instructions. However, this
makes the assumption that bandwidth is large enough. On low-power systems, this assump-
tion may no longer hold. In such scenario, mr and nr may have to be larger, so that the
time for computation is sufficiently long to hide the time it takes to load the next elements
of Ar and Br into the processor registers.

Finally, our current analytical model assumes double precision arithmetic. With complex
arithmetic, a micro-tile of the same size incurs four times as many flops, and involves twice
as much data. These changes necessarily mean that the formulas in this paper have to be
updated. Nonetheless, we believe that a similar analysis of the algorithm and the hardware
features yields an analytical model for a micro-kernel that operates with complex arithmetic.

A question becomes whether our analysis can be used to better design future architec-
tures. This question is at least partially answered in [Pedram et al. 2012b; Pedram et al.
2012a], which examines how to design specialized hardware (both compute core and entire
processor) for linear algebra computation. The models used for such purpose have much in
common with our model for determining the parameter values for the micro-kernel. This
suggests that our model for determining the parameter values for loops around the micro-
kernel can potentially be leveraged to either determine the ideal cache size and/or cache
replacement policy.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Tze M. Low et al.

Acknowledgments

This research was sponsored in part by NSF grants ACI-1148125/1340293 and CCF-
0917167.

Enrique S. Quintana-Ort́ı was supported by project TIN2011-23283 of the Ministerio de
Ciencia e Innovación and FEDER. Francisco D. Igual was supported by project TIN2012-
32180 of the Ministerio de Ciencia e Innovación. This work was partially performed during
their visit to The University of Texas at Austin (UT), funded by the JTO visitor applications
programme from the Institute for Computational Engineering and Sciences (ICES) at UT.

REFERENCES

AMD. 2015. AMD Core Math Library. http://developer.amd.com/tools-and-sdks/cpu-development/
amd-core-math-library-acml/. (2015).

E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Hammarling,
A. Greenbaum, A. McKenney, and D. Sorensen. 1999. LAPACK Users’ guide (3rd ed.). SIAM.

David F. Bacon, Susan L. Graham, and Oliver J. Sharp. 1994. Compiler Transformations
for High-performance Computing. ACM Comput. Surv. 26, 4 (Dec. 1994), 345–420.
DOI:http://dx.doi.org/10.1145/197405.197406

G. Belter, J. G. Siek, I. Karlin, and E. R. Jessup. 2010. Automatic Generation of Tiled and Parallel
Linear Algebra Routines: A partitioning framework for the BTO Compiler. In Proceedings of the Fifth
International Workshop on Automatic Performance Tuning (iWAPT10). 1–15.

Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel. 1997a. Optimizing Matrix Multiply Us-
ing PHiPAC: A Portable, High-performance, ANSI C Coding Methodology. In Proceedings of the
11th International Conference on Supercomputing (ICS ’97). ACM, New York, NY, USA, 340–347.
DOI:http://dx.doi.org/10.1145/263580.263662

Jeff Bilmes, Krste Asanović, Chee whye Chin, and Jim Demmel. 1997b. Optimizing Matrix Multiply using
PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology. In Proceedings of International
Conference on Supercomputing. Vienna, Austria.

Jim Demmel, Jack Dongarra, Victor Eijkhout, Erika Fuentes, Antoine Petitet, Rich Vuduc, R. Clint Whaley,
and Katherine Yelick. 2005. Self adapting linear algebra algorithms and software. In Proceedings of the
IEEE. 2005.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. 1990. A Set of Level 3 Basic Linear
Algebra Subprograms. ACM Trans. Math. Soft. 16, 1 (March 1990), 1–17.

Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Richard J. Hanson. 1988. An Extended Set of
FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14, 1 (March 1988), 1–17.

Kazushige Goto and Robert van de Geijn. 2008a. High Performance Implementation of the Level-3 BLAS.
ACM Trans. Math. Software 35, 1 (July 2008), 4:1–4:14. http://doi.acm.org/10.1145/1377603.1377607

Kazushige Goto and Robert A. van de Geijn. 2008b. Anatomy of a High-Performance Matrix Multiplica-
tion. ACM Trans. Math. Software 34, 3 (May 2008), 12:1–12:25. http://doi.acm.org/10.1145/1356052.
1356053

John A. Gunnels, Greg M. Henry, and Robert A. van de Geijn. 2001. A Family of High-Performance
Matrix Multiplication Algorithms. In Computational Science - ICCS 2001, Part I (Lecture Notes in
Computer Science 2073), Vassil N. Alexandrov, Jack J. Dongarra, Benjoe A. Juliano, René S. Renner,
and C.J. Kenneth Tan (Eds.). Springer-Verlag, 51–60.

