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Abstract 

The use of starch as pore former is frequent in the fabrication of porous ceramic membranes, since 

starches are cheap, innocuous and environmentally friendly. A study has been conducted to evaluate the 

influence of potato starch content (0-30 wt %) and sintering temperature (1100 and 1400ºC) on low-cost 

ceramic microfiltration membranes. The raw materials were a mixture of kaolin, alumina and starch, from 

which membrane specimens were shaped by uniaxial dry pressing. 

 

The results indicated that the percentage of potato starch did affect the properties of the membrane. Thus, 

an increase of starch content provoked a reduction of bulk density (an increase of porosity) a rise of water 

permeability and a substantial modification (coarsening) of the pore size distribution. This effect deals 

with the role as pore former of starch, which burns out when fired. More interestingly, it was 

experimentally observed that the effect of starch was particularly effective for starch percentages higher 

than 10 wt% once a connected coarse pore network is developed. On the other hand, an increase in 
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sintering temperature from 1100 to 1400ºC also influenced membranes’ characteristics but the effect was 

much less significant than that of starch content. 

 

A percolation analysis based on the Effective Medium Approximation (EMA) contact model allowed to 

conclude that the critical porosity calculated corresponds to a starch content of 10.2 wt%, which agrees 

quite well with the estimation from experimental results. Finally, tortuosity was calculated with a simple 

model derived from Hagen-Poiseuille equation. The obtained data showed that tortuosity factor decreased 

as the starch content or sintering temperature increased. These findings are consistent with SEM analysis 

and pore size determination. 

 

Keywords: A. Precursors: organic; B. Porosity; B. Microstructure-final; E. Membranes. 

 

1. Introduction 

The interest in low-cost ceramic membranes has recently increased since they combine high performance 

(as high thermal and mechanical stability, long life and good chemical stability) with economy (compared 

with habitual ceramic membranes available in market, made of alumina, zirconia or titania) [1,2]. The 

properties of the ceramic membranes are mainly determined by their composition, the pore-former 

content and the sintering temperature. The proposed compositions of low-cost ceramic membranes are 

very wide, depending on the nature of their raw materials: local clays [3–10] and kaolin [11–13], sepiolite 

[14], apatite [15,16], perlite [17,18], phosphate [19,20] or a mixture of some of them [21–26], among 

others. 

 

To reach the optimum permeability level, most of the ceramic membranes’ compositions include starch as 

pore former, in a proportion between 2 and 20 wt% [3,5,8–11,16–19,22,27]. Starch generates pores 

during its burning out around 500ºC; moreover, it is environmentally friendly, easy to burn out and very 

cheap [28]. The addition of starch granules to a mixture of inorganic raw materials yields ceramic 

membranes of greater porosity, tailored pore size and higher permeability. By adjusting the amount of 

starch added, a ceramic membrane of a specified pore size distribution and permeability can be obtained 

across a broad range. As reported examples, the mean pore sizes for alumina membranes ranged from 1 to 
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 3 

2 µm and apparent porosities increased from 23 to 44% as the added amount of starch rose from 0 wt% to 

15 wt% [9], whereas in ball clay membranes the apparent porosity increased from 9 to 32% as the added 

amount of starch augmented from 0 wt% to 35 wt% (no data about pore sizes were published) [10]. 

 

Changes in maximum temperature of thermal cycle modify the properties of the ceramic membranes 

through its affect over sintering. The variations are reflected in porosity, which usually decreases when 

temperature increases, and pore size distribution, which shifts towards coarser pore sizes. Some studies 

about those phenomena have been previously reported. Membranes derived from ball clays showed a 

reduction in apparent porosity from 19 to 16 % when sintering temperature increased from 1000 to 

1300°C [29]. Other membranes whose composition was based on a mixture of inexpensive raw materials 

(kaolin, quartz and different carbonates) displayed a similar trend: the porosity decreased from 40% to 

22% when the sintering temperature increased from 900 to 1000ºC whereas the average pore size 

coarsened from 2.6 to 5.5 µm [30]. Similar trend have been found in ceramic membranes developed from 

a mixture of kaolin, pyrophyllite, feldspar, ball clay, quartz, and calcium carbonate: the porosity initially 

grew and then decreased in the range of 41–46 % and the average pore diameter augmented from 0.87 to 

1.10 µm with an increment of sintering temperature from 850 to 1000ºC [31]. 

