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THE BEHAVIOR OF STANLEY DEPTH UNDER POLARIZATION
BOGDAN ICHIM, LUKAS KATTHAN, AND JULIO JOSE MOYANO-FERNANDEZ

ABSTRACT. LetK be a field,R = K[Xy,...,Xs] be the polynomial ring and C | two
monomial ideals irR. In this paper we show that
sdepthl /J — depthl /J = sdepthl P/JP — depth1P/JP,

where sdepth/J denotes the Stanley depth aiftddenotes the polarization. This solves
a conjecture by Herzoger1d and reduces the famous Stanley conjecture (for modules
of the formI/J) to the squarefree case. As a consequence, the Stanleycitoajéor
algebras of the forrR/1 and the well-known combinatorial conjecture that every €wh
Macaulay simplicial complex is partitionable are equivéle

1. INTRODUCTION

In 1982, R. Stanley conjectured in his celebrated pap&r] an upper bound for the
depth of a multigraded module of combinatorial nature ecE8tanley depttater on. A
proof of this conjecture turned out to be a difficult probletioegan soon to be called the
Stanley conjectureSince then, several authors began to study intensivedypttublem,
starting with the reformulation by Apel of the most importaases of the conjecture, i.e.
the Stanley conjecture for a monomial idéaind for the factor rindR/I, see | )
Conjecture 2] and/j ) Conjecture 1]. Afterwards, most of the research conctzgra
on the particular case of a module of the foryd for two monomial ideald C | in the
polynomial ringR = K[Xy, ..., Xn] over some fiel&; motivated by works of Herzog and
Popescu P0G ], the Stanley conjecture became one important open prolsiem
algebra and combinatorics.

A natural first step to approach the Stanley conjecture iytmtreduce it to squarefree
monomial ideals. The arguable most straightforward methothis is via polarization.
This is a process which replaces an arbitrary monomial ideath a certain squarefree
monomial ideall P, such thatl can be recovered frortP by dividing out a regular se-
guence. The behavior of many invariantsl ainder polarization is well understood. In
particular, as polarization preserves the projective dsian, the change in the depth is
just the change in the number of variables. In view of the I8taconjecture, one would
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hope for a similar behavior of the Stanley depth. This wasfdated as a conjecture by
Herzog in the survey-{erld as follows:

Conjecture 1.1(Conjecture 62,4 ]). Let | C R be a monomial ideal. Then
sdepttR/I — depthR/l = sdeptRP/IP — depthRP /| P
where R is the ring where P is defined.

However, despite the naturality of the question and a cenalde effort, it remained
open for quite some time. The main result of our paper (Carphi.4) is the proof of
Conjecturel.l. We show it even more generally for modules of the fdrfd for two
monomial ideals C | CR.

This has two important consequences. First, it immedidtdlgws thatl /J satisfies
the Stanley conjecture if and only if its polarizatidty JP does so, cf. Corollan}.5. Thus
the Stanley conjecture for modules of the fdrid—in particular | ; Conjecture 2]
and | ) Conjecture 1]—is effectively reduced to the squarefresca

For the second consequence, as noted by Stanley himselfd&4 p. 191], the Stan-
ley conjecture was formulated such that "the question dais¢ ) p. 149, line 6] or
[ ) Rmk. 5.2] would follow affirmatively”. This question wasfoemulated by Stan-
ley [ ; Conjecture 2.7], and asks whether every Cohen-Macautaglgial complex
is partitionable. While it is clear that the Stanley conjeetimplies the Garsia-Stanley
conjecture on Cohen-Macaulay simplicial complexes, ia gaper we show that the con-
verse is also true, that is, the Garsia-Stanley conjectnr€ahen-Macaulay simplicial
complexes implies what is (arguably) the most importané adghe Stanley conjecture.
More precisely, we show that Stanley’s conjecture on CdWlenaulay simplicial com-
plexes is equivalent to"] ) Conjecture 1] (see Corollad.?).

The content of the paper is organized as follows. Sedimdevoted to explain the
prerequisites and to fix notations. Sectibimtroduces a suitable tool for the measure of
the Stanley depth of a quotieint) as above, namely thmaps changing the Stanley depth
Helpful properties of those maps are recorded in both Ler@mand Lemmes.6.

