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THE BEHAVIOR OF STANLEY DEPTH UNDER POLARIZATION

BOGDAN ICHIM, LUKAS KATTHÄN, AND JULIO JOSÉ MOYANO-FERNÁNDEZ

ABSTRACT. Let K be a field,R= K[X1, . . . ,Xn] be the polynomial ring andJ ( I two
monomial ideals inR. In this paper we show that

sdepthI/J−depthI/J = sdepthI p/Jp−depthI p/Jp,

where sdepthI/J denotes the Stanley depth andI p denotes the polarization. This solves
a conjecture by Herzog [Her13] and reduces the famous Stanley conjecture (for modules
of the form I/J) to the squarefree case. As a consequence, the Stanley conjecture for
algebras of the formR/I and the well-known combinatorial conjecture that every Cohen-
Macaulay simplicial complex is partitionable are equivalent.

1. INTRODUCTION

In 1982, R. Stanley conjectured in his celebrated paper [Sta82] an upper bound for the
depth of a multigraded module of combinatorial nature, calledStanley depthlater on. A
proof of this conjecture turned out to be a difficult problem:it began soon to be called the
Stanley conjecture. Since then, several authors began to study intensively this problem,
starting with the reformulation by Apel of the most important cases of the conjecture, i.e.
the Stanley conjecture for a monomial idealI and for the factor ringR/I , see [Ape03a,
Conjecture 2] and [Ape03b, Conjecture 1]. Afterwards, most of the research concentrates
on the particular case of a module of the formI/J for two monomial idealsJ ( I in the
polynomial ringR=K[X1, . . . ,Xn] over some fieldK; motivated by works of Herzog and
Popescu [HP06, Pop09], the Stanley conjecture became one important open problemin
algebra and combinatorics.

A natural first step to approach the Stanley conjecture is to try to reduce it to squarefree
monomial ideals. The arguable most straightforward methodfor this is via polarization.
This is a process which replaces an arbitrary monomial idealI with a certain squarefree
monomial idealI p, such thatI can be recovered fromI p by dividing out a regular se-
quence. The behavior of many invariants ofI under polarization is well understood. In
particular, as polarization preserves the projective dimension, the change in the depth is
just the change in the number of variables. In view of the Stanley conjecture, one would
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hope for a similar behavior of the Stanley depth. This was formulated as a conjecture by
Herzog in the survey [Her13] as follows:

Conjecture 1.1(Conjecture 62, [Her13]). Let I ⊂ R be a monomial ideal. Then

sdepthR/I −depthR/I = sdepthRp/I p−depthRp/I p

where Rp is the ring where Ip is defined.

However, despite the naturality of the question and a considerable effort, it remained
open for quite some time. The main result of our paper (Corollary 4.4) is the proof of
Conjecture1.1. We show it even more generally for modules of the formI/J for two
monomial idealsJ ( I ⊆ R.

This has two important consequences. First, it immediatelyfollows that I/J satisfies
the Stanley conjecture if and only if its polarizationI p/Jp does so, cf. Corollary4.5. Thus
the Stanley conjecture for modules of the formI/J—in particular [Ape03a, Conjecture 2]
and [Ape03b, Conjecture 1]—is effectively reduced to the squarefree case.

For the second consequence, as noted by Stanley himself in [Sta82, p. 191], the Stan-
ley conjecture was formulated such that "the question raised in [Sta79, p. 149, line 6] or
[Gar80, Rmk. 5.2] would follow affirmatively". This question was reformulated by Stan-
ley [Sta83, Conjecture 2.7], and asks whether every Cohen-Macaulay simplicial complex
is partitionable. While it is clear that the Stanley conjecture implies the Garsia-Stanley
conjecture on Cohen-Macaulay simplicial complexes, in this paper we show that the con-
verse is also true, that is, the Garsia-Stanley conjecture on Cohen-Macaulay simplicial
complexes implies what is (arguably) the most important case of the Stanley conjecture.
More precisely, we show that Stanley’s conjecture on Cohen-Macaulay simplicial com-
plexes is equivalent to [Ape03b, Conjecture 1] (see Corollary4.7).

The content of the paper is organized as follows. Section2 is devoted to explain the
prerequisites and to fix notations. Section3 introduces a suitable tool for the measure of
the Stanley depth of a quotientI/J as above, namely themaps changing the Stanley depth.
Helpful properties of those maps are recorded in both Lemma3.4and Lemma3.6.