 

Water permeability is the most used parameter to characterise a ceramic membrane. Viscous flow of a 

Newtonian fluid through a porous medium can be described by Darcy’s law, which relates the specific 

permeability to water (Kp, m
2
) with the slope of the straight line obtained graphing the volume flux versus 

the pressure gradient (Eq. 1): 

0S

eb
K p

××
=

h
 [Eq. 1] 

where η is the water viscosity, e the membrane’s thickness, b the value of the slope and S0 the specific 

surface [32]. In addition, the best-known equation for describing the specific permeability of a medium 

(Kp, m
2
) in terms of its structural properties is the Kozeny-Carman equation (Eq. 2): 

( )2
3

2

00 1

1

e
e
-

=
SK

K p  [Eq. 2] 
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 4 

where K0 is the Kozeny constant, S0 the specific surface, and ε the porosity of the membrane [33]. 

Assuming that the product [K0∙S0
2
] varies little in a set of microfiltration membranes obtained with a 

similar process, the model predicts an approximately linear relationship between Kp and the porosity term 

[ε
3
/(1-ε)

2
]. The permeability coefficient (Kp) can also be related with the pore diameter (d) though the 

Hagen-Poiseuille equation: 

ht

e

32

2d
K

sf

p =  [Eq. 3] 

being the water viscosity (η), the surface porosity (εsf) and the tortuosity factor (τ). 

Assuming that the tortuosity can keep constant in a set of microfiltration membranes, the model 

prognosticates an approximately linear relationship between Kp and [εsf∙d
2
]. 

 

On the other hand the Effective Medium Approximation (EMA) contact model has also been employed to 

explain the permeability behaviour [34–36]. This model is based on the similitude between the Darcy’s 

law and the equation to calculate the current flow in electricity. At certain porosity (a critical porosity, εc), 

a network of connected pores appears, resulting in a sudden increase in the permeability. At porosities 

around the critical porosity (which corresponds to the percolation threshold of porosity) the permeability 

(k) satisfies a scaling relation (Eq. 4): 

t

ck )( ee -µ  [Eq. 4] 

where t is the critical exponent. 

 

Finally, the tortuosity factor of a membrane can be calculated using a simple model based on the Hagen-

Poiseuille equation [Eq. 3] and the pore size distributions measured by mercury intrusion [37–39], as 

shown in Eq. 5. 
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3344

8

32 minmaxminmax

h
t  [Eq. 5] 

Where ai and bi are constants calculated from every interval i of the pore size distribution, rimax and rimin 

represent the maximum and minimum pore radius of every interval and slp the straight line’s slope 

obtained in the water permeability test. 
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Although the research activity on low-cost microfiltration membranes has been very intense in the last 

years due to the many potential industrial applications of these materials very few papers have intended to 

model microstructural features of sintered membranes with functional properties of the membranes [40–

42]. This is because the use of natural minerals (ball clays, kaolin, etc.) as raw materials makes it harder 

to model the intricate microstructure of these ceramic membranes. 

 

As a consequence of the above, this research focuses on the relationship between microstructure and 

properties of low-cost ceramic microfiltration membranes. Hence, potato starch has been used as pore 

former and a mixture of kaolin and alumina as base composition. The objective was to determine the 

effect of starch addition at different weight percentages on the ceramic composition processing (by 

pressing) as well as on microstructure and permeation characteristics of the ceramic membranes. In 

addition, the effect of sintering temperature on the microstructure and performance of sintered 

membranes has been also addressed. Some equations have been assessed to model the permeability in 

function of structural parameters of the membranes. 

 

2. Experimental 

2.1. Membrane preparation 

The raw materials used to prepare the ceramic membranes were alumina (AR12B5, Pechiney, France; 

D50=5µm, Se=12m
2
/g) and kaolin (ER/N, Caobar, Spain; D50=4.2µm). Potato starch (Sigma-Aldrich Co. 

USA; D50=44.1 µm) was used as pore former. Table 1 shows the chemical composition of these materials. 
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Table 1. Chemical compositions of the raw materials used (wt%). 