The most remarkable application of Sectidis that to the polarization of the quotient
| /J; this is exactly the content of Secti@n which also includes the main results of the
paper—the already mentioned Corollarieg, 4.5and4.7.

Further applications of the maps changing Stanley deptldeseribed in Sectioh,
closing the paper.

The reader is referred to Bruns and HerzBglp6], and Miller and Sturmfels|Y ]
for general definitions, notation, and background material

2. PREREQUISITES

Let K be a field. We consider the polynomial rify= K[Xj, ..., X,] overK, endowed
with the fineZ"-grading (i.e. theZ"-grading with deg; = g being thei-th vector of the
canonical basis).

Let M be a finitely generated gradédmodule, andn € M homogeneous. Lef C
{X1,...,Xn} be a subset of the set of indeterminatefRofThe K[Z]-submodulemK|[Z]
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of M is called aStanley spacef M if mK[Z] is free (asK[Z]-submodule). AStanley
decompositiomf M is a finite family

-@ == (K[ZI]7m)|€Q
in whichz; C {Xy,...,Xn} andmK][z] is a Stanley space &l for eachi € Q with

M = P mK[z]
ieQ
as a graded or multigraddgi-vector space. This direct sum carries the structurB-of
module and has therefore a well-defined depth. Stenley depttsdepthM of M is
defined to be the maximal depth of a Stanley decompositidh.ofFhe Stanley conjecture
states the following inequality:

Conjecture 2.1(Stanley) sdepthM > depthM.
For a recent account on the subject, the reader is referiddrizng’s surveylf ]

We endowZ" (or N") with the componentwise (partial) order: Givarb € Z", we say
thata<bif and only ifa; < bj fori = 1,...,n. Note that this partial order turt#’ into a
distributive lattice with meea A b and joinaV b being the componentwise minimum and
maximum, respectively. Fax, b € Z" theinterval between a and is defined to be

[a,b] :=={ceZ"|a<c<b}.
Remark here that far € N we will use the notatiomn| := {1,...,n}.

Monotonic poset maps will play a prominent role in SectirLetP c Z", P’ c Z"
be posets. We call a map: P — P’ monotonidf it preserves the order. Moreovergsis
said topreserve joingesp. meetdf it satisfiesg(aVv b) = ¢(a) v ¢(b) resp. p(aAb) =
@(a) A @(b) foralla,b e P.

Fora= (a,...,an) € N"we denote byk® the monomiaX ... X2. LetJ C | C Rbe
two monomial ideals. The quotiehtJ is a graded or multigrade®module. Following
Herzog, Vladoiu and Zheng [ ], we fix a vectorg € N" satisfyinga < g for all X2
in minimal sets of generators fbmndJ. Thecharacteristic poset . of | /J with respect

/3
to g is defined to be the (finite) subposet
Plg/J ={acN":X%c1\J, a<g}

of Z". A partition of a finite poseP is a disjoint union

;
2 P=]J[d,b]
i=1
of intervals. A key result int ] describes a way to compute sdepild from a Stan-
ley decomposition off /J coming from a partition of the posBl?/ ;- More precisely, by set-
ting Zy := {Xj : bj = g; } for eachb € Plg/J, and the functiomp = p9: F’lg/J — Z>0, p(C) =
#(Z:), Theorem 2.1 inlf ] says:
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Theorem 2. 2(Herzog Vladoiu, Zheng)

(a) Let I/J = U_,[@,b'] be a partition of Iﬂj,

2(2):1/]3= @(@Xbi.>

i=1 c

then

is a Stanley decomposition ofd, where the inner direct sum is taken over at ¢a', b']
for which g = aj for all j with X; € Z;;. Moreover, we have

sdepth2(2) = min{p(b") :i=1,....r}.

(b) Let 2 be a Stanley decomposition ofJ. Then there exists a partitios” of Plg/ 3

such thatsdepthZ(<?) > sdepthZ. In particular, sdepthl /J can be computed as the
maximum of the numbesslepthZ (&), whereZ runs over the (finitely many) partitions

of Hg/J.