The most remarkable application of Section3 is that to the polarization of the quotient
I/J; this is exactly the content of Section4, which also includes the main results of the
paper—the already mentioned Corollaries4.4, 4.5and4.7.

Further applications of the maps changing Stanley depth aredescribed in Section5,
closing the paper.

The reader is referred to Bruns and Herzog [BH96], and Miller and Sturmfels [MS05]
for general definitions, notation, and background material.

2. PREREQUISITES

Let K be a field. We consider the polynomial ringR=K[X1, . . . ,Xn] overK, endowed
with the fineZn-grading (i.e. theZn-grading with degXi = ei being thei-th vector of the
canonical basis).

Let M be a finitely generated gradedR-module, andm∈ M homogeneous. LetZ ⊂
{X1, . . . ,Xn} be a subset of the set of indeterminates ofR. TheK[Z]-submodulemK[Z]
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of M is called aStanley spaceof M if mK[Z] is free (asK[Z]-submodule). AStanley
decompositionof M is a finite family

D = (K[Zi ],mi)i∈Ω

in whichZi ⊂ {X1, . . . ,Xn} andmiK[Zi ] is a Stanley space ofM for eachi ∈ Ω with

M =
⊕

i∈Ω
miK[Zi ]

as a graded or multigradedK-vector space. This direct sum carries the structure ofR-
module and has therefore a well-defined depth. TheStanley depthsdepthM of M is
defined to be the maximal depth of a Stanley decomposition ofM. The Stanley conjecture
states the following inequality:

Conjecture 2.1(Stanley). sdepthM ≥ depthM.

For a recent account on the subject, the reader is referred toHerzog’s survey [Her13].

We endowZn (orNn) with the componentwise (partial) order: Givena,b∈ Zn, we say
thata≤ b if and only if ai ≤ bi for i = 1, . . . ,n. Note that this partial order turnsZn into a
distributive lattice with meeta∧b and joina∨b being the componentwise minimum and
maximum, respectively. Fora,b∈ Zn the interval between a and bis defined to be

[a,b] := {c∈ Zn | a≤ c≤ b}.

Remark here that forn∈ N we will use the notation[n] := {1, . . . ,n}.

Monotonic poset maps will play a prominent role in Section3. Let P ⊂ Zn, P′ ⊂ Zn′

be posets. We call a mapφ : P→ P′ monotonicif it preserves the order. Moreover, aφ is
said topreserve joinsresp.meetsif it satisfiesφ(a∨b) = φ(a)∨φ(b) resp. φ(a∧b) =
φ(a)∧φ(b) for all a,b∈ P.

Fora= (a1, . . . ,an) ∈ Nn we denote byXa the monomialXa1
1 · · ·Xan

n . Let J ( I ⊂ Rbe
two monomial ideals. The quotientI/J is a graded or multigradedR-module. Following
Herzog, Vladoiu and Zheng [HVZ09], we fix a vectorg∈ Nn satisfyinga≤ g for all Xa

in minimal sets of generators forI andJ. Thecharacteristic poset PgI/J of I/J with respect
to g is defined to be the (finite) subposet

Pg
I/J := {a∈ Nn : Xa ∈ I \J, a≤ g}

of Zn. A partition of a finite posetP is a disjoint union

P : P=
r
⋃

i=1

[ai ,bi]

of intervals. A key result in [HVZ09] describes a way to compute sdepthI/J from a Stan-
ley decomposition ofI/J coming from a partition of the posetPg

I/J. More precisely, by set-

ting Zb := {Xj : b j = g j} for eachb∈ Pg
I/J, and the functionρ = ρg : Pg

I/J → Z≥0, ρ(c) =
#(Zc), Theorem 2.1 in [HVZ09] says:



4 BOGDAN ICHIM, LUKAS KATTHÄN, AND JULIO JOSÉ MOYANO-FERNÁNDEZ

Theorem 2.2(Herzog, Vladoiu, Zheng).
(a) LetP : Pg

I/J =
⋃r

i=1[a
i,bi ] be a partition of PgI/J, then

D(P) : I/J =
r
⊕

i=1

(

⊕

c

XcK[Zbi ]

)

is a Stanley decomposition of I/J, where the inner direct sum is taken over all c∈ [ai,bi ]
for which cj = ai

j for all j with X j ∈ Zbi . Moreover, we have

sdepthD(P) = min{ρ(bi) : i = 1, . . . , r}.