 Alumina Kaolin 

SiO2 

Al2O3 

Fe2O3 

CaO 

Na2O 

K2O 

TiO2 

Loss on ignition 

0.02 

99.4 

0.01 

0.01 

0.37 

- 

- 

0.19 

48.4 

37.5 

0.53 

0.10 

- 

0.5 

0.14 

13.3 

 

Seven compositions were formulated with different proportions of starch (0, 5, 10, 15, 20, 25, 30 wt %), 

maintaining a weight ratio 50:50 between alumina and kaolin (Table 2). 

Table 2. Composition of the raw materials mixtures (wt%) used to prepare the membranes. 

Ref Alumina Kaolin Potato starch 

S0 

S5 

S10 

S15 

S20 

S25 

S30 

50 

47.5 

45 

42.5 

40 

37.5 

35 

50 

47.5 

45 

42.5 

40 

37.5 

35 

- 

5 

10 

15 

20 

25 

30 

 

The raw materials were homogenised in acetone in a ball mill. The resulting suspension was dried under 

IR lamps and moistened to a content of 3 kg H2O/100 kg dry solid, with an aqueous solution of 0.3 wt% 

polyvinyl alcohol (Mowiol 4-88, Clariant, Switzerland) which acted as binder. Cylindrical test specimens 

of 50 mm diameter and 6-7 mm thickness were formed by uniaxial dry pressing at 400 kg∙cm
-2

 (Instron 

Model 6027, USA) and dried in an oven at 110ºC. 
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The green specimens were sintered in two steps, as shown in figure 1. Initially, the starch was oxidised in 

a muffle furnace with a slow firing cycle characterised by a maximum temperature of 500ºC (K60L, 

Nannetti Spa. Italy). Finally, the specimens were sintered in an electric kiln (RHF 1600, Carbolite, UK) 

with a thermal cycle characterised by a soaking time of 4 hours at maximum temperature (1100ºC or 

1400ºC). 

 

2.2. Membranes characterisation and equipment 

The green and sintered bulk density of the specimens were determined by the Archimedes displacement 

technique using mercury as non-wetting liquid and the water uptake in sintered bodies was measured by 

the boiling water immersion method [43]. The permeability coefficient for water was obtained with a 

liquid permeameter (LEP101-A, PMI, USA). The pore size distribution of the membranes was measured 

by mercury intrusion porosimetry (AutoPore IV, Micromeritics Instruments Co, USA) and then the total 

volume of pores (Vf) and characteristic pore diameters (d16 and d50) were calculated from experimental 

data. Additionally, the microstructure of some supports was analysed by scanning electron microscopy 

(FEG-ESEM Quanta 200 F, FEI, USA). Finally, the real density of the green and sintered samples was 

measured with a helium pycnometer (Utrapycnometer 1000, Quantachrome, USA). 

 

3. Results and discussion 

3.1. Bulk density and porosity of green membranes 

As revealed by the figure 2 the bulk density of the green samples (BDG) decreases when the starch 

content increases for two reasons: the real density of potato starch (1.51±0.02 g∙cm
-3

) is lower than that of 

the inorganic solid fraction (3.03±0.02 g∙cm
-3

) and a reduction of compaction during pressing occurs as a 

consequence of the ineffective plastic flow when starch is compressed. Nevertheless, there is an inflexion 

point at the starch content of 10 wt%, after which the slope decreases, showing a higher influence of the 

starch content on the bulk density of the green membranes. Green porosity (εG) slightly decreases with 

starch content following a quadratic function, since the introduction of starch causes the two-fold effect 

set out above for BDG. The interaction of both effects produces the reduction of the green porosity 
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because porosity definition is based on the quotient between bulk and real density. Finally, the porosity 

that is theoretically obtained after discounting the volume occupied by starch (εGT) has been also 

calculated (Figure 2). When the volume occupied by starch is discounted (simulating the situation of the 

samples after the oxidation step during the thermal treatment), it is observed that green porosity without 

starch increases linearly with starch content confirming the negative contribution of starch to ceramic 

powder consolidation by pressing. 