The main topic of this paper is the behavior of Stanley deppidheu polarization. We
recall the definition following Herzog and H|b. [H11]. Let] C Rbe a monomial ideal
with generatorsly,. .., un, Whereu; = |‘|] 1X A for i = 1,...,m. For eachj let aj =
max{ajj 1 i=1,.. .,m} Seta= (ai,...,an) and choose g € N” such thata < g. SetRP
to be the polynomial ring

RP:=K[Xj :1<j<nl1l<k<g;l

Then thepolarization of |is the squarefree monomial idedl ¢ RP generated by
V1,...,Vm, Where

n aij
= Xk fori=1,...,m
HL

3. POSET MAPS

Let1,J be monomial ideals oR such thatl C I. We are interested in measuring the
Stanley depth of the deformations of the quotiett The following kind of maps reveals
to be a useful tool for that aim:

Definition 3.1. Let ¢ € Z andn,n’ € N. A monotonic mapp : N" — N" is said tochange
the Stanley depthy ¢ with respect tay € N" andg’ € N", if it satisfies the following two
conditions:

(1) 99 <d
(2) For each intervdl,b'] C [0,q], the (restricted) preimage([a/,b']) N[0, g] can
be written as a finite disjoint unidg;[a', b'] of intervals, such that

#jen :bi=g;} >#{jen] b =dj}+¢ foralli.
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Notation 3.2. LetR=K[X1,..., X, R = K[Xy,...,Xy]. Amap@: N" — N" gives rise
to a naturalK-linear map® : R— R/, which is defined on monomials as

P(X?) 1= X9

and extended t& linearly. Note that this isiota ring homomorphism.

Next proposition justifies the name for a monotonic rahpnging the Stanley depdif
the previous definition:

Proposition 3.3. Let nn’ € N, R=K[Xy,...,Xn], R =K[Xy,...,Xy] be two polynomial
rings and let JC I’ ¢ R be monomial ideals. Consider a monotonic m@apN" — N
and set .= ®~1(1"), J:= ®1(J'). Choose ¢gc N" and d € N", such that every minimal
generator of | and J divides % and every minimal generator ofand J divides X' Let
¢ € Z and assume thap changes the Stanley depth bwith respect to g and’gThen

(i) I'and J are monomial ideals, and
(i) sdepthl /3> sdepthl’/J +¢.

Proof. It is clear thatl andJ are monomial ideals (since monomial ideals correspond
to subsets ofN" that are closed under “going up”, and taking the preimageeurd
monotonic map preserves this property). For the seconthchaie compute the Stan-

ley depth ofl’/J’ via an interval partition of—"lg,’//J, (cf. Theorem2.2). Note that the as-
sumptiong(g) < ¢ together with the equalitie®—(1") = | and®~1(J’) = J imply that
¢*1(I119/J,) N[0,g] = Plg/J. Hence, taking the preimages of the intervals in the partitif
Pf,‘//J, yields an interval partition olPlg/J of the required Stanley depth. O

The following results are useful for constructing mapwhich satisfy the conditions
of the previous proposition:

Lemma3.4.Letm,nj,np,m, e N. Fori=1,2, letg :N" — N be monotonic maps that
change the Stanley depth Bywith respect to ge N and ¢ € N". Then the product
map

(1. @) 1 NP2 NPT
changes the Stanley depth fay+ ¢> with respect tqgs,92) and (g}, 95).

Proof. Let us denote the product map lpy:= (@, ). It is enough to consider one
interval[(p1, p2), (q1,92)] € N ™. By assumption, the preimage *([pi, a]) N[0, )] =
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Uj[p!,a/] € N is a disjoint finite union of intervals. Then

cp‘l([(pl, P2), (d1,G2)]) N[0, (91, 92)] =

“H(([p1, 0] x N™) 1 (N™ x [p2,02])) N [0, (91, 02)]

([P, aa]) x N™) 1 (N™ x @, ([p2, d21)) N ([0,91] x N™) 1 (N™ x [0, g2])
CH([pr,aa]) N [0,91)) x N™) (N”l (@ *([p2,%2)) N[0, 02]))

(
(3
() (roya)
U
i,k

pl, 05), (a, &)l

which implies the statement. 0J

Remark 3.5. The most important special case of this lemma is when oneeofridps is
the identity. In this case, ip is a map changing the Stanley depthébthen we can pad it
with identities to get a new map = (id, ..., id, @) that still changes the Stanley depth by

¢. In the sequelg will always denote the padded versiong@fand® the padded version
of ®.