(b) Let D be a Stanley decomposition of I/J. Then there exists a partitionP of Pg
I/J

such thatsdepthD(P) ≥ sdepthD . In particular, sdepthI/J can be computed as the
maximum of the numberssdepthD(P), whereP runs over the (finitely many) partitions
of Pg

I/J.

The main topic of this paper is the behavior of Stanley depth under polarization. We
recall the definition following Herzog and Hibi [HH11]. Let I ⊂ R be a monomial ideal
with generatorsu1, . . . ,um, whereui = ∏n

j=1X
ai j
j for i = 1, . . . ,m. For eachj let a j =

max{ai j : i = 1, . . . ,m}. Seta= (a1, . . . ,an) and choose ag∈ Nn such thata≤ g. SetRp

to be the polynomial ring

Rp :=K[Xjk : 1≤ j ≤ n,1≤ k≤ g j ].

Then thepolarization of I is the squarefree monomial idealI p ⊂ Rp generated by
v1, . . . ,vm, where

vi =
n

∏
j=1

ai j

∏
k=1

Xjk for i = 1, . . . ,m.

3. POSET MAPS

Let I ,J be monomial ideals ofR such thatJ ( I . We are interested in measuring the
Stanley depth of the deformations of the quotientI/J. The following kind of maps reveals
to be a useful tool for that aim:

Definition 3.1. Let ℓ ∈ Z andn,n′ ∈N. A monotonic mapφ : Nn →Nn′ is said tochange
the Stanley depthby ℓ with respect tog∈ Nn andg′ ∈ Nn′ , if it satisfies the following two
conditions:

(1) φ(g)≤ g′

(2) For each interval[a′,b′]⊂ [0,g′], the (restricted) preimageφ−1([a′,b′])∩ [0,g] can
be written as a finite disjoint union

⋃

i [a
i ,bi] of intervals, such that

#{ j ∈ [n] : bi
j = g j} ≥ #{ j ∈ [n′] : b′j = g′j}+ ℓ for all i.
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Notation 3.2. Let R=K[X1, . . . ,Xn], R′ =K[X1, . . . ,Xn′]. A mapφ : Nn → Nn′ gives rise
to a naturalK-linear mapΦ : R→ R′, which is defined on monomials as

Φ(Xa) := Xφ(a).

and extended toR linearly. Note that this isnot a ring homomorphism.

Next proposition justifies the name for a monotonic mapchanging the Stanley depthof
the previous definition:

Proposition 3.3. Let n,n′ ∈ N, R= K[X1, . . . ,Xn], R′ =K[X1, . . . ,Xn′] be two polynomial
rings and let J′ ( I ′ ⊂ R′ be monomial ideals. Consider a monotonic mapφ : Nn → Nn′

and set I:= Φ−1(I ′), J := Φ−1(J′). Choose g∈Nn and g′ ∈Nn′ , such that every minimal
generator of I and J divides Xg, and every minimal generator of I′ and J′ divides Xg′. Let
ℓ ∈ Z and assume thatφ changes the Stanley depth byℓ with respect to g and g′. Then

(i) I and J are monomial ideals, and
(ii) sdepthI/J ≥ sdepthI ′/J′+ ℓ.

Proof. It is clear thatI and J are monomial ideals (since monomial ideals correspond
to subsets ofNn that are closed under “going up”, and taking the preimage under a
monotonic map preserves this property). For the second claim, we compute the Stan-
ley depth ofI ′/J′ via an interval partition ofPg′

I ′/J′ (cf. Theorem2.2). Note that the as-

sumptionφ(g) ≤ g′ together with the equalitiesΦ−1(I ′) = I andΦ−1(J′) = J imply that

φ−1(Pg′

I ′/J′)∩ [0,g] = Pg
I/J. Hence, taking the preimages of the intervals in the partition of

Pg′

I ′/J′ yields an interval partition ofPg
I/J of the required Stanley depth. �

The following results are useful for constructing mapsφ which satisfy the conditions
of the previous proposition:

Lemma 3.4. Let n1,n′1,n2,n′2 ∈N. For i = 1,2, let φi : Nni →Nn′i be monotonic maps that
change the Stanley depth byℓi with respect to gi ∈ Nni and g′i ∈ Nn′i . Then the product
map

(φ1,φ2) : Nn1+n2 → Nn′1+n′2

changes the Stanley depth byℓ1+ ℓ2 with respect to(g1,g2) and(g′1,g
′
2).