 

3.2. Microstructure assessment of sintered membranes 

After sintering membranes without defects were obtained. These membranes presented enough strength 

so as to carry out characterisation tests. Figure 3 shows the crystalline phases of composition S0 sintered 

at both temperatures. The rest of sintered membranes which contained starch in the starting raw materials 

mixture displayed similar XRD patterns. Corundum and quartz appears at both temperatures, since they 

come respectively from alumina and kaolin, which contains a certain amount of quartz. At 1400ºC, 

mullite and cristobalite appears, because they are generated by the thermal treatment at temperatures 

higher than 1200ºC [42,44]. 

 

The bulk density of sintered membranes (BDS) decreases linearly with starch content since the starch’s 

combustion gives rise to pore volume formation (figure 4). Nevertheless, the bulk density also depends on 

the sintering temperature, augmenting when temperature changes from 1100ºC to 1400ºC, owing to a 

higher degree of sintering, as it can be seen in figure 4. As a consequence for any of the sintering 

temperatures tested, total porosity of sintered specimens (eS) increases linearly when starch content rises, 

since it is calculated on the basis of bulk density and average real density of the sintered composition 

(3.22±0.02 g∙cm
-3

) (Figure 4). A similar tendency was also obtained by other authors using different 

starch contents and membrane’s preparation methods [9,10,42,45]. 

 

In order to better follow the membrane densification process, a densification parameter (DP) was 

introduced as follows [46]: 

GT

SGTDP
e

ee -
=  [Eq. 6] 
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Where εS is the final porosity (for a given starch content and/or sintering temperature) and εGT is the 

initial porosity excluding starch. 

DP shows the effects of the sintering temperature and starch content as plotted in figure 5. The value of 

densification parameter changes from negative to positive when temperature increases from 1100 ºC to 

1400 ºC. In other words, it was observed that eGT<eS for the lower temperature and eGT>eS for the higher 

temperature. Considering that the linear shrinkage is very low at 1100 ºC, the negative densification 

parameters are probably the result of the loss of mass attributed to kaolin decomposition around 500 ºC as 

well as the predominance of surface transport mechanisms in the sintering process. By contrast, the 

positive densification parameters obtained at 1400 ºC relates to the advancement of sintering process, 

which probably takes place in presence of a liquid phase generated by the fluxing impurities present in the 

kaolin (see table 1). On the other hand, the effect of starch content is also dependent of sintering 

temperature. Thus at 1400ºC, densification parameter seems to slightly increase when starch content rises, 

but the total increment is lower than the experimental uncertainty. On contrary, at 1100ºC the 

densification parameter clearly decreases its absolute value as starch content augments due to the lower 

kaolin content in the composition and, in consequence, lower loss on ignition. 

 

A deeper analysis on the development of membrane porosities was carried out on the basis of mercury 

pore sizing technique. Figure 6 displays the accumulate pore size distribution of membranes fired at the 

higher sintering temperature of 1400ºC. By introducing starch in the membrane’s composition porosity 

increases and pore size distribution broadens as revealed by the marked arrow in the figure. These two 

parameters change at the same time as a consequence of the sintering process being impossible to alter 

one parameter without affecting the other one [42]. 

A better understanding of the types of porosity comprising the microstructure of the developed 

membranes can be found by plotting the corresponding differential pore size distribution curves. Figure 7 

represents these curves for all the membranes sintered at 1100 ºC (a) and 1400 ºC (b). For the samples 

sintered at 1400 ºC the membrane without starch (S0) exhibits a bimodal distribution, as a result of its 

composition: small pores (around 0.1µm) mainly caused by the porosity of the matrix made up of the 

broken down kaolin particles and large pores (around 0.45µm), generated between the decomposed kaolin 

and alumina particles. The pore size grows (around 0.7µm) and the pore size distribution becomes wider 
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when reduced amounts of starch are added to the composition (less than 10 wt%). Nevertheless, the 

bimodal distribution becomes trimodal as well as the pore size dramatically increases when starch is 

added to the composition in high proportions (more than 10 wt%). This is because over this percentage of 

starch the large pores generated by starch burning out start to create a connected network accessible to the 

mercury introduced in the porosimetry measurement. The same trend has been found in the membranes 

sintered at 1100ºC (Figure 7a). The sintering temperature affects the porous structure in a different way as 

expected by the change in sintering mechanism as set out above. At 1400ºC a decreasing in the total pore 

volume and a coarsening of pores were detected as a consequence of the well reported Ostwald’s 

Ripening effect [47,48]. 