Lemma 3.6. Every monotonic map : N — N7 changes the Stanley depth by n’ with
respectto g Nand d := ¢(g).

Proof. Let Q' = [&,b] ¢ [0,g] € N be an interval and 1eQ := ¢~1(Q)N[0,g] be
its (restricted) preimage. Letresp.b € N be the minimal resp. maximal element in
Q. ThenQ C [a,b] and we claim that we have equality. FoE [a,b], it follows from
®(a) < g(c) < @(b) that ¢(c) € [&,b], becausep(a), p(b) € [&,b]. Thusce Q. So
the preimage of an interval is again an interval. It remaingerify the condition (2) of
Definition 3.1, namely

#jell]:bj=gj} >#je[n]:bj=dj}+1-n foralli.
If b’ < ¢, then the right hand side is nonpositive, so the conditidriiilly satisfied. On
the other hand, i = ¢, thenb = g and thus the condition is also satisfied. O

We close this section with a precise description of the bigihaf poset maps preserv-
ing joins and meets with respect to the property of changilagl8y depth. This result
will be not needed in the sequel.

Theorem 3.7.Let nn’ € N and letgp : N" — N" be a map that preserves joins and meets.
Theng changes the Stanley depth by-n’ with respect to g N" and d := ¢(g).

Proof. We assume thap(0) = 0, as we otherwise replageby ¢ — ¢(0) without changing
the validity of the statement. First we show tlgais monotonic. Considea, b € N" with
a<b. Then

p(a) < p(a) vV o(b) = p(avb) = @(b),
hencegp(a) < ¢(b).
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In view of Lemma3.4 and Lemma3.6, it is sufficient to show thap is a product of
monotonic mapg : N — N with 1<i<n andy;nf =n'.

For this, lete denote thd-th unit vector ofN". Every vectorv = ;e € N" can
be written as a sum= Ae; + (0,V) with vV € N""1. As ¢ is monotonic, the support of
@(Aep) can only increase with . Hence, without loss of generality, we may assume that
the maximal support op(Aer) for A > 0 is the set of the first) coordinates. That is

@(Aey) € N x (0,...,0).
Since preserves meets, for alle N andv € N"~1 we have
0=¢(0) = p(Aer A (0,V)) = p(Aer) A p((0,V)).
It follows that for each vectofO,V') with vanishing first coordinate, the support of its
image is contained in the last— n} coordinates. That is
®((0,V)) € (0,...,0) x N"—",
Then, it holds that
@(v) = p(Aer+(0,V)) = @(AerV (0,V)) = p(Aer) v @((0,V)) = p(Aer) + ¢((0,V)),
because the sum equals the join in this casepSelN — NM, @A) = mlqo(}\ e1) where
Ty is the projection on the first) coordinates. Sef 1: N1 — N"-M, ¢ (V) =
m_nflcp((o,\/)) wherert,_py is the projection on the last — ) coordinates. Therp
splits into a direct product
@= (g, 1) Nx N NM x N7,

Sinceg is a restriction ofp, it follows that¢; is monotonic.

Iterating this construction yields the desired decompasibf ¢. O

4. APPLICATION TO POLARIZATIONS

Let J C | be two monomial ideals iR. Then we can choosee Z" bigger than or
equal to (in the sense of the ord€j the join of all generators dfandJ, and define the
polarizationl P /JP of | /J according to Sectiof.

Polarization can also be done step by step.uset. ., uy, be the set of minimal genera-

tors ofl. Following [ ] we define the istep polarizatiorof | (with respect tox;) to
be the ideal! c R]Y] generated byy, ..., vm, where
o dxui Xy
: uj otherwise.

If the indeterminate of the polynomial ring with respect alhive apply partial polar-
ization is not relevant, we will omit it.
Proposition 4.1. Let JC | C R be monomial ideals. Then
(1) depthyy, I1/3t = depthy 1 /3 +1;
(2) Hjayp(t) = H ().
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HereH, ;(t) denotes the Hilbert series with respect to #higrading. This proposition
is easy and partially known (cf.Herl3 p. 47]). We present a complete proof for the
reader’s convenience.