Proof. Let us denote the product map byφ := (φ1,φ2). It is enough to consider one
interval[(p1, p2),(q1,q2)]⊂Nn′1+n′2. By assumption, the preimageφ−1

i ([pi ,qi])
⋂

[0,gi] =
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⋃

j [p
j
i ,q

j
i ]⊂ Nni is a disjoint finite union of intervals. Then

φ−1([(p1, p2),(q1,q2)])∩ [0,(g1,g2)] =

= φ−1(([p1,q1]×Nn2) ∩ (Nn1 × [p2,q2])) ∩ [0,(g1,g2)]

= (φ−1
1 ([p1,q1])×Nn2) ∩ (Nn1 ×φ−1

2 ([p2,q2]))∩ ([0,g1]×Nn2) ∩ (Nn1 × [0,g2])

=
(

(φ−1
1 ([p1,q1])∩ [0,g1])×Nn2

)

∩
(

Nn1 × (φ−1
2 ([p2,q2])∩ [0,g2])

)

=

(

(
⋃

j

[p j
1,q

j
1])×Nn2

)

∩

(

Nn1 × (
⋃

j

[p j
2,q

j
2])

)

=
⋃

j ,k

[(p j
1, p

k
2),(q

j
1,q

k
2)],

which implies the statement. �

Remark 3.5. The most important special case of this lemma is when one of the maps is
the identity. In this case, ifφ is a map changing the Stanley depth byℓ, then we can pad it
with identities to get a new map̂φ = (id, . . . , id,φ) that still changes the Stanley depth by
ℓ. In the sequel,̂φ will always denote the padded version ofφ andΦ̂ the padded version
of Φ.

Lemma 3.6. Every monotonic mapφ : N→ Nn′ changes the Stanley depth by1−n′ with
respect to g∈ N and g′ := φ(g).

Proof. Let Q′ = [a′,b′] ⊂ [0,g′] ⊂ Nn′ be an interval and letQ := φ−1(Q′)∩ [0,g] be
its (restricted) preimage. Leta resp.b ∈ N be the minimal resp. maximal element in
Q. ThenQ ⊂ [a,b] and we claim that we have equality. Forc ∈ [a,b], it follows from
φ(a) ≤ φ(c) ≤ φ(b) that φ(c) ∈ [a′,b′], becauseφ(a),φ(b) ∈ [a′,b′]. Thusc ∈ Q. So
the preimage of an interval is again an interval. It remains to verify the condition (2) of
Definition3.1, namely

#{ j ∈ [1] : b j = g j} ≥ #{ j ∈ [n′] : b′j = g′j}+1−n′ for all i.

If b′ < g′, then the right hand side is nonpositive, so the condition istrivially satisfied. On
the other hand, ifb′ = g′, thenb= g and thus the condition is also satisfied. �

We close this section with a precise description of the behavior of poset maps preserv-
ing joins and meets with respect to the property of changing Stanley depth. This result
will be not needed in the sequel.

Theorem 3.7.Let n,n′ ∈N and letφ : Nn →Nn′ be a map that preserves joins and meets.
Thenφ changes the Stanley depth by n−n′ with respect to g∈ Nn and g′ := φ(g).

Proof. We assume thatφ(0) = 0, as we otherwise replaceφ by φ −φ(0) without changing
the validity of the statement. First we show thatφ is monotonic. Considera,b∈ Nn with
a≤ b. Then

φ(a)≤ φ(a)∨φ(b) = φ(a∨b) = φ(b),
henceφ(a)≤ φ(b).
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In view of Lemma3.4 and Lemma3.6, it is sufficient to show thatφ is a product of
monotonic mapsφi : N→ Nn′i with 1≤ i ≤ n and∑i n

′
i = n′.

For this, letei denote thei-th unit vector ofNn. Every vectorv = ∑i λiei ∈ Nn can
be written as a sumv= λe1+(0,v′) with v′ ∈ Nn−1. As φ is monotonic, the support of
φ(λe1) can only increase withλ . Hence, without loss of generality, we may assume that
the maximal support ofφ(λe1) for λ ≫ 0 is the set of the firstn′1 coordinates. That is

φ(λe1) ∈ Nn′1 × (0, . . . ,0).