John L. Hennessy and David A. Patterson. 2003. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Pub., San Francisco.

IBM. 2015. Engineering and Scientific Subroutine Library. http://www-03.ibm.com/systems/power/
software/essl/. (2015).

Intel. 2015. Math Kernel Library. https://software.intel.com/en-us/intel-mkl. (2015).

Vasilios Kelefouras, Angeliki Kritikakou, and Costas Goutis. 2014. A MatrixMatrix Multiplication method-
ology for single/multi-core architectures using SIMD. The Journal of Supercomputing (2014), 1–23.
DOI:http://dx.doi.org/10.1007/s11227-014-1098-9

T. Kisuki, P.M.W. Knijnenburg, M.F.P. O’Boyle, and H. A. G. Wijshoff. 2000. Iterative Compilation in
Program Optimization. (2000).

Peter M. W. Knijnenburg, Toru Kisuki, and Michael F. P. O’Boyle. 2002. Iterative Compilation.. In Embed-
ded Processor Design Challenges (Lecture Notes in Computer Science), Ed F. Deprettere, Jrgen Teich,
and Stamatis Vassiliadis (Eds.), Vol. 2268. Springer, 171–187. http://dblp.uni-trier.de/db/conf/samos/
samos2002.html#KnijnenburgKO02

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Analytical Modeling is Enough for High Performance BLIS A:19

C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. 1979. Basic Linear Algebra Subprograms for
Fortran Usage. ACM Trans. Math. Soft. 5, 3 (Sept. 1979), 308–323.

OpenBLAS 2015. http://www.openblas.net. (2015).

Ardavan Pedram, Andreas Gerstlauer, and Robert A. van de Geijn. 2012a. On the Efficiency of Register
File versus Broadcast Interconnect for Collective Communications in Data-Parallel Hardware Accelera-
tors. Computer Architecture and High Performance Computing (SBAC-PAD), 2012 24th International
Symposium on (October 2012).

Ardavan Pedram, Robert A. van de Geijn, and Andreas Gerstlauer. 2012b. Codesign Tradeoffs for High-
Performance, Low-Power Linear Algebra Architectures. IEEE Trans. Comput. 61 (December 2012),
1724–1736. DOI:http://dx.doi.org/10.1109/TC.2012.132

Tyler M. Smith, Robert van de Geijn, Mikhail Smelyanskiy, Jeff R. Hammond, and Field G. Van Zee. 2014.
Anatomy of High-Performance Many-Threaded Matrix Multiplication. In IPDPS ’14: Proceedings of
the International Parallel and Distributed Processing Symposium. To appear.

Field G. Van Zee, Tyler Smith, Bryan Marker, Tze Meng Low, Robert A. van de Geijn, Francisco D. Igual,
Mikhail Smelyanskiy, Xianyi Zhang, Michael Kistler, Vernon Austel, John Gunnels, and Lee Killough.
2014. The BLIS Framework: Experiments in Portability. ACM Trans. Math. Soft. (2014). In review.

Field G. Van Zee and Robert A. van de Geijn. 2014. BLIS: A Framework for Generating BLAS-like Libraries.
ACM Trans. Math. Soft. (2014). To appear.

Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. 2013. AUGEM: Automatically Generate High
Performance Dense Linear Algebra Kernels on x86 CPUs. In Proceedings of SC13: International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC ’13). ACM, New
York, NY, USA, Article 25, 12 pages. DOI:http://dx.doi.org/10.1145/2503210.2503219

R. Clint Whaley and Jack J. Dongarra. 1998. Automatically Tuned Linear Algebra Software. In Proceedings
of SC’98.

Kamen Yotov, Xiaoming Li, Maŕıa Jesús Garzarán, David Padua, Keshav Pingali, and Paul Stodghill. 2005.
Is Search Really Necessary to Generate High-Performance BLAS? Proceedings of the IEEE, special issue
on “Program Generation, Optimization, and Adaptation” 93, 2 (2005).

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