Proof. For both claims it suffices to show th¥ — Y is a regular element. By contradic-
tion, assuming(, — Y is a zero-divisor o' /J%, then there exists an ideak Ass(11/J%)
with X, —Y € p. Since both)! andp are monomial ideals, there exists a monorhiglJ*
such thatp = Anngh. Thenh(X, —Y) € J%, and agairhY € J%, hX, € J%, sinced! is
monomial. Letfy, f, generators of* such thatf;|hX, and fo|hY. If Y| f, thenX,|f, and
soXn|h. ThereforeX?| f;, thenY|f;. This implies thay dividesh, a contradiction. [

One difficulty in proving our main result is that the idedlsandJ' do not arise as
preimages of a map, but they are rather (generated by) ttgeinfaa map. The following
Lemma is helpful for constructing Stanley decompositionthis setting.

Lemma4.2.Letnn e N,R=K[Xy,...,Xp], R =K[Xg,...,Xy] be two polynomial rings
and let JC | ¢ R be monomial ideals. Let: N" — N" be amap and let’JC I’ c R be
the ideals generated Isp(1) resp.®(J). LetQ be a finite set and let/l) = @;.q X3 K[Z]
be a Stanley decomposition gfll. Let Z,i € Q be a collection of subsets ¢X, ..., Xy }.
Assume thag is injective, monotonic, and preserves joins. Assume mergthat

D(XHK[Z]ND(R) = O(XTK[Z]) (%)

for each ie Q.
SetV= .o P(X*)K[Z]] as a graded vector space. Then

V =P O(X*)K[Z]
i€Q
is a direct sum and it holds that¥ 1’ /J'.

Proof. First, we show that the sum is direct. On the contrary, supploat there are in-
dicesi # j such that a monomial appears in both parts. This monomiléis & common
multiple of ®(X#) and ®(X?). Then also the least common multiple @fX%) and
®(X3) appears in both parts. AB preserves the least common multiple of two monomi-
als, it follows that the least common multiple @f X&) and®(X®) is ®(X&V4j) (where
X&Vaj js the least common multiple && andX?i). But now, the conditiorfx) and the
fact thatg is injective imply thatX®"8 e X3K[z] N X#K|Z;], a contradiction.

Next, we show tha¥ C I’/J’. EveryX# is contained irl, henceV is contained in’.
It remains to show that no monomial {a(X#)K[Z]] is contained inJ’. Assume on the
contrary that such a monomial exists. Then it is a commonipielof ®(X%) and®d(X?)
for a minimal generator ok? of J. Again, it follows that the least common multiple of
®(X#F) andd(X?) is contained inb(X*)K[Z]NJ N P(R). But then the least common
multiple of X& andX? is contained irX®K[Z] N J, a contradiction. O

Theorem 4.3.Let JC | C R be two monomial ideals, and let & I* C R]Y] be their
1-step polarizations. Then

sdepthl /J = sdepthit/Jt —1.
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Proof. Without loss of generality, we assume tiétdivides one of the generators lobr
J and we apply polarization with respectXq. Consider the map : N — N2 defined by

-1 ifix2
“’(')'_{(i,O) ifi —0,1.

FIGURE 1. The image ofp from the proof of Theorem.3.

It is easy to see that is injective, monotonic and preserves joins. Further, nlesthat
@(a) < @(b) if and only ifa < b for a,b € N. Moreover, all these properties carry over to
@:N"— N"1 andd : R— R[Y] (see also Remark.5).

By definition, it holds that! is generated byp(1), hence®1(11) O I. We claim that
®~1(11) = I. To see this, consider a monomit € ®~1(11). Thend(XP) is a multiple
of a generatod(X?) of I1, whereX? e |. By the observation abovX? is then a multiple
of X2 and thus contained in Analogously it holds tha®—1(J%) = J.

Letg=(d,...,0n) be the join of the exponents of the monomial generatotsamidJ
(we assume, > 2). Theng' = (01, ..,0n—1,0n— 1,1) = @(g) is the join of the exponents
of the monomial generators ¢t and J. It follows from Lemma3.6 that ¢ changes
the Stanley depth by-1 with respect tay, and (g, — 1,1). Hence by Lemm&.4 and
Proposition3.3it holds that sdepth /J > sdepthl /3! — 1.