Sinceφ preserves meets, for allλ ∈ N andv′ ∈ Nn−1 we have

0= φ(0) = φ(λe1∧ (0,v′)) = φ(λe1)∧φ((0,v′)).

It follows that for each vector(0,v′) with vanishing first coordinate, the support of its
image is contained in the lastn′−n′1 coordinates. That is

φ((0,v′)) ∈ (0, . . . ,0)×Nn′−n′1.

Then, it holds that

φ(v) = φ(λe1+(0,v′)) = φ(λe1∨ (0,v′)) = φ(λe1)∨φ((0,v′)) = φ(λe1)+φ((0,v′)),

because the sum equals the join in this case. Setφ1 : N→Nn′1, φ1(λ ) = πn′1
φ(λe1) where

πn′1
is the projection on the firstn′1 coordinates. Setφn−1 : Nn−1 → Nn′−n′1, φn−1(v′) =

πn′−n′1
φ((0,v′)) whereπn′−n′1

is the projection on the lastn′ − n′1 coordinates. Thenφ
splits into a direct product

φ = (φ1,φn−1) : N×Nn−1 →Nn′1 ×Nn′−n′1.

Sinceφ1 is a restriction ofφ , it follows thatφ1 is monotonic.
Iterating this construction yields the desired decomposition of φ . �

4. APPLICATION TO POLARIZATIONS

Let J ( I be two monomial ideals inR. Then we can choosee∈ Zn bigger than or
equal to (in the sense of the order≤) the join of all generators ofI andJ, and define the
polarizationI p/Jp of I/J according to Section2.

Polarization can also be done step by step. Letu1, . . . ,um be the set of minimal genera-
tors of I . Following [Her13] we define the 1-step polarizationof I (with respect toXi) to
be the idealI1 ⊂ R[Y] generated byv1, . . . ,vm, where

v j :=

{

Y
Xi

u j if X2
i | u j

u j otherwise.

If the indeterminate of the polynomial ring with respect which we apply partial polar-
ization is not relevant, we will omit it.

Proposition 4.1. Let J( I ⊂ R be monomial ideals. Then

(1) depthR[Y] I1/J1 = depthR I/J+1;

(2) HI1/J1(t) = 1
1−t HI/J(t).
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HereHI/J(t) denotes the Hilbert series with respect to theZ-grading. This proposition
is easy and partially known (cf. [Her13, p. 47]). We present a complete proof for the
reader’s convenience.

Proof. For both claims it suffices to show thatXn−Y is a regular element. By contradic-
tion, assumingXn−Y is a zero-divisor onI1/J1, then there exists an idealp ∈ Ass(I1/J1)
with Xn−Y ∈ p. Since bothJ1 andp are monomial ideals, there exists a monomialh /∈ J1

such thatp = AnnR′h. Thenh(Xn−Y) ∈ J1, and againhY ∈ J1, hXn ∈ J1, sinceJ1 is
monomial. Letf1, f2 generators ofJ1 such thatf1|hXn and f2|hY. If Y| f2 thenXn| f2 and
soXn|h. ThereforeX2

n | f1, thenY| f1. This implies thatY dividesh, a contradiction. �

One difficulty in proving our main result is that the idealsI1 andJ1 do not arise as
preimages of a map, but they are rather (generated by) the image of a map. The following
Lemma is helpful for constructing Stanley decompositions in this setting.

Lemma 4.2.Let n,n′ ∈N, R=K[X1, . . . ,Xn], R′ =K[X1, . . . ,Xn′] be two polynomial rings
and let J( I ⊂ R be monomial ideals. Letφ : Nn → Nn′ be a map and let J′ ( I ′ ⊂ R′ be
the ideals generated byΦ(I) resp.Φ(J). LetΩ be a finite set and let I/J=

⊕

i∈Ω XaiK[Zi ]
be a Stanley decomposition of I/J. Let Z′i , i ∈ Ω be a collection of subsets of{X1, . . . ,Xn′}.