 

The effect of the starch content on characteristics diameters (d16 and d50) of membranes was also 

evaluated. As a consequence, a quadratic relation was observed between those parameters and starch 

content, whose polynomial coefficients were a function of the sintering temperature (Figure 8). This 

parabolic trend means that small differences in starch addition impact on membrane microstructure in a 

different way. Thus when higher starch proportions are used greater effect is observed. Largest pores (d16) 

undergo higher influence of starch content because the starch employed in the research displayed a large 

particle size (D50=44.1 µm ) and, consequently, as recently reported, the generated pores associated to 

these particles burnout can reach up to 2-4 µm size [49,50]. Similar tendencies have been reported with 

membranes of different geometries prepared by other consolidation methods [9]. 

 

Figure 9 shows FEG-ESEM images of the extreme composition membranes (S0 and S30). As observed 

the microstructure of the membranes substantially changes when starch is added to the composition. 

Starch generates large and rounded pores in the ceramic matrix, composed of particles derived of kaolin 

and alumina (marked K and A respectively on the pictures) as extensively reported in similar low-cost 

ceramic membranes prepared with starch additions [9–11,50]. When sintering temperature increases from 

1100ºC to 1400ºC, pores (marked P) become less rounded while areas of more sintered aspect develop. 

Although more rounded pores could be expected when sintering advances at higher temperature (1400ºC), 

the refractoriness of the alumina-kaolin matrix impedes this sintering effect. Cracks (marked C) around 
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large alumina particles are also observed as a consequence of the thermal stresses between alumina 

particles and kaolin-derived particles [51]. 

 

3.3. Water permeability 

The permeability of the membranes in terms of water permeability coefficient (Kp) was determined using 

distilled water as a fluid. The relationship between Kp and starch addition has been represented in figure 

10. As observed in this figure the amount of added starch drastically modifies the permeability 

coefficient, following an exponential trend at both sintering temperatures. These findings confirm the 

tendency reported in previous works [42]. However, despite the differences between the porosity (Figure 

4) and pore sizes (Figure 8) of membranes sintered at 1100 and 1400ºC, the water permeability only 

displays a very slight dependence of sintering temperature, being higher at 1400ºC. These findings 

indicate that the contribution of the starch addition to membrane microstructure prevails on porosity 

differences (as shown in figure 4, which evidences that porosity of membranes sintered at 1400ºC is 

lower than that of the membranes sintered at 1100ºC). Hence, if we compare figures 8 and 10, water 

permeability variation with starch addition seems to follow the exponential change experienced by the 

coarse mean pore size (d16) of the pore size distribution with the amount of starch; i.e. as coarse porosity 

is more and more present in the membrane (d16 increasing) water permeability grows. Moreover, the 

increase of coarse pore sizes with starch addition seems to be significant for starch addition higher than 

10 wt%. This same finding was observed when the differential pore sizing analysis was presented (Figure 

7). In that analysis, it was concluded that over 10 wt% starch addition the interconnection of the pore 

network created by the pore former starts to be effective. In other words, provided that a minimum 

amount of starch is added to the membrane composition (around 10 wt%) the starch content practically 

determines the value of water permeability of the ceramic membrane since the pores generated by the 

starch become interconnected and therefore accessible to fluids. 

The open porosity (εW) has been calculated by means of water uptake and bulk density (Table 3) [50]. 

Applying the Hagen-Poiseuille equation [Eq 3] and assimilating εsf to εW, the relation between water 

permeability and the product [εW∙d
2
] has been obtained at 1100 and 1400ºC, being d the characteristic 

pore diameters (d16, d50). Figure 11 shows that a linear trend is obtained for the two diameters, although 
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the correlation for d16 is slightly better as set out above on the contribution of coarse pores to water 

permeability. 

Table 3. Open porosity (εW) of the membranes (%) calculated by means of water uptake and bulk density. 