Now we turn to the second inequality. Let us consider a Syashdeomposition /J =
i X3K[Z] of | /J. Remark thatb(X,X?) /®(X?) € {X,,Y} for every monomiak? € R,
which allows us to define

. ZU{Y} ) if Xn€Z
' lzu ({Xn,Y} \ {~—¢é>((;(>;?')}> otherwise.

We claim that A
Vi= EBGD(Xa‘)K[Z{] (5x)

is a Stanley decomposition bf/JL. First, we show that
d(X*)K[Z]ND(R) = D(X¥K[Z])
for eachi. The inclusion 2" is clear.
For the other inclusion, le¥l’ := ®(X#)N’ be a monomial in the left-hand side and let
M := ®~1(M’) € Rbe its preimage. Note thet(X%) | M" implies thatx | M (it follows
from the observation above th@ta) < ¢(b) if and only ifa < b for a,b € N), hence we
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A

may defineN := M /X%, It suffices to show thal € K[Z;], because theh’ = ®(X&N)
is contained in the right-hand side.

By definition, the mapb may change only the exponentsXf andY. Therefore the
equality P(X&N) = ®(X¥)N’ implies thatN’ andN may differ only by multiplication
and/or division by (powers of%, andY. Hence every other variable appearindNralso
appears ilN’ € K[Z]], so itis contained iZ] and (thus) irZ;. FurthermoreN € Rimplies
thatY t N. So we only need to prove the following: X, | N, thenX, € Z;.

So assume thaX, | N. ThenX,X& | NX& and thus®(X,X&) | ®(NX%) = M’. This
further implies that

XX [ M

~ ~

B(xa) | d(xa)
As N’ € K[Z]], it now follows from the definition of/ thatX, € Z.
It is easy to see thab satisfies the assumptions of Lemrha&, so we conclude that the
sum in(%x) is direct and thay c 11/J3*. It remains to show that = I11/J%. For this, we
compute the graded Hilbert series\af

5 tlail(1—t)n+1-1Z]
- (1—t)nL
yitlal (-4l
T @-ynit
1
= ﬁHl/J(t) =Hy1/n(t).

Here,|a| denotes the sum of the componentsyofin the first and third equality we used
the decompositions &f resp.l /J given above. For the last equality we used Proposition
4.1. As we have already shown thétc 11/J%, the claim follows.

We conclude that the sum {#«) is a Stanley decomposition bf/J!. As|Z/| = ||+ 1
for eachi, it follows that sdepti*/J' > sdepthl /J + 1. O

Iteration of Theoremt.3and Propositiod.1 has one immediate consequence:

Corollary 4.4. Let JC | € R be monomial ideals, and le?,J° ¢ RP be their polariza-
tions. Then

sdepthl /J —depthl /J = sdepthl P/IP — depth1P/JP.
In particular, [ , Conjecture 62js true.

Note that the preceding corollary effectively reduces [etds conjecture to the square-
free case:

Corollary 4.5. Let JC | C R be monomial ideals, and le?,J° C RP be their polariza-
tions. Then JJ satisfies the Stanley Conjecture if and only’ifJP satisfies it too.

Remark 4.6. (1) We would like to point out that the “only if”-part of Coraly 4.5
already appeared in\[ , Theorem 3.5] in the quite particular ca$e- (0)
andR/l Cohen-Macaulay. We obtain in contrast a full reduction ef 8tanley’s
conjecture to the squarefree case.
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(2) An invariant related to the Stanley depth is thigbert depth which was intro-
duced by Uliczka 1i10] in the standard-graded case and by Bruns, Kratten-
thaler and Uliczka i ] in the multigraded case. Theorefn3 and Corol-
lary 4.4 hold mutatis mutandifor the Hilbert depth: since the multigraded Hilbert
depth coincides with the Stanley depth in our situation [(6f , Proposition
2.8]), we have

hdepthyy, I1/3' = hdepth 1 /3+ 1.
In theZ-graded case, the equality

hdepthky, 11/3* = hdeptlg 1/3+1
is easily deduced fromi.[li10, Theorem 3.2].