Assume thatφ is injective, monotonic, and preserves joins. Assume moreover, that

Φ(Xai)K[Z′
i ]∩Φ(R) = Φ(XaiK[Zi ]) (⋆)

for each i∈ Ω.
Set V= ∑i∈Ω Φ(Xai)K[Z′

i ] as a graded vector space. Then

V =
⊕

i∈Ω
Φ(Xai)K[Z′

i ]

is a direct sum and it holds that V⊂ I ′/J′.

Proof. First, we show that the sum is direct. On the contrary, suppose that there are in-
dicesi 6= j such that a monomial appears in both parts. This monomial is then a common
multiple of Φ(Xai) and Φ(Xa j ). Then also the least common multiple ofΦ(Xai) and
Φ(Xa j ) appears in both parts. AsΦ preserves the least common multiple of two monomi-
als, it follows that the least common multiple ofΦ(Xai) andΦ(Xa j ) is Φ(Xai∨a j ) (where
Xai∨a j is the least common multiple ofXai andXa j ). But now, the condition(⋆) and the
fact thatφ is injective imply thatXai∨a j ∈ XaiK[Zi ]∩Xa jK[Z j ], a contradiction.

Next, we show thatV ⊂ I ′/J′. EveryXai is contained inI , henceV is contained inI ′.
It remains to show that no monomial inΦ(Xai)K[Z′

i ] is contained inJ′. Assume on the
contrary that such a monomial exists. Then it is a common multiple of Φ(Xai) andΦ(Xa)
for a minimal generator ofXa of J. Again, it follows that the least common multiple of
Φ(Xai) andΦ(Xa) is contained inΦ(Xai)K[Z′

i ]∩ J′∩Φ(R). But then the least common
multiple ofXai andXa is contained inXaiK[Zi ]∩J, a contradiction. �

Theorem 4.3. Let J( I ⊂ R be two monomial ideals, and let J1 ( I1 ⊂ R[Y] be their
1-step polarizations. Then

sdepthI/J = sdepthI1/J1−1.
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Proof. Without loss of generality, we assume thatX2
n divides one of the generators ofI or

J and we apply polarization with respect toXn. Consider the mapφ : N→ N2 defined by

φ(i) :=

{

(i −1,1) if i ≥ 2

(i,0) if i = 0,1.

FIGURE 1. The image ofφ from the proof of Theorem4.3.

It is easy to see thatφ is injective, monotonic and preserves joins. Further, observe that
φ(a)≤ φ(b) if and only if a≤ b for a,b∈ N. Moreover, all these properties carry over to
φ̂ : Nn → Nn+1 andΦ̂ : R→ R[Y] (see also Remark3.5).

By definition, it holds thatI1 is generated bŷΦ(I), henceΦ̂−1(I1) ⊇ I . We claim that
Φ̂−1(I1) = I . To see this, consider a monomialXb ∈ Φ̂−1(I1). ThenΦ̂(Xb) is a multiple
of a generatorΦ(Xa) of I1, whereXa ∈ I . By the observation above,Xb is then a multiple
of Xa and thus contained inI . Analogously it holds that̂Φ−1(J1) = J.

Let g= (g1, . . . ,gn) be the join of the exponents of the monomial generators ofI andJ
(we assumegn ≥ 2). Theng′ = (g1, . . . ,gn−1,gn−1,1) = φ̂(g) is the join of the exponents
of the monomial generators ofI1 and J1. It follows from Lemma3.6 that φ̂ changes
the Stanley depth by−1 with respect togn and (gn− 1,1). Hence by Lemma3.4 and
Proposition3.3 it holds that sdepthI/J ≥ sdepthI1/J1−1.

Now we turn to the second inequality. Let us consider a Stanley decompositionI/J =
⊕

i X
aiK[Zi ] of I/J. Remark that̂Φ(XnXa)/Φ̂(Xa) ∈ {Xn,Y} for every monomialXa ∈ R,

which allows us to define

Z′
i :=

{

Zi ∪{Y} if Xn ∈ Zi

Zi ∪
(

{Xn,Y}\{
Φ̂(XnXai )

Φ̂(Xai )
}
)

otherwise.