Ref εW (%) 

S0-1100 

S10-1100 

S20-1100 

S30-1100 

S0-1400 

S5-1400 

S10-1400 

S15-1400 

S20-1400 

S25-1400 

S30-1400 

51.7 

54.5 

60.2 

67.3 

44.9 

46.1 

48.4 

52.1 

57.0 

59.5 

63.8 

 

3.4. Percolation analysis 

The relation between water permeability and open porosity (εW) has been evaluated by the EMA contact 

model for samples obtained at 1400ºC (Figure 12). For values of porosity lower than the critical porosity 

(percolation threshold of porosity), the water permeability varies linearly with open porosity. When 

porosity is higher than the critical porosity, the dependence follows the scaling relation [Eq. 4], where ε is 

porosity near porosity threshold (εc=51.64%) and obtained t value is 1.51. The calculated t is slightly 

higher than the reported value of approximately 1.2 given by other authors [34–36]. Nevertheless, the 

critical porosity calculated corresponds to a starch content of 10.2 wt% which agrees quite well with the 

estimates deduced along the previous experimental representations. To sum up, the dependence of water 

permeability at 1400ºC with open porosity presents two trenches: 

ε < εc → a + b∙ε 

ε ≥ εc → a + b∙ε + c∙( ε - εc)
t
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being a, b and c constants values (see figure 12). Although this relationship could not be calculated at 

1100ºC because of the reduced number of samples available, the similar shape of both curves predicts that 

it should follow the same model. 

 

3.5. Tortuosity estimation 

Physically, tortuosity factor (τ) is defined as the ratio of the actual distance ∆l travelled by the permeating 

species per unit length ∆x of the filtrating medium [52]. There are no experimental methods to directly 

evaluate the tortuosity and, in consequence, it is usually estimated by theoretical equations or empiric 

models [52]. In this section the tortuosity factor is estimated by a simple model [eq. 5] based on the 

Hagen-Poiseuille equation [eq. 3] and the pore size distributions determined by mercury intrusion. This 

model has been successfully used in previous research with other low-cost ceramic membrane 

compositions [37–39]. The data have been collected from the previous sections and plotted in figure 7. 

Overall the higher the starch content or the sintering temperature the lower the tortuosity factor is. This 

matches well with microstructure observations by FEG-ESEM (Figure 6) as well as with the findings set 

out on pore sizing curves and water permeability. Hence, when temperature rises from 1100 to 1400ºC, 

despite the observed porosity reduction the effect of sintering diminishes tortuosity by pore coarsening 

effect leading to water permeability increasing. Starch added to the composition develops a connected 

coarse pores network, which also reduces the tortuosity of the pore channels giving rise to an effective 

water permeability increase. Nevertheless, samples obtained with 15 wt% starch addition do not match 

the others (tortuosity factor is 17) and have not been included in the figure 13. This unexpected lack of 

correlation is probably related to the fact that those membranes were obtained separately (in a different 

experimental test) from the rest of the samples; therefore it can be deduced that the composition 

preparation process strongly influences the tortuosity value (considered as a parameter related with the 

local microstructure) but it does not show any effect on the rest of variables (water permeability and pore 

size distribution parameters, considered as global parameters). 
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4. Conclusions 

In this investigation, potato starch has been employed as a pore former for preparing low-cost ceramic 

membranes by uniaxial dry-pressing. The starting composition was based on the alumina-kaolin system 

and different starch percentages were added to the same. Two sintering temperatures (1100 ºC and 1400 

ºC) were tested. 

 

It was observed that the different weight percentage of potato starch did affect the properties of the 

membrane. Thus porosity of sintered membranes linearly increased with starch content since the starch’s 

combustion gave rise to pores. The porosity also depends on the sintering temperature, decreasing when 

temperature changes from 1100ºC to 1400ºC, owing to a higher degree of sintering, as a consequence of a 

change in the sintering mechanism. On the other hand, pore size distribution also changes with starch 

addition. In particular coarse pore size fraction strongly increases when starch is added to the composition 

in higher proportions (more than 10 wt%) owing to the development of a connected pore network. 

Permeability tests confirm that the starch content practically determines the value of water permeability 

of the ceramic membrane since the pores generated by the starch become interconnected and therefore 

accessible to fluids. Experimental data of water permeability fit the the Hagen-Poiseuille equation 

confirming the significant contribution of coarse pores generated by starch to membrane permeability. 