It was previously known (see-[ ]) that the Stanley conjecture for algebras of the
type R/l (wherel C Ris a monomial ideal) implies the conjecture (also due to I8jan
[ ; Conjecture 2.7]) that every Cohen-Macaulay simpliciahptex is partitionable.
We show that they are in fact equivalent:

Corollary 4.7. Let | C R be a monomial ideal. Stanley’s conjecture for algebrasef t
type R/l is equivalent to Stanley’s conjecture that every Cohercdlday simplicial com-
plex is partitionable.

Proof. It is known that Stanley’s conjecture holds for all algeboéshe typeR/I if and
only if it holds for all Cohen-Macaulay such algebras, ¢fS[Z1( Corollary 3.2]. As it
was pointed out inH ], this together with Corollaryt.5 completes the proof. O

Corollary 4.8. Stanley’s conjecture holds for quotientgIR0f Gorenstein monomial
ideals I C R with at mos8 generators.

Proof. Polarization preserves the Gorenstein property and thebauwof generators, so
by Corollary4.5we may assume thais squarefree. Moreover, bi\jF14, Prop. 5.1] we
may assume that every variableR&ppears in a generator bfSol is a Stanley-Reisner
ideal of a homology sphere. But these homology spheres heare dassified in{at17].

In particular, they are all polytopal and thus shellablenc8ithe Stanley conjecture is
known to hold in this case by-{~0q or [ , p. 15], the claim follows. O

5. FURTHER APPLICATIONS TOSTANLEY DECOMPOSITIONS

Let1,J C R be monomial ideals witld C I. First of all, the techniques introduced in
Section3 allows us to generalize results of Cimpoeagijos Lemma 1.1], and Ishaq and
Qureshi [Q13 Lemma 2.1] :

Proposition 5.1. Let ke N. Let I’ and J be the monomial ideals obtained from | and J
in the following way: Each generator whose degree jns<at least k is multiplied by
and all other generators are taken unchanged. Then

sdepthl /J = sdepthl’/J'.



12 BOGDAN ICHIM, LUKAS KATTHAN, AND JULIO JOSE MOYANO-FERNANDEZ

Proof. Consider the mapg, ¢ : N — N defined by

i ifi<k i ifi<k
‘p<')':{i+1 iti >k "’<')':{i—1 ifi > k.

Note that both maps change the Stanley depth by O with regpget N andg+1 € N
or vice versa, for each > k. Moreover, by defining the maggg, ¥ as in Remarld.5, we
haved® (1) = I, W=1(1) =", and similarly forJ. So the claim follows from Proposition
3.3 O

The following result generalizes[1e09 Lemma 2.3].

Proposition 5.2. Let I’ and J be the monomial ideals iK[Xy, . . ., Xn, Xn+1] Obtained from
| and J in the following way: In each minimal generator of | ahdevery occurrence of
the variable X is replaced with the productX,.1. Then

sdepthl’/J" = sdepthl /J+ 1.

Proof. Consider the map: N2 — N, ¢(a,b) := min(a,b). Letg be the maximal degree
of X, in a minimal generator af or|. Then

¢ *(la,b])N[(0,0),(g.9)] = [(a,a), (b,g)|U[(b+1,a),(g,b)]

for 0 <a <b < g, hencep changes the Stanley depth by 1 with respedigt@) andg
(remark that the union is disjoint). By defining the mé&pas in Remark3.5, we have
®~1(1) = I’ and similarly for the ideal. Therefore, Propositiof.3yields the inequality

“>". The reverse inequality<” is a consequence oflJ , Proposition 5.2]. Alter-
natively, the reverse inequality follows from Lemm&6, applied to the diagonal map
N — N2 a— (a,a). O

Remark 5.3. (1) Let us remark that the two propositions in this sectian emough
to reduce the computation of a monomial complete intersedt the case of the
maximal ideal. We follow the line of reasoning of Shérnp09 Theorem 2.4]. A
monomial complete intersection iddalk generated by monomials with pairwise
disjoint support. So by Propositidnl, its Stanley depth does not change if we
replacel with its radical. Then Propositiod.2 allows us to replacé by an ideal
generated by variables.

(2) Note that ifl is a Stanley-Reisner ideal, then the process describeapoBition
5.2 corresponds to the one-point suspensi@rif], so topologically it is a sus-
pension. This gives a geometric explanation why the deptleases exactly by
1.
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