We claim that
V :=

⊕

i

Φ̂(Xai)K[Z′
i ] (⋆⋆)

is a Stanley decomposition ofI1/J1. First, we show that

Φ̂(Xai)K[Z′
i ]∩ Φ̂(R) = Φ̂(XaiK[Zi ])

for eachi. The inclusion “⊇” is clear.
For the other inclusion, letM′ := Φ̂(Xai)N′ be a monomial in the left-hand side and let

M := Φ̂−1(M′) ∈ Rbe its preimage. Note thatΦ̂(Xai) | M′ implies thatXai | M (it follows
from the observation above thatφ(a)≤ φ(b) if and only if a≤ b for a,b∈ N), hence we
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may defineN := M/Xai . It suffices to show thatN ∈K[Zi ], because thenM′ = Φ̂(XaiN)
is contained in the right-hand side.

By definition, the mapΦ̂ may change only the exponents ofXn andY. Therefore the
equalityΦ̂(XaiN) = Φ̂(Xai)N′ implies thatN′ andN may differ only by multiplication
and/or division by (powers of)Xn andY. Hence every other variable appearing inN also
appears inN′ ∈K[Z′

i ], so it is contained inZ′
i and (thus) inZi . Furthermore,N ∈ R implies

thatY ∤ N. So we only need to prove the following: IfXn | N, thenXn ∈ Zi .
So assume thatXn | N. ThenXnXai | NXai and thusΦ̂(XnXai) | Φ̂(NXai) = M′. This

further implies that
Φ̂(XnXai)

Φ̂(Xai)

M′

Φ̂(Xai)
= N′.

As N′ ∈K[Z′
i ], it now follows from the definition ofZ′

i thatXn ∈ Zi .
It is easy to see that̂Φ satisfies the assumptions of Lemma4.2, so we conclude that the

sum in(⋆⋆) is direct and thatV ⊂ I1/J1. It remains to show thatV = I1/J1. For this, we
compute the graded Hilbert series ofV:

HV(t) =
∑i t

|ai|(1− t)n+1−|Z′
i |

(1− t)n+1

=
∑i t

|ai|(1− t)n−|Zi|

(1− t)n+1

=
1

1− t
HI/J(t) = HI1/J1(t).

Here,|ai| denotes the sum of the components ofai . In the first and third equality we used
the decompositions ofV resp.I/J given above. For the last equality we used Proposition
4.1. As we have already shown thatV ⊂ I1/J1, the claim follows.

We conclude that the sum in(⋆⋆) is a Stanley decomposition ofI1/J1. As |Z′
i |= |Zi|+1

for eachi, it follows that sdepthI1/J1 ≥ sdepthI/J+1. �

Iteration of Theorem4.3and Proposition4.1has one immediate consequence:

Corollary 4.4. Let J( I ⊂ R be monomial ideals, and let Ip,Jp ⊂ Rp be their polariza-
tions. Then

sdepthI/J−depthI/J = sdepthI p/Jp−depthI p/Jp.

In particular, [Her13, Conjecture 62]is true.

Note that the preceding corollary effectively reduces Stanley’s conjecture to the square-
free case:

Corollary 4.5. Let J( I ⊂ R be monomial ideals, and let Ip,Jp ⊂ Rp be their polariza-
tions. Then I/J satisfies the Stanley Conjecture if and only if Ip/Jp satisfies it too.

Remark 4.6. (1) We would like to point out that the “only if”-part of Corollary 4.5
already appeared in [Ahm11, Theorem 3.5] in the quite particular caseJ = (0)
andR/I Cohen-Macaulay. We obtain in contrast a full reduction of the Stanley’s
conjecture to the squarefree case.
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(2) An invariant related to the Stanley depth is theHilbert depth, which was intro-
duced by Uliczka [Uli10] in the standardZ-graded case and by Bruns, Kratten-
thaler and Uliczka [BKU10] in the multigraded case. Theorem4.3 and Corol-
lary 4.4holdmutatis mutandisfor the Hilbert depth: since the multigraded Hilbert
depth coincides with the Stanley depth in our situation (cf.[BKU10, Proposition
2.8]), we have

hdepthR[Y] I1/J1 = hdepthR I/J+1.

In theZ-graded case, the equality

hdepth1R[Y] I1/J1 = hdepth1R I/J+1

is easily deduced from [Uli10, Theorem 3.2].

It was previously known (see [HJY08]) that the Stanley conjecture for algebras of the
type R/I (whereI ⊂ R is a monomial ideal) implies the conjecture (also due to Stanley
[Sta83, Conjecture 2.7]) that every Cohen-Macaulay simplicial complex is partitionable.
We show that they are in fact equivalent:

Corollary 4.7. Let I ⊂ R be a monomial ideal. Stanley’s conjecture for algebras of the
type R/I is equivalent to Stanley’s conjecture that every Cohen-Macaulay simplicial com-
plex is partitionable.