 

A percolation analysis evaluated by the EMA contact model allowed to conclude that the critical porosity 

calculated corresponds to a starch content of 10.2 wt% which agrees quite well with the estimates 

deduced from microstructure inspection and pore size determination by mercury porosimetry. Finally, the 

tortuosity factor was estimated by a simple model based on the Hagen-Poiseuille equation and the pore 

size distributions. The estimates showed that tortuosity factor decreased as the starch content or sintering 

temperature increased. These findings again confirm that starch added to the composition develops a 

connected coarse pores network which also reduces the tortuosity of the pore channels giving rise to an 

effective membrane permeability increase. 
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Glossary 

KP: specific permeability to water (m
2
) 

εsf: surface porosity 

εC: critical porosity 

εG: green porosity 

εGT: porosity theoretically obtained after discounting the volume occupied by starch 

eS: sintered total porosity 

εW : open porosities calculated by means of water absorption and bulk density 

τ: tortuosity factor 

BDG: bulk density of the green samples 

BDS: bulk density of sintered membranes 

DP: densification parameter 
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Figure captions 

Figure 1. Thermal cycles for the two temperatures used to sinter the membranes. 

Figure 2. Bulk density (BDG) and porosity (εG) of green membranes of the different compositions; 

calculated porosity excluding the starch is also showed (εGT). 

Figure 3. Diffractogram of membrane S0 at 1100 and 1400ºC. 

Figure 4. Influence of the starch content on the bulk density (BDS) and total porosity (εS) of sintered 

membranes. 

Figure 5. Relation between the densification parameter (DP) and the starch content of the membrane 

composition. 

Figure 6. Accumulate pore size distributions of the membranes sintered at 1400ºC. 

Figure 7. Differential pore size distributions of the membranes sintered at a) 1100ºC and b)1400ºC. 

Figure 8. Influence of starch content on characteristics diameters d16 and d50 of the sintered membranes. 

Figure 9. SEM micrographs of the membranes S0 at 1100ºC and 1400ºC and S30 at 1100ºC and 1400ºC. 

Figure 10. Influence of starch content on water permeability coefficient (KP) 

Figure 11. Relation between the water permeability and the coefficient (εW∙d
2
), being d the characteristic 

pore diameters (d16 and d50). 

Figure 12. Relation between open porosity calculated by means of water absorption and bulk density (εW) 

and water permeability and model to evaluate percolation threshold of porosity. 

Figure 13. Relation between tortuosity factor (τ) and starch content of the membrane composition, 

following the model set out in [37–39]. 
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Tables 

Table 1. Chemical compositions of the raw materials used (wt%). 

Table 2. Composition of the raw materials mixtures (wt%) used to prepare the membranes. 

Table 3. Open porosity (εW) of the membranes (%) calculated by means of water uptake and bulk density. 

 



Table 1. Chemical compositions of the raw materials used (wt%). 

 Alumina Kaolin 

SiO2 

Al2O3 

Fe2O3 

CaO 

Na2O 

K2O 

TiO2 

Loss on ignition 

0.02 

99.4 

0.01 

0.01 

0.37 

- 

- 

0.19 

48.4 

37.5 

0.53 

0.10 

- 

0.5 

0.14 

13.3 

 

 

Table 1



Table 2. Composition of the raw materials mixtures (wt%) used to prepare the membranes. 

Ref Alumina Kaolin Potato starch 

S0 

S5 

S10 

S15 

S20 

S25 

S30 

50 

47.5 

45 

42.5 

40 

37.5 

35 

50 

47.5 

45 

42.5 

40 

37.5 

35 

- 

5 

10 

15 

20 

25 

30 

 

 

Table 2



Table 3. Open porosity (εW) of the membranes (%) calculated by means of water uptake and bulk 

density. 

Ref εW (%) 

S0-1100 

S10-1100 

S20-1100 

S30-1100 

S0-1400 

S5-1400 

S10-1400 

S15-1400 

S20-1400 

S25-1400 

S30-1400 

51.7 

54.5 

60.2 

67.3 

44.9 

46.1 

48.4 

52.1 

57.0 

59.5 

63.8 

 

 

Table 3
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