Proof. It is known that Stanley’s conjecture holds for all algebrasof the typeR/I if and
only if it holds for all Cohen-Macaulay such algebras, cf. [HSJZ10, Corollary 3.2]. As it
was pointed out in [Her13], this together with Corollary4.5completes the proof. �

Corollary 4.8. Stanley’s conjecture holds for quotients R/I of Gorenstein monomial
ideals I⊂ R with at most8 generators.

Proof. Polarization preserves the Gorenstein property and the number of generators, so
by Corollary4.5we may assume thatI is squarefree. Moreover, by [IMF14, Prop. 5.1] we
may assume that every variable ofRappears in a generator ofI . SoI is a Stanley-Reisner
ideal of a homology sphere. But these homology spheres have been classified in [Kat12].
In particular, they are all polytopal and thus shellable. Since the Stanley conjecture is
known to hold in this case by [HP06] or [Her13, p. 15], the claim follows. �

5. FURTHER APPLICATIONS TOSTANLEY DECOMPOSITIONS

Let I ,J ⊂ R be monomial ideals withJ ( I . First of all, the techniques introduced in
Section3 allows us to generalize results of Cimpoeaş [Cim08, Lemma 1.1], and Ishaq and
Qureshi [IQ13, Lemma 2.1] :

Proposition 5.1. Let k∈ N. Let I′ and J′ be the monomial ideals obtained from I and J
in the following way: Each generator whose degree in Xn is at least k is multiplied by Xn,
and all other generators are taken unchanged. Then

sdepthI/J = sdepthI ′/J′.
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Proof. Consider the mapsφ ,ψ : N→ N defined by

φ(i) :=

{

i if i < k,

i +1 if i ≥ k;
ψ(i) :=

{

i if i ≤ k,

i −1 if i > k.

Note that both maps change the Stanley depth by 0 with respectto g∈ N andg+1 ∈ N
or vice versa, for eachg≥ k. Moreover, by defining the mapŝΦ,Ψ̂ as in Remark3.5, we
haveΦ̂−1(I ′) = I , Ψ̂−1(I) = I ′, and similarly forJ. So the claim follows from Proposition
3.3. �

The following result generalizes [She09, Lemma 2.3].

Proposition 5.2.Let I′ and J′ be the monomial ideals inK[X1, . . . ,Xn,Xn+1] obtained from
I and J in the following way: In each minimal generator of I andJ, every occurrence of
the variable Xn is replaced with the product XnXn+1. Then

sdepthI ′/J′ = sdepthI/J+1.

Proof. Consider the mapφ : N2 → N, φ(a,b) := min(a,b). Let g be the maximal degree
of Xn in a minimal generator ofJ or I . Then

φ−1([a,b])∩ [(0,0),(g,g)]= [(a,a),(b,g)]∪̇[(b+1,a),(g,b)]

for 0 ≤ a ≤ b ≤ g, henceφ changes the Stanley depth by 1 with respect to(g,g) andg
(remark that the union is disjoint). By defining the mapΦ̂ as in Remark3.5, we have
Φ̂−1(I) = I ′ and similarly for the idealJ. Therefore, Proposition3.3yields the inequality
“≥”. The reverse inequality “≤” is a consequence of [IMF14, Proposition 5.2]. Alter-
natively, the reverse inequality follows from Lemma3.6, applied to the diagonal map
N→ N2,a 7→ (a,a). �

Remark 5.3. (1) Let us remark that the two propositions in this section are enough
to reduce the computation of a monomial complete intersection to the case of the
maximal ideal. We follow the line of reasoning of Shen [She09, Theorem 2.4]. A
monomial complete intersection idealI is generated by monomials with pairwise
disjoint support. So by Proposition5.1, its Stanley depth does not change if we
replaceI with its radical. Then Proposition5.2allows us to replaceI by an ideal
generated by variables.

(2) Note that ifI is a Stanley-Reisner ideal, then the process described in Proposition
5.2 corresponds to the one-point suspension [JL05], so topologically it is a sus-
pension. This gives a geometric explanation why the depth increases exactly by
1.